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What is the difference between graph and network? 

Node

Link
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Complex Systems and Network Science
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Modular gateway-ness connectivity and structural core organization in maritime network science. 
Mengqiao Xu, Qian Pan, Alessandro Muscoloni, Haoxiang Xia and Carlo Vittorio Cannistraci. 
Nature Communications 2020

The modular gateway-ness connectivity of maritime networks 
follows a core organization paradigm similar to brain networks

(2020)
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https://www.nature.com/articles/s41467-020-16619-5


The discovered bacteria-metabolite network affected in gastric environment 

of dyspeptic patients. 

Nonlinear machine learning pattern recognition and bacteria-metabolite multilayer network 

analysis of perturbed gastric microbiome. 

C Durán, S Ciucci, … and Carlo Vittorio Cannistraci

Nature communications 12 (1), 1-22, 2021 

(2021)

©  MPI f. Infection 
Biology

©  P.M. Motta & F. Carpino/Sapienza 
University of Rome/Science Source

Gastric microbiota 
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https://scholar.google.com/citations?view_op=view_citation&hl=en&user=b7xoXO0AAAAJ&sortby=pubdate&citation_for_view=b7xoXO0AAAAJ:JoZmwDi-zQgC
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2022
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1. Introduction to network analysis and models 

2. Network geometry, AI and applications

3. Tomorrow: 
3.1 Network science for Sparse deep learning 
3.2 Neuromorphic Computing

OUTLINE  of the talk 
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Crisis: I was a Master student in 2002 

Crisis: Why is brain connectivity sparse?

Artificial Neural Network (ANN) Brain Connectivity

Vs.
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ICLR2024 evaluation: avg. score 7.33, ranks 326/2261 accepted (in the top 15%)

Yingtao Zhang

10



How the topology evolves during the epochs 
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https://www.youtube.com/watch?v=b5lLpOhb3BI

https://www.youtube.com/watch?v=b5lLpOhb3BI


Crisis: I was a Master student in 2002 

Crisis: Why is brain connectivity sparse (topology)?
Crisis: What is the contribution of morphology?

Artificial Neural Network (ANN) Brain  Morphology

Vs.
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Nature Electronics 2024 Accepted

Dr. E. Baek
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1. Introduction to network analysis and models 

2. Network geometry, AI and applications

3. Tomorrow: 
3.1 Network science for Sparse deep learning 
3.2 Neuromorphic Computing

OUTLINE  of the talk 
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Artistic 
representation 
of the topics 

of today

https://menchelab.com/higher-order-networks-and-the-
topology-of-data
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Artistic 
representation 
of the topics 

of today

Understanding the rule of association generating the networks
(direct problem)

(inverse problem)
Given the network can we reverse the rules of association
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Generative models in Network Science

Model ≈Input

parameters

properties of real 

complex networks

Analytical
or

Algorithical 
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Average 

Clustering Coefficient

Average Degree 

Average degree 
distribution

Three basic  properties of real complex networks

Average 

Shortest path length
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For a network with N nodes
Average Clustrer Coefficinet = Σi C(i)/N

Average cluster coefficient

Cluster 
coefficient
of a node (i)

C(i)  
i

=
k

# Links 
between 
neighbors 

All 
possible 

Links 
between 
neighbors 

=
𝑚
2

=
m*(m-1)/2

k
C(i)  

m = 4 nodes 
neighbors
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L= Σ SP(x,y)/N

Small wordness → L(N) ~ log (N)

Average Shortest path length

x

y
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P(k) = exp(-k)  [slim tale]

scale free →P(k) = k^(-ɣ)  [fat tale]

k
K (i) = # neighbors of i

Average degree and degree distribution

degree

P
(d

eg
re

e)

Exponential or Power-lawbinomial

degree

P
(d

eg
re

e)
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Generative models

Erdős-Rényi Watts-Strogatz Barabási-Albert

Clustering ─ R ─

Small-world R R R

Scale-free ─ ─ R

degree degree degree

P
(d

eg
re

e)

P
(d

eg
re

e)

P
(d

eg
re

e)

Binomial Power-lawBinomial

1959 1998 1999
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Generative models

Erdős-Rényi Watts-Strogatz Barabási-Albert

Clustering ─ R ─

Small-world R R R

Scale-free ─ ─ R

degree degree degree

P
(d

eg
re

e)

P
(d

eg
re

e)

P
(d

eg
re

e)

Binomial Power-lawBinomial

????

