

Baler: A tool for machine learning based data compression

The problem

- Problem: Too much data, too little storage
- Not unique to LHC Experiments
- High demand for compression

ATLAS HL-LHC Computing Conceptual Design Report Calafiura, P ; Catmore, J ; Costanzo, D ; Di Girolamo, A http://cds.cern.ch/record/2729668/

A Solution

- One approach: Lossy compression
- One problem: Lossy compression needs to be tailored
- Solution: Lossy Machine Learning based compression

Lossy compression

- Works well in cases where more data is better
- Particle physics: where more events compensate for the loss in precision
- Works well where the only option is to delete the data
- Computational Fluid dynamics: No infrastructure to store generated data for long times after publication
- We have created a tool called "Baler" to help investigate the viability of this compression
- Multidisciplinary tool
- Distributed and developed as an open source project
- https://github.com/baler-collaboration/baler
- Simple to run with python through Poetry

```
poetry run python baler --project=CMS --mode=train
```

- Docker implementation also available
- Docker-Sponsored Open Source program

Baler Workflow

Train

Compress

- Data consists of 2D slice of the x-velocity component for a liquid flowing over a cube
- The compressed file is 0.5% the size of the input
- We present:
- Data before and after compression+decompression
- Difference between before and after

Methodology

- HEP Data

- ~600 000 jets
- 24 variables per jet compressed to 14 variables -> 58\% original size
- Evaluation Metrics:

Relative Difference $=\frac{\text { reconstructed }- \text { original }}{\text { original }}$

Difference $=$ reconstructed - original

Results in HEP: Transverse Momentum

Variable Distributions

Results in HEP: Transverse Momentum

Results in HEP: Transverse Momentum

Results in HEP: Transverse Momentum

Results in HEP: Pseudorapidity, η

Results in HEP: Polar Angle, Φ

Results in HEP: Neutral Hadron Energy

- HEP
- Baler -> OK reconstruction
- gzip -> Perfect reconstruction

58\% original file size 25% original file size

- Reason for the big difference:
- A lot of repeating values in HEP data is beneficial for methods like gzip
- Future work:
- Run on other datasets
- Evaluate impact on full physics analysis

CFD Auxiliary file dilemma

- CFD
- Baler -> Good reconstruction
- gzip -> Lossless reconstruction
- Reason for the big difference:
- Few repeating values in CFD data
- One problem... Auxiliary files
- Input CFD data size: ~1.2 MB
- Decoder: ~600 MB
- Future work:
- Run on large 3D time series datasets
0.5% original file size 50% original file size
- Open-source tool for machine learning based compression
- HEP results:
- Compression to 58% of input size
- On average jet pT and mass differ on order of 0.2\%, eta and phi 0.003\%
- Other 20 variables have varying performance
- CFD results:
- Huge compression to 0.5% of input size, but large auxiliary files
- Small point wise error
- Future improvements:
- More compression on more suitable files for HEP
- Larger input files for CFD

The Baler Team

- Big thank you from the Baler team!
- For more details see: https://arxiv.org/abs/2305.02283
- Try our working examples at our GitHub repository
- https://github.com/baler-collaboration/baler

Marta Camps Santasmasas	(UoM, CFD)
Nicole Skidmore	(UoM, HEP)
Caterina Doglioni	(UoM, HEP)
Pratik Jawahar	(UoM, HEP)
Oliver Woolland	
(UoM, RSE)	
Fritjof Bencevic-Alagic	(Lund, CS)
Axel Gallén	(Lund, CS)
Alexander Ekman	(Lund, HEP)
(Lund, HEP)	

Backup slides

1.7 x vs 6 x compression

1.7x compression

mHFEMEnergy [GeV]

6x compression

mHFEMEnergy [GeV]

Table 2: Residual and Response distribution means and RMS values for all variables in the dataset. These values are presented at $R=1.7$, and all values have been averaged over 5 runs, with an added statistical error of two standard deviations.

