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Center for Complex Network Intelligence (CCNI)

Research philosophy

A transdisciplinary approach integrating information theory, machine learning and network science to
investigate the physics of networked adaptive complex systems at different scales, from molecules to
ecological and social systems, with a particular attention to brain/bio-inspired computing and complex big data
(focus on: neuroscience, biomedicine and social science) pattern recognition analysis.

Carlo Vittorio Cannistraci / 1. Theoretical topics \ 2. APP|IEd topics
Chair Professor and Chief Scientist . .
Period at THBI: 2020 - Now 1.1 Network Geometry 2.1 Brain Networks & Network neuroscience
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What is the difference between graph and network?
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Modular gateway-ness connectivity and structural core organization in maritime network science.
Mengqgiao Xu, Qian Pan, Alessandro Muscoloni, Haoxiang Xia and Carlo Vittorio Cannistraci.
Nature Communications 2020

The modular gateway-ness connectivity of maritime networks
follows a core organization paradigm similar to brain networks
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https://www.nature.com/articles/s41467-020-16619-5

Nonlinear machine learning pattern recognition and bacteria-metabolite multilayer network
analysis of perturbed gastric microbiome.
C Duran, S Ciucci, ... and Carlo Vittorio Cannistraci
Nature communications 12 (1), 1-22, 2021

The discovered bacteria-metabolite network affected in gastric environment
of dyspeptic patients.
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Alanine, aspartate and
glutamate metabolism

Aminoacyl-tRNA biosynthesis Galactose metabolism Other significant pathways (9)


https://scholar.google.com/citations?view_op=view_citation&hl=en&user=b7xoXO0AAAAJ&sortby=pubdate&citation_for_view=b7xoXO0AAAAJ:JoZmwDi-zQgC

nature communications
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Geometrical congruence, greedy navigability
and myopic transfer in complex networks
and brain connectomes

Received: 6 July 2020

Accepted: 1 November 2022

Carlo Vittorio Cannistraci ® 23458 g Alessandro Muscoloni ® 4

Published online: 27 November 2022

M) Check for updates

We introduce in network geometry a measure of geometrical congruence (GC)
to evaluate the extent a network topology follows an underlying geometry.
This requires finding all topological shortest-paths for each nonadjacent node
pair in the network: a nontrivial computational task. Hence, we propose an
optimized algorithm that reduces 26 years of worst scenario computation to
one week parallel computing. Analysing artificial networks with patent geo-
metry we discover that, different from current belief, hyperbolic networks do
not show in general high GC and efficient greedy navigability (GN) with respect
to the geodesics. The myopic transfer which rules GN works best only when
degree-distribution power-law exponent is strictly close to two. Analysing real
networks—whose geometry is often latent—GC overcomes GN as marker to
differentiate phenotypical states in macroscale structural-MRI brain con-
nectomes, suggesting connectomes might have a latent neurobiological geo-
metry accounting for more information than the visible tridimensional
Euclidean.
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OUTLINE of the talk

1. Introduction to network analysis and models

2. Network geometry, Al and applications



Crisis: | was a Master student in 2002

Artificial Neural Network (ANN) Brain Connectivity

Crisis: Why is brain connectivity sparse?




Published as a conference paper at ICLR 2024

EPITOPOLOGICAL LEARNING AND CANNISTRACI-
HEBB NETWORK SHAPE INTELLIGENCE BRAIN-

INSPIRED THEORY FOR ULTRA-SPARSE ADVANTAGE
IN DEEP LEARNING

Yingtao Zhang

Yingtao Zhang' >, Jialin Zhao'-*-*, Wenjing Wu'-*-*, Alessandro Muscoloni'-**
& Carlo Vittorio Cannistraci'-%5:* *

LCenter for Complex Network Intelligence (CCNI)

2Tsinghua Laboratory of Brain and Intelligence (THBI)

3Department of Computer Science, *Department of Biomedical Engineering
Tsinghua University, Beijing, China.

?