R

R

R

Problem

1959 1998 1999
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1. Introduction to network analysis and models 

2. Network geometry, AI and applications

3. Tomorrow: 
3.1 Network science for Sparse deep learning 
3.2 Neuromorphic Computing

OUTLINE  of the talk 
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2012

H2 in polar coordinates
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Generative model for realistic complex networks

PSO model

Geometry

Synthetic network with:

- Clustering

- Small-word

- Scale-free

Topology
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Euclidean (soft) ??????

Clustering R R

Small-world R R

Scale-free ─ R

Problem

Generative models in geometric space
(soft random geometrical graph)
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Euclidean (soft) Hyperbolic

Clustering R R

Small-world R R

Scale-free ─ R

Generative models in geometric space
(soft random geometrical graph)
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PSO model Hyperbolic distance

Radius Angular distance

A

AR

R
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PSO model 

Popularity Similarity

Hyperbolic distance

Radius Angular distance

A

AR

R
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PSO model 

Popularity Similarity

Hyperbolic distance

Radius Angular distance

Node degree 

centrality

Node topological

proximity

R

A

AR
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PSO model 

Popularity Similarity

Hyperbolic distance

Radius Angular distance

Node degree 

centrality

Node topological

proximity

Hierarchy Clustering

R

A

AR
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PSO model 

Popularity Similarity

Hyperbolic distance

Radius Angular distance

Node degree 

centrality

Node topological

proximity

Hierarchy Clustering

Time growth Space

R

A

AR
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PSO model 

Popularity Similarity

Hyperbolic distance

Radius Angular distance

Node degree 

centrality

Node topological

proximity

Hierarchy Clustering

Time growth Space

Time-space evolution of complex systems

R

A

AR
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PSO model

Popularity-Similarity-Optimization 

(PSO) model 

Input parameters:

𝑵 = number of nodes

𝒎 = half of the average node degree

𝑻 = temperature (inversely related to clustering)

𝜸 = exponent of the power-law degree distribution

𝑝 ℎ𝑖𝑗 =
1

1 + 𝑒𝑥𝑝
ℎ𝑖𝑗 − 𝑅𝑖

𝑇

Papadopoulos et al., Nature, 2012. 35



The model has four input parameters:
𝒎 > 0, which defines the average node degree ത𝑘 = 2𝑚, 
𝛽 ∈ 0, 1 the exponent 𝜸 = 1 + 1/𝛽 of the power law degree distribution,
𝑻 ≥ 0, which controls the network clustering, 

𝜁 = −𝐾 > 0, where 𝑲 is the curvature of the hyperbolic plane. K generally fixed to -1

(1) all existing nodes 𝑗 < 𝑖 increase their radial coordinates according to 𝒓𝒋(𝒊) = 𝜷𝒓𝒋 + (𝟏 − 𝜷)𝒓𝒊 in order to 

simulate popularity fading;

(2) The new node picks a randomly chosen existing node and connects to it with:

probability:  𝒑 𝒉𝒊𝒋 = 𝟏/(𝟏 + 𝒆𝒙𝒑((𝒉𝒊𝒋 − 𝑹𝒊)/𝑻) )

Generation of synthetic networks by the PSO model 

PSO model
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Fermi-Dirac
𝒑 𝒉𝒊𝒋

𝒉𝒊𝒋
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Generative model for realistic complex networks

PSO model

Geometry

Synthetic network with:

- Clustering

- Small-word

- Scale-free

Topology

38



Problem 1

(inverse problem)
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Given the network topology (just connectivity) 
can we reverse the location of its nodes on the manifold?