Variable ($R=1.7$)	Response		Residual	
	Mean	RMS	Mean	RMS
p_{T}	$-1.07 \times 10^{-3} \pm 1.34 \times 10^{-2}$	$2.09 \times 10^{-2} \pm 3.56 \times 10^{-3}$	$-1.44 \times 10^{-2} \pm 1.04 \times 10^{-1}$	$2.12 \times 10^{-1} \pm 5.29 \times 10^{-2}$
η	$3.75 \times 10^{-4} \pm 6.11 \times 10^{-4}$	$8.12 \times 10^{-1} \pm 1.17$	$-1.12 \times 10^{-3} \pm 2.67 \times 10^{-3}$	$2.09 \times 10^{-3} \pm 1.45 \times 10^{-3}$
ϕ	$3.44 \times 10^{-4} \pm 8.64 \times 10^{-4}$	$1.93 \times 10^{-1} \pm 4.32 \times 10^{-1}$	$2.45 \times 10^{-4} \pm 1.80 \times 10^{-3}$	$9.91 \times 10^{-4} \pm 1.12 \times 10^{-3}$
mass	$2.39 \times 10^{-1} \pm 7.87$	$4.38 \times 10^{3} \pm 4.47 \times 10^{3}$	$-8.05 \times 10^{-3} \pm 2.51 \times 10^{-2}$	$3.98 \times 10^{-2} \pm 1.42 \times 10^{-2}$
mJetArea	$6.12 \times 10^{-5} \pm 1.81 \times 10^{-4}$	$3.13 \times 10^{-4} \pm 1.48 \times 10^{-4}$	$3.21 \times 10^{-5} \pm 8.90 \times 10^{-5}$	$1.10 \times 10^{-4} \pm 5.77 \times 10^{-5}$
mChargedHadronEnergy	$1.58 \times 10^{-3} \pm 1.70 \times 10^{-2}$	$2.85 \times 10^{-2} \pm 1.30 \times 10^{-2}$	$1.68 \times 10^{-2} \pm 1.43 \times 10^{-1}$	$1.71 \times 10^{-1} \pm 7.33 \times 10^{-2}$
mNeutralHadronEnergy	$7.05 \times 10^{-2} \pm 9.88 \times 10^{-2}$	$2.22 \times 10^{-1} \pm 6.59 \times 10^{-2}$	$2.77 \times 10^{-1} \pm 5.23 \times 10^{-1}$	$6.94 \times 10^{-1} \pm 2.26 \times 10^{-1}$
mPhotonEnergy	$-2.75 \times 10^{-2} \pm 7.48 \times 10^{-2}$	$6.84 \times 10^{-2} \pm 1.09 \times 10^{-1}$	$-8.00 \times 10^{-2} \pm 1.87 \times 10^{-1}$	$1.52 \times 10^{-1} \pm 1.77 \times 10^{-1}$
mElectronEnergy	$-7.71 \times 10^{-2} \pm 1.05 \times 10^{-1}$	$1.44 \times 10^{-1} \pm 7.47 \times 10^{-2}$	$1.71 \times 10^{-2} \pm 5.32 \times 10^{-2}$	$8.40 \times 10^{-2} \pm 4.15 \times 10^{-2}$
mMuonEnergy	$1.29 \times 10^{-2} \pm 1.97 \times 10^{-2}$	$8.04 \times 10^{-2} \pm 9.77 \times 10^{-2}$	$1.18 \times 10^{-2} \pm 1.46 \times 10^{-2}$	$3.15 \times 10^{-2} \pm 7.05 \times 10^{-3}$
mHFHadronEnergy	$-1.10 \times 10^{-2} \pm 4.66 \times 10^{-2}$	$1.77 \times 10^{-1} \pm 2.48 \times 10^{-2}$	$-3.15 \times 10^{-1} \pm 1.07$	$1.85 \pm 7.31 \times 10^{-1}$
mHFEMEnergy	$1.78 \times 10^{-3} \pm 7.40 \times 10^{-3}$	$1.41 \times 10^{-2} \pm 3.63 \times 10^{-3}$	$1.22 \times 10^{-2} \pm 8.26 \times 10^{-2}$	$6.93 \times 10^{-2} \pm 5.54 \times 10^{-2}$