ICLR2024 evaluation: avg. score 7.33, ranks 326/2261 accepted (in the top 15%)
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How the topology evolves during the epochs
https://www.youtube.com/watch?v=b5ILpOhb3BI

Epoch: O
Both of the networks initialized with Erdos-Renyi network
Hyperbolic presentation of SET (Random)

Plain presentation of SET (Random)

784 1000 999 1000

Hyperbolic presentation of ESML (CH3-L3)

Plain presentation of ESML (CH3-L3)

784 1000 999 1000
ESML (CH3-L3) vs SET (random) ANP across the epochs
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https://www.youtube.com/watch?v=b5lLpOhb3BI

Crisis: | was a Master student in 2002

Artificial Neural Network (ANN) Brain Morphology

% ¢, £ dendrite

—
~—

Crisis: Why is brain connectivity sparse (topology)?
Crisis: What is the contribution of morphology?
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Dr. E. Baek

Pre prints_org Instructions for Authors Statistics About FAQ Search here...

preprints.org > computer science and mathematics > artificial intelligence and machine learning > doi: 10.20944/preprints:

preprint  Article Version 7 Preserved in Portico This version is not peer-reviewed

Neuromorphic Dendritic Computation with Silent Synapses for Visual Motion
Perception

| @Eunhye Baek *, )Sen Song , @Zhao Rong , @)Luping Shi *, @)Carlo Vittorio Cannistraci *

Version 1 : Received: 5 June 2023 / Approved: 6 June 2023 / Online: 6 June 2023 (10:04:05 CEST)

How to cite: Baek, E.; Song, S.; Rong, Z.; Shi, L.; Cannistraci, C.V. Neuromorphic Dendritic Computation with Silent Synapses for
Visual Motion Perception. Preprints 2023, 2023060438. https://doi.org/10.20944/preprints202306.0438.v1

Abstract

Most neuromorphic technologies use a point-neuron model, missing the spatiotemporal nature of neuronal computation performed in
dendrites. Dendritic morphology and synaptic organization are structurally tailored for spatiotemporal information processing, enabling
various computations like visual perception. Here, we report on a neuromorphic computational model termed ‘dendristor’, which integrates
functional synaptic organization with dendritic tree-like morphology computation. The dendristor presents bioplausible nonlinear
integration of excitatory and inhibitory synaptic inputs with silent synapses and diverse spatial distribution dependency. We show that the
dendristor can emulate direction selectivity, which is the feature to react robustly to a preferred signal direction on the dendrite. We
discover that silent synapses can remarkably enhance direction selectivity, turning out to be a crucial player in dendritic computation
processing. Finally, we develop neuromorphic dendritic neural circuits that can emulate a cognitive function such as motion perception in
the retina. Using dendritic morphology, we achieve visual perception of motion in 3D space by various mapping of spatial information on
different dendritic branches. This neuromorphic dendritic computation innovates beyond current neuromorphic computation and provides
solutions to explore new skylines in artificial intelligence, neurocomputation, and brain-inspired computing.

Nature Electronics 2024 Accepted
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OUTLINE of the talk
1. Introduction to network analysis and models
2. Network geometry, Al and applications
3. Tomorrow:

3.1 Network science for Sparse deep learning
3.2 Neuromorphic Computing



Artistic
representation

of the topics

Of tOda @ ‘\' has a skeleton
Y O%%Cé) w Complex\‘

o

. O O building a Cech complex
Point Cloud or Vietoris-Rips complex Network

https://menchelab.com/higher-order-networks-and-the-
topology-of-data
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Understanding the rule of association generating the networks
(direct problem)

Artistic
representation

of the topics
of today

Network

(inverse problem)
Given the network can we reverse the rules of association

16



Generative models 1n Network Science
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Three basic properties of real complex networks
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m = 4 nodes
neighbors

# Links
between
Cluster  neighbors
coefficient C(i) =
of a node (i) All
C(i) possible
Links
between
neighbors

For a network with N nodes

Average cluster coefficient

Average Clustrer Coefficinet = Zi C(i)/N



Average Shortest path length

L= SP(x,y)/N

Small wordness = L(N) ~ log (N)



Average degree and degree distribution

® O °
o o o o
¢ .‘ @ oo :>. K (i) = # neighbors of i
PY o
®
o Qo ®
[ ® O
binomial Exponential or Power-law

P(degree)
P(degree)

“ | P(k) = exp(-k) [slim tale]
AméP(k) = kA (-y) [fat tale]

degree degree
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Generative models

Watts-Strogatz

Barab&si-Albert

Erdos-Rényi
Clustering — —_—
Small-world
Scale-free —_— e
Binomial Power-law

P(degree)

P(degree)