40



Given the network topology (just connectivity) 
can we reverse the location of its nodes on the manifold?

inverse problem

Geometry (Hyperbolic) Network

41



Inverse problem in real networks

?

Geometry

real network

Topology

?
? Angular coordinates = node similarity ?

Radial coordinate ok!
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• Maximum likelihood estimation

• Infer the coordinates maximizing the likelihood that
the network has been generated by the PSO model (not 
community organization)

HyperMap (2015)
(Model-based)

IEEE/ACM TRANSACTION ON NETWORKINGIEEE/ACM TRANSACTION ON NETWORKING
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Many limitations:

oTime complexity O(N3) – O(N4)

oUnweighted networks

oOnly 2D-space

oNot community organization

IEEE/ACM TRANSACTION ON NETWORKING
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Intuition (2012)

using nonlinear dimension 
reduction unsupervised 

machine learning methods

Isomap
(manifold embedding)

MCE
(hierarchical embedding)

Original Network
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Why did I generate this intuition?

Modeling interactome: scale-free or geometric?

Natasa Pržulj, DG Corneil, I Jurisica, Bioinformatics 20 (18), 2004

Fitting a geometric graph to a protein–protein interaction network

DJ Higham, M Rašajski, Natasa Pržulj, Bioinformatics 24 (8), 2008

Network Biology was already discussing about this issue
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https://scholar.google.com/citations?view_op=view_citation&hl=en&user=mLIsLdAAAAAJ&citation_for_view=mLIsLdAAAAAJ:u-x6o8ySG0sC
https://scholar.google.com/citations?view_op=view_citation&hl=en&user=mLIsLdAAAAAJ&citation_for_view=mLIsLdAAAAAJ:Tyk-4Ss8FVUC


How to address problems of data nonlinearity

47



Principal component analysis PC1
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Nonlinear Dimension Reduction

• Kernel based

{example: Gaussian-PCA}

Issue 2: presence of free parameters to tune!!!

Tenenbaum et al. – Science, 2000

x
x

y

y

z

Issue 1: Hypothesis of local continuity of the manifold 

z

Issue 2: presence of free parameters to tune!!!

Issue 1: difficulty to know the correct kernel  

Manifold based
{example: Isomap}
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General principles of organization of complex system
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The inspiration (2008)
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The inspiration (greedy navigability)

Boguñá et al., Nature Physics 2008

The observed topological properties arise from
a hidden geometric space underlying the network

Important message
Navigating on the network

is like navigating in the valley
and hills of the hidden 

geometrical space
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How MC works: Navigating between the points with a greedy 
routing process: the minimum spanning tree (MST)!

The greedy routing navigability is a way to map the hidden nonlinear topology

For MC: The global mapping and the local fitting are reciprocally dependent

MC Minimize globally and fit locally!

MC ‘Distance’

-

- -

- - -

- - - -

A
BMC Distance 

Matrix

V1

V2

Euclidean Distance
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Nonlinear topological-based Dimension Reduction

Isomap
(manifold embedding)

Minimum Curvilinear 
embedding (MCE)

(hierarchical embedding)
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Radar Signal Dataset
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The crescent-moon obsession

Similarity ordering
of the samples !

Direction of maximum MC nonlinear similarity
in the multidimensional space

MCE
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ECCB 2010, Ghent, Belgium
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ISMB/ECCB 2013 , Berlin, Germany, July 2013
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Intuition (2012)

using nonlinear dimension 
reduction unsupervised 

machine learning methods

Isomap
(manifold embedding)

MCE
(hierarchical embedding)

Original Network
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• Repulsion-Attraction (RA) - local

𝑥𝑖𝑗
𝑅𝐴 =

1 + 𝑒𝑖 + 𝑒𝑗 + 𝑒𝑖𝑒𝑗

1 + 𝐶𝑁𝑖𝑗

Pre-weighting rules

60
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• Repulsion-Attraction (RA) - local