mChargedHadronMultiplicity	$-1.00 \times 10^{-3} \pm 5.04 \times 10^{-3}$	$4.48 \times 10^{-3} \pm 4.90 \times 10^{-3}$	$-3.13 \times 10^{-3} \pm 1.82 \times 10^{-2}$	$9.68 \times 10^{-3} \pm 1.50 \times 10^{-2}$
mNeutralHadronMultiplicity	$-1.22 \times 10^{-4} \pm 1.29 \times 10^{-3}$	$8.76 \times 10^{-4} \pm 9.42 \times 10^{-4}$	$-1.19 \times 10^{-4} \pm 1.51 \times 10^{-3}$	$9.89 \times 10^{-4} \pm 1.20 \times 10^{-3}$
mPhotonMultiplicity	$-1.14 \times 10^{-3} \pm 3.62 \times 10^{-3}$	$2.72 \times 10^{-3} \pm 4.14 \times 10^{-3}$	$-2.69 \times 10^{-3} \pm 7.44 \times 10^{-3}$	$4.92 \times 10^{-3} \pm 7.12 \times 10^{-3}$
mElectronMultiplicity	$1.07 \times 10^{-3} \pm 3.87 \times 10^{-3}$	$2.37 \times 10^{-3} \pm 2.37 \times 10^{-3}$	$-1.54 \times 10^{-5} \pm 9.96 \times 10^{-5}$	$2.11 \times 10^{-4} \pm 1.75 \times 10^{-4}$
mMuonMultiplicity	$1.12 \times 10^{-3} \pm 1.22 \times 10^{-3}$	$2.51 \times 10^{-3} \pm 6.69 \times 10^{-4}$	$5.67 \times 10^{-5} \pm 1.16 \times 10^{-4}$	$2.41 \times 10^{-4} \pm 6.35 \times 10^{-5}$
mHFHadronMultiplicity	$-1.34 \times 10^{-3} \pm 1.84 \times 10^{-3}$	$2.53 \times 10^{-3} \pm 1.94 \times 10^{-3}$	$-2.67 \times 10^{-3} \pm 3.33 \times 10^{-3}$	$4.44 \times 10^{-3} \pm 4.05 \times 10^{-3}$
mHFEMMultiplicity	$2.41 \times 10^{-4} \pm 2.51 \times 10^{-3}$	$1.98 \times 10^{-3} \pm 1.33 \times 10^{-3}$	$5.98 \times 10^{-4} \pm 4.16 \times 10^{-3}$	$3.08 \times 10^{-3} \pm 2.95 \times 10^{-3}$
mChargedEmEnergy	$-7.72 \times 10^{-2} \pm 1.05 \times 10^{-1}$	$1.44 \times 10^{-1} \pm 7.48 \times 10^{-2}$	$1.72 \times 10^{-2} \pm 5.30 \times 10^{-2}$	$8.40 \times 10^{-2} \pm 4.15 \times 10^{-2}$
mChargedMuEnergy	$1.29 \times 10^{-2} \pm 1.97 \times 10^{-2}$	$8.05 \times 10^{-2} \pm 9.78 \times 10^{-2}$	$1.18 \times 10^{-2} \pm 1.46 \times 10^{-2}$	$3.15 \times 10^{-2} \pm 7.07 \times 10^{-3}$
mNeutralEmEnergy	$-1.73 \times 10^{-2} \pm 5.42 \times 10^{-2}$	$5.89 \times 10^{-2} \pm 8.87 \times 10^{-2}$	$-6.70 \times 10^{-2} \pm 2.57 \times 10^{-1}$	$1.75 \times 10^{-1} \pm 1.81 \times 10^{-1}$
mChargedMultiplicity	$-9.83 \times 10^{-4} \pm 5.04 \times 10^{-3}$	$4.46 \times 10^{-3} \pm 4.88 \times 10^{-3}$	$-3.07 \times 10^{-3} \pm 1.83 \times 10^{-2}$	$9.74 \times 10^{-3} \pm 1.51 \times 10^{-2}$
mNeutralMultiplicity	$-8.97 \times 10^{-4} \pm 1.42 \times 10^{-3}$	$1.56 \times 10^{-3} \pm 1.93 \times 10^{-3}$	$-5.36 \times 10^{-3} \pm 7.37 \times 10^{-3}$	$7.34 \times 10^{-3} \pm 6.60 \times 10^{-3}$