P(degree)

degree

22



Generative models

Problem
1999
Erdés-Rényi | Watts-Strogatz | Barab&si-Albert ninind
Clustering — —_—
Small-world
Scale-free o o
Binomial Binomial Power-law
23
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OUTLINE of the talk

1. Introduction to network analysis and models

2. Network geometry, Al and applications



LETTER 2012

doiz10.1038/nature 11459

Popularity versus similarity in growing networks

Fragkiskos Papadopoulos', Maksim Kitsak?, M. Angeles Serrano®, Marian Boguiia® & Dmitri Krioukov”

The principle' that “popularity is attractive’ underlies preferential
attachment®, which is a common explanation for the emergence of
scaling in growing networks. If new connections are made pref-
erentially to more popular nodes, then the resulting distribution of
the number of connections possessed by nodes follows power
laws™*, as observed in many real networks™®. Preferential attach-
ment has been directly validated for some real networks (including
the Internet’*), and can be a consequence of different underlying
processes based on node fitness, ranking, optimization, random
walks or duplication® '*, Here we dmwtha.tpupnhntym;mlm
dimension of attractiveness; another dimension is similarity'™ **

We develop a framework in which new connections optimize ae:nain
trade-offs between popularity and similarity, instead of simply pre-
ferring popular nodes. The framework has a geometric interpretation
in which popularity preference emerges from local optimization. As
opposed to preferential attachment, our optimization framework
accurately describes the large-scale evolution of technological (the
Internet), social (trust relationships between people) and biological
(Escherichia coli metabolic) networks, the probability of
new links with high precision. The framework that we have developed
can thus be used for predicting new links in evolving networks, and
provides a different perspective on preferential attachment as an
emergent phenomenon.

Nodes thal are similar have a higher chance of getling connected,
even il they are nol popular. This effect is known as homophily in social
sciences'™"®, and it has been observed in many real networks'® ™. In the
web™*, for example, an individual creating her new homepage tends
to link it not only to popular sites such as Google or Facebook, but also
to not-so-popular sites that are close to her special interests—for
example, sites devoted to the composer Tartini or to free solo climbing.
These observations suggest the introduction of a measure of attractive-
ness thal would somehow balance popularily and similarity.

The simplest proxy for popularity is the node birth time. All other
things being equal, older nodes have more chances to become popular
and attract connections™. If nodes join the network one by one, then
the node birth lime is simply the node number t = 1, 2, .... T'o model
similarity, we randomly place nodes on a circle that represents the
simplest similarity space. That is, the angular distances between nodes
model their similarity distances, such as the cosine similarity or any

connect simply to the closest m nodes on the plane, except that
distances are not Endlidean but hyperbolic™. The hyperbolic distance
between two nodes at polar coordinates (r,, 0;) and (r,, () is approxi-
mately x,=r,+ r; + In(0/2) = In(stfl/2). Therefore the sets of
nodes s minimizing x,, or sil,, for each t are identical. The hyperbalic

sinh r

~ coshR —1 =

"’ connection probability |

H2 in polar coordinates

p(r) =

O(R —x)
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Generative model for realistic complex networks

Geometry Topology
o .
REL N
. ..'..‘.‘.’
DR )
e e g
PSO model A e Synthetic network with:
Clustering
- Small-word

- Scale-free
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Generative models In geometric space
(soft random geometrical graph)

@ @SR Problem
5.5 998
*

Euclidean (soft) 2727777

Clustering

Small-world

Scale-free —




Generative models In geometric space

(soft random geometrical graph)

Euclidean (soft)

Hyperbolic

Clustering

Small-world

Scale-free
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Hyperbolic distance

I?/\.A

Radius

Angular distance

PSO model
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Hyperbolic distance

B/\.A

Radius

A 4

Angular distance

Popularity

A 4

Similarity

PSO model
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Hyperbolic distance

B/\A

Radius

A 4

Angular distance

Popularity

Node degree
centrality

A 4

Similarity

Node topological
proximity

PSO model
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Hyperbolic distance PSO model

B/\A

Radius Angular distance
Popularity Similarity

Node degree Node topological
centrality proximity

A 4 A 4

Hierarchy Clustering




Hyperbolic distance PSO model

B/\A

Radius Angular distance
Popuvlarity Simi‘lrarity

Node Elegree Node to[oological
centrality proximity
Hier;rchy Clus{ering

A 4 A 4

Time growth Space




Hyperbolic distance

B/\A

Radius Angular distance
Popuvlarity Simi‘lrarity
Node Elegree Node to[oological
centrality proximity
Hier;rchy Clus{ering
Time g]rowth Sp;ce

\/

Time-space evolution of complex systems

PSO model
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Popularity-Similarity-Optimization
(PSO) model

Input parameters:

N = number of nodes

m = half of the average node degree

T = temperature (inversely related to clustering)

¥ = exponent of the power-law degree distribution

v

PSO model

Papadopoulos et al., Nature, 2012.