𝑥𝑖𝑗
𝑅𝐴 =

1 + 𝑒𝑖 + 𝑒𝑗 + 𝑒𝑖𝑒𝑗

1 + 𝐶𝑁𝑖𝑗

• Edge-Betweenness-Centrality (EBC) – global

𝑥𝑖𝑗
𝐸𝐵𝐶 = ෍

𝑠,𝑡𝜖𝑉

൯𝜎(𝑠, 𝑡|𝑙𝑖𝑗
)𝜎(𝑠, 𝑡

Pre-weighting rules
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Coalescent Embedding (2017) - (Model-free)
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Results
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Testing on the benchmark

PSO model

Geometry

Synthetic network

Topology Geometry

?
Angular coordinates 

Radial coordinate

network
embedding

network
generation
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Testing on the benchmark

PSO model

Geometry

Synthetic network

Topology Geometry

?
Angular coordinates 

Radial coordinate

Compare to 

the reference

network
embedding

network
generation
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Evaluation on PSO networks

Original
network

Embedded
network

Pairwise
Hyperbolic Distances

Pairwise
Hyperbolic Distances

HD-Correlation
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Evaluation on PSO networks: embedding quality
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Time complexity ~ O(N2)

Evaluation on PSO networks: computational time
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Karate

Opsahl
11

Community detection
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Community detection
(hyperbolic Louvain) 

Method Karate Opsahl 8 Opsahl 9
Opsahl

10

Opsahl 

11
Polbooks Football Polblogs

Mean

NMI

Coalescent 

Embedding
1.00 0.57 0.47 1.00 0.93 0.59 0.90 0.68 0.77

Original 

algorithm
0.46 0.55 0.41 1.00 0.96 0.50 0.93 0.64 0.68

HyperMap

mapping
0.56 0.60 0.28 0.92 0.85 0.50 0.83 0.69 0.65

Coalescent 

embedding

Community 

detection

Distance matrix
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Embedding in 3D
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Conclusions on Coalescent Embedding

- ‘O(n3) or O(n4)’ → O(n2)

- Unweighted networks →Weighted networks

- Only 2D embedding → also 3D or any dimensional space

- Community detection in the hyperbolic space algorithms

- Not hyperparameters to tune!

72



November 
2017 
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A question for you
?
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Evaluation on PSO networks: embedding quality
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Mechanism of 
similarity attachment

Network automata solution

78

Time complexity ~ O(E)
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Video of Minimum Curvilinear automata

80

https://www.youtube.com/watch?v=xNzw8zCSnJI


Probabilistic-model
based

Model-free
Mechanistic-model

based

Bogugna et al. 2010, Nat. com.
Papadopulos et al. 2015 IEEE/ACM

Muscoloni et al. 2018, Nat. com.

Maximum likelihood estimation Nonlinear dimension reduction

- Time complexity O(N3) –

O(N4)

- Unweighted networks

- Only 2D-space

- Higher GR accuracy

- Time complexity O(N2)

- Unweighted/weighted networks

- Any dimension

- Higher HD accuracy

The trilogy

- Time complexity ~ O(E)

- Unweighted/weighted networks

- Only 2D-space

- Higher LP accuracy

Network Automata

81

Muscoloni et al. 2018, ArXiv.



Problem 2

(absence of community structure)

82



Popularity-Similarity-Optimization (PSO) model 

(2012)

Real network properties:

R Clustering

R Small-world

R Scale-free

─   controllable Community structure

Uniform distribution

of angular coordinates

X
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Community structure
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Community membership

• Node label: mixture 

component whose mean is at 

the lowest angular distance

• Scenarios with communities 

non-overlapping
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Temperature

Temperature for tuning

clustering and

mixing between the communities
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Implementation for links generation

Time for 1 network

(N = 1000)
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Implementation for links generation

• Time complexity O(EN)

• N = 10000 → 5 min

Time for 1 network

(N = 1000)
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Generative procedure (with community)

For each iteration 𝑡 = 1…𝑵

1) Update radial coordinates of existing nodes 𝑗 < 𝑡: r𝑗 = 𝑓(𝑗, 𝑡, 𝜸)

2) Introduce new node

• Radial coordinate: 𝑓(𝑡)

• Angular coordinate: sampled from distribution

3) Establish 𝒎 links

• Connection probability: 𝑝𝑡𝑗 = 𝑓(ℎ𝑡𝑗 , 𝑻, … )

N = 100, m = 4, T = 0, 𝜸 = 3

4 communities
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Solution to problem 2 published in 2018

1. The first article on the theoretical model

A nonuniform popularity-similarity optimization (nPSO) model to efficiently generate

realistic complex networks with communities

Alessandro Muscolini and Carlo Vittorio Cannistraci

http://iopscience.iop.org/article/10.1088/1367-2630/aac06f/meta

2. The second article on the application

Leveraging the nonuniform PSO network model as a benchmark for performance evaluation in 

community detection and link prediction

Alessandro Muscolini and Carlo Vittorio Cannistraci

http://iopscience.iop.org/article/10.1088/1367-2630/aac6f9

Alessandro Muscoloni
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http://iopscience.iop.org/article/10.1088/1367-2630/aac06f/meta
http://iopscience.iop.org/article/10.1088/1367-2630/aac6f9


Erdős-Rényi

(1959)

Watts-

Strogatz

(1998)

Barabási-

Albert

(1999)

Clustering ─ R ─

Small-world R R R

Scale-free ─ ─ R

Community ─ ─ ─

Assortativity ─ ─ ─

Motifs ─ ─ ─

PSO

(2012)

nPSO

(2018)

????

R R R

R R R

R R R

─ R R

─ ─ R

─ ─ R

Generative models in Network Science
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Problem 3

(Geometrical markers from brain diseases)
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Human brain 
diffusion weighted magnetic resonance imaging (DW-MRI) 

structural connectomes

Nodes are brain areas
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Anatomical Brain Lobe Characterization
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2015

“Intrinsic brain network geometry only minimally relates to neuroanatomy!”
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Open Problem to solve!
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Coalescent 
Embedding

97



Network-based markers for brain diseases: brain imaging quantification of disease state in
psychiatric (depression) and neurodegenerative (Parkinson, Alzheimer, etc. ) disorders.

Applied example

Nodes are brain areas

98



mean marker

(HC)

mean marker

(PD)

MW

p-value
AUC AUPR

Coalescent 

embedding (MCE)
14.7 15.7 0.006 0.87 0.82

HyperMap 13.0 14.0 0.026 0.80 0.76
Original network 222.0 215.8 0.307 0.64 0.64

Geometrical modifications of the brain in diseases

de novo drug naïve Parkinson’s Disease (PD) patients 

compared with

Healthy Controls (HC)
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Coalescent Embedding in the 3D
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Coalescent Embedding in the 3D

Brain Network of an individual
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Real application Network Neuroscience

Alberto Cacciola
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Problem 4

(Geometrical congruence of a network)

106



November 
2022
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Artistic 
representation 
of the topics 

of today

https://menchelab.com/higher-order-networks-and-the-
topology-of-data
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Computational measure of the soft congruence
of a topology with a geometry

Soft congruence : Measuring to which extent 
a topology of a network follows a generative geometry 

Measuring how modifications of general network properties 
modifies soft congruence

109



Network in a geometrical space

Navigability measure (previous)
Muscoloni,…, Cannistraci et al. 

Nat. Com. 2017

Congruency measure (New)
Cannistraci et al. Nat. Com. 2022

Navigability 
path

Ensemble 
topological 

shortest 
path

geodesic

Geometrical 
shortest path

geodesic

Geometrical 
shortest path
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Previous literature

• It was considering success ratio and stretch separately therefore 
there was not a unique measure of navigability efficiency

• It was considering the ‘congruency’ of successful greedy paths only 
supporting the believe that hyperbolic networks are maximally 
congruent with their underlying geometry 

• It was not considering the ensemble of shortest path but only the 
geometrical shortest path. 

Krioukov, D. et al. Hyperbolic geometry of complex networks. Phys 
Rev E (2010).

Boguñá, M. & Krioukov, D. Navigating ultrasmall worlds in ultrashort 
time. Phys Rev Lett 102, 058701 (2009).