The model has four input parameters: Generation of synthetic networks by the PSO model

m > 0, which defines the average node degree k = 2m,
B € (0, 1] the exponent y = 1 + 1/ of the power law degree distribution,
T = 0, which controls the network clustering,

{ = Vv—K > 0, where K is the curvature of the hyperbolic plane. K generally fixed to -1

(1) all existing nodes j < i increase their radial coordinates according to r;(i) = fr; + (1 — B)r; in order to

simulate popularity fading;

(2) The new node picks a randomly chosen existing node and connects to it with:

probability: p(h;;) = 1/(1 + exp((hi; — R))/T))

SEL
C e

$

PSO model
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p(h;)
1.0f

0.8}

Fermi-Dirac

-— kT=p/10
— KT=p/2
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Generative model for realistic complex networks

Geometry Topology
o .
REL N
. ..'..‘.‘.’
DR )
e e g
PSO model A e Synthetic network with:
Clustering
- Small-word

- Scale-free
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Problem 1
(Inverse problem)



Given the network topology (just connectivity)
can we reverse the location of its nodes on the manifold?
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Geometry (Hyperbolic) Network
F\SE g 4D
--_.?"":ﬁx

« o
ity

=™
oy -
P ot

S

"~ Manifold

Given the network topology (just connectivity)
can we reverse the location of its nodes on the manifold?
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Inverse problem in real networks

Geometry Topology

~ &

Manifold

? Angular coordinates = node similarity ?

real network

Radial coordinate ok!

———
P,

42



HyperMap (2015)

(Model-based)

« Maximum likelihood estimation

* Infer the coordinates maximizing the likelihood that
the network has been generated by the PSO model (not
community organization)

IEEE/ACM TRANSACTION ON NETWORKING

IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 23, NO. 1, FEBRUARY 2015

198

Network Mapping by Replaying Hyperbolic Growth

Fragkiskos Papadopoulos, Constantinos Psomas, and Dmitri1 Krioukov
43




Many limitations:

oTime complexity O(N?) — O(N%)
oUnweighted networks
oOnly 2D-space

oNot community organization

IEEE/ACM TRANSACTION ON NETWORKING

198

IEEEJACM TRANSACTIONS ON NETWORKING, VOL. 23 NO. 1, FEBRUARY 2015

Network Mapping by Replaying Hyperbolic Growth

Fragkiskos Papadopoulos, Constantinos Psomas, and Dmitr1 Krioukov
44




Intuition (2012) Original Network

15

using nonlinear dimension
reduction unsupervised
0

machine learning methods
—15_15

Isomap MCE
(manifold embedding) (hierarchical embedding)

2
15

Al

Ve 0 0

o C

15

-18 -8
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Why did | generate this intuition?

Modeling interactome: scale-free or geometric?

Natasa Przulj, DG Corneil, | Jurisica, Bioinformatics 20 (18), 2004

Fitting a geometric graph to a protein—protein interaction network

DJ Higham, M Rasajski, Natasa Przulj, Bioinformatics 24 (8), 2008

Network Biology was already discussing about this issue

46


https://scholar.google.com/citations?view_op=view_citation&hl=en&user=mLIsLdAAAAAJ&citation_for_view=mLIsLdAAAAAJ:u-x6o8ySG0sC
https://scholar.google.com/citations?view_op=view_citation&hl=en&user=mLIsLdAAAAAJ&citation_for_view=mLIsLdAAAAAJ:Tyk-4Ss8FVUC

How to address problems of data nonlinearity

47



ar 3D-shapes

Non

Principal component analysis

Y

PCA2
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Nonlinear Dimension Reduction

A input space

« Kernel based y

{example: Gaussian-PCA} @ e
L

Issue 1: difficulty to know the correct kernel

Issue 2: presence of free parameters to tune!!!