Boguñá, M. et al. Network geometry. Nature Reviews Physics 2021 
3:2 3, 114–135 (2021).
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3f

Boguñá, M. et al. Network geometry. Nature Reviews 
Physics 2021 3:2 3, 114–135 (2021).
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Krioukov, D. et al. Hyperbolic geometry of complex networks. Phys Rev E (2010).
Boguñá, M. & Krioukov, D. Navigating ultrasmall worlds in ultrashort time. Phys Rev Lett 102, 058701 (2009).

Boguñá et al.8 proposed a theoretical demonstration that greedy 
navigation in networks with γ<3 and strong clustering (such as 
hyperbolic networks4) can always find these ultrashort paths which 
follow the geodesics1,8, and thus navigation in hyperbolic networks 
with γ<3 is believed maximally efficient because of their supposed 
geometrical congruence1,4.

Boguñá, M. et al. Network geometry. Nature Reviews 
Physics 2021 3:2 3, 114–135 (2021).
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Results
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Navigability measure (previous)
Muscoloni,…, Cannistraci et al. Nat. Com. 2017

Congruency measure (New)
Cannistraci et al. Nat. Com. 2022

𝐺𝑅𝐸(𝑝𝐺𝑅𝑃, 𝑅𝐷) =  
1

𝑛 ∙ (𝑛 − 1) − 2 ∙ 𝑒
 ∙ ෍

𝑅𝐷(i, j)

𝑝𝐺𝑅𝑃(i, j)
 ;   with (i, j) ∈ 𝐸  

𝐺𝐶(𝑝𝑇𝑆𝑃തതതതതതത, 𝑅𝐷) =  
2

𝑛 ∙ (𝑛 − 1) − 2 ∙ 𝑒
 ∙ ෍

𝑅𝐷(i, j)

𝑝𝑇𝑆𝑃തതതതതതത(i, j)
𝑖<𝑗

 ;   with (i, j) ∈ 𝐸  
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Navigability measure (previous)
Muscoloni,…, Cannistraci et al. Nat. Com. 2017

Congruency measure (New)
Cannistraci et al. Nat. Com. 2022

𝐺𝑅𝐸(𝑝𝐺𝑅𝑃, 𝑅𝐷) =  
1

𝑛 ∙ (𝑛 − 1) − 2 ∙ 𝑒
 ∙ ෍

𝑅𝐷(i, j)

𝑝𝐺𝑅𝑃(i, j)
 ;   with (i, j) ∈ 𝐸  

𝐺𝐶(𝑝𝑇𝑆𝑃തതതതതതത, 𝑅𝐷) =  
2

𝑛 ∙ (𝑛 − 1) − 2 ∙ 𝑒
 ∙ ෍

𝑅𝐷(i, j)

𝑝𝑇𝑆𝑃തതതതതതത(i, j)
𝑖<𝑗

 ;   with (i, j) ∈ 𝐸  

Greedy (approximated) measure

Exact measure
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Optimized algorithm to find all shortest paths
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Optimized algorithm to find all shortest paths

Gamma = 3
122



Optimized algorithm to find all shortest paths

Gamma = 3 Gamma = 2 123
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Applications

128



Brain Network of an individual
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Navigability measure (previous)
Muscoloni,…, Cannistraci et al. Nat. Com. 2017

𝐺𝑅𝐸(𝑝𝐺𝑅𝑃, 𝑅𝐷) =  
1

𝑛 ∙ (𝑛 − 1) − 2 ∙ 𝑒
 ∙ ෍

𝑅𝐷(i, j)

𝑝𝐺𝑅𝑃(i, j)
 ;   with (i, j) ∈ 𝐸  
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Navigability measure (previous)
Muscoloni,…, Cannistraci et al. Nat. Com. 2017

Congruency measure (New)
Cannistraci et al. Nat. Com. 2022

𝐺𝑅𝐸(𝑝𝐺𝑅𝑃, 𝑅𝐷) =  
1

𝑛 ∙ (𝑛 − 1) − 2 ∙ 𝑒
 ∙ ෍

𝑅𝐷(i, j)

𝑝𝐺𝑅𝑃(i, j)
 ;   with (i, j) ∈ 𝐸  

𝐺𝐶(𝑝𝑇𝑆𝑃തതതതതതത, 𝑅𝐷) =  
2

𝑛 ∙ (𝑛 − 1) − 2 ∙ 𝑒
 ∙ ෍

𝑅𝐷(i, j)

𝑝𝑇𝑆𝑃തതതതതതത(i, j)
𝑖<𝑗

 ;   with (i, j) ∈ 𝐸  
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Testing GC as a phenotypic marker on Human brain connectomes

sex

230 males 
Vs.

384 females

223 in [7 to 30] 
Vs.

215 in [55 to 85])
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Next direction

• Application of congruence to spatial network in general with any 
underlying geometry

• Application of congruence to design markers for brain diseases

• Application of navigability and congruency to urban science and 
human mobility networks.
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Problem 5

(De Novo single cell spatial reconstruction

by Coalescence Embedding)
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The idea of Jackie

<< To leverage the general
concept of network embedding
angular coalescence and the
methodology of coalescence
embedding for De novo (landmark
and marker free) reverse-
engineering the mesoscale spatial
organization of single cell directly
from their transcriptome. >>

Jing-Dong (Jackie) Han
Peking University 
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Theoretical Background and Method
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Coalescent embedding (CE) 
This is a machine intelligence theory for nonlinear embedding of networks of complex 
interconnected systems in a geometrical space, which is called coalescent embedding (CE) 
because it relies on a phenomenon that in physics of complexity takes the name of 
angular coalescence. This phenomenon states that for a network that derives from a 
complex interconnected system, whose connections between its parts (nodes) emerge in 
a latent geometrical space, the network embedding in a 2D or 3D visualization space will 
display a typical pattern of node aggregation that respects the intrinsic geometry of the 
system in the latent geometrical space in terms of both congruence and navigability. 

De Novo Coalescent Embedding (D-CE)
Building upon this theory, we developed a novel algorithm called De Novo Coalescent 
Embedding (D-CE) which unveils single-cell mesoscale spatial organization, where densely 
interacting network neighborhoods or communities are associated with spatial domains.
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Ordering index (OI)
(ranging: -1 to 1)

Angular separation index (ASI)
(ranging: 0 to 1)

Projection separability Index
(ranging: -1 to 1)
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Computational Results
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Reconstruction of spatial domain labels from oligo or single cell RNA-
seq data
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Reconstruction of spatial domain labels from oligo or single cell RNA-
seq data
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Reconstruction of spatial domain labels from oligo or single cell RNA-
seq data
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segmentation 
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Drosophila 
embryo 

segmentation 
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Spatial reconstruction and spatial marker gene detection of cancerous prostate spatial transcriptomic 
dataset 
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Density plot of all expressed 
genes

to the reconstructed 
coordinates
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Original 

Spatial reconstruction and spatial marker gene detection of cancerous prostate spatial transcriptomic 
dataset 

without marker
and 

template fitting

marker and template 
fitting
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1. We developed D-CE which is an effective landmark free and model free de novo 3D reconstruction
method for oligo and single cell analysis.

2. The proposed algorithm for de novo coalescent embedding (D-CE) of oligo/single cell
transcriptomic networks is based on the physics principle of angular coalescence and relies
only on the spatial information encoded in the expression patterns of genes, without need of
prior information.

3. We found that D-CE of cell–cell association transcriptomic networks, by preserving mesoscale
network organization, captures spatial domains, identifies spatially expressed genes,
reconstructs cell samples’ 3D spatial distribution, and uncovers spatial domains and markers
necessary for understanding the design principles on spatial organization and pattern formation.

4. Comparison to the novoSpaRC and CSOmap on 14 datasets and 497 reconstructions,
reveals a significantly superior performance of D-CE.

5. Angular coalescence: the same principle of organization of complex connected systems can be
used to analyze systems at different scale from single-cell to brain to society.
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