—

fes
"/

feature space

“’J \"' » distance /

X

\J

A

Manifold based

{example: Isomap}

Issue 1: Hypothesis of local continuity of the manifold

Issue 2: presence of free parameters to tune!!!

'I:eﬁenbaum et al. — Science, 2000



General principles of organization of complex system

50



The inspiration (2008)

nawmure
PUBLISHED ONLINE: 16 NOVEMBER 2008 DOI: 10.1038/NPHYS1130 phySICS

ARTICLES

Navigability of complex networks

Marian Boguiia'*, Dmitri Krioukov? and K. C. Claffy?

Routing information through networks is a universal phenomenon in both natural and man-made complex systems. When each
node has full knowledge of the global network connectivity, finding short communication paths is merely a matter of distributed
computation. However, in many real networks, nodes communicate efficiently even without such global intelligence. Here, we
show that the peculiar structural characteristics of many complex networks support efficient communication without global
knowledge. We also describe a general mechanism that explains this connection between network structure and function.
This mechanism relies on the presence of a metric space hidden behind an observable network. Our findings suggest that real
networks in nature have underlying metric spaces that remain undiscovered. Their discovery should have practical applications
in a wide range of areas where networks are used to model complex systems.

51



The inspiration (greedy navigability)

E Observable network topology

Important message
Navigating on the network
is like navigating in the valley

and hills of the hidden
geometrical space

Boguia et al., Nature Physics 2008

The observed topological properties arise from
a hidden geometric space underlying the network

52



How MC works: Navigating between the points with a greedy
routing process: the minimum spanning tree (MST)!

Euclic%Distance 2" MC ‘Distance’ o
B o B o+
4 3 A/J
‘ [
A
QQ - . Qb‘°~ /
Q" 9 . Q
Q o 4 = <__
4 py
MC Distance B /"
Matrix )
4 : 4
V2 | A
A 4 it
2 y
7V1

The greedy routing navigability is a way to map the hidden nonlinear topology
For MC: The global mapping and the local fitting are reciprocally dependent
MC Minimize globally and fit locally!
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Dim3

Nonlinear topological-based Dimension Reduction
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Nonlinear 3D—shapes

15 Y
a‘”%‘%h
10 .ﬁé"&
5 2 'é‘
o %
' -
—5 -
~10
-15
=10 -5 5 10 15 0
Dim1

ncMCE

j Minimum Curvilinear
2 embedding (MCE

. (hierarchical embedding)
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Radar Signal Dataset

A ncMCE B MCE
4 o g
L o
o°
e 8% Ayt
0° ) @ o ° °
QO ° o (-]
8 . S
° Dim2
o

ROC for Dim1 ROC for Dim2 AUC for Dim1 AUC for Dim2

1 1

0s os
0s 06
04 04

02 02

True positive rate

o} 0 0
0 02 04 08 08 1 0 02 04 06 08 1 . .
False positive rate False positive rate Embedding methods Embedding methods

[ ncMCE: AUC-Dim1 = 0.95; AUC-Dim2 =0.96 [J] MCE: AUC-Dim1 = 0.67; AUC-Dim2 = 0.93
[l 'somap: AUC-Dim1 = 0.61; AUC-Dim2=0.82 [l TPE: AUC-Dim1 = 0.54; AUC-Dim2 = 0.50
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The crescent-moon obsession

Similarity ordering
of the samples !

Direction of maximum MC nonlinear similarity
in the multidimensional space

N
]




ECCB 2010, Ghent, Belgium

Vol. 26 ECCB 2010, pages i5371-i539
doi:10.1083/bioinformatics/btq376

Nonlinear dimension reduction and clustering by Minimum
Curvilinearity unfold neuropathic pain and tissue embryological

classes

Carlo Vittorio Cannistraci-2:3:4.5%
Trey Ide | essio

TRed Sea Integrative Systems Biology Lab, Computational Bioscience Research Center, Division of Chemical and
Life Sciences and Engineering, King Abdullah University for Science and Technology (KAUST), Jeddah, Kingdom of
Saudi Arabia, 2Proteome Biochemistry, San Raffaele Scientific Institute, via Olgettina 58, 20132 Milan, SDepartment
of Mechanics, 4CMP Group, Microsoft Research, Politecnico di Torino, c/so Duca degli Abruzzi 24, 10129 Turin, ltaly,
5Department of Bioengineering and Department of Medicine, University of California, San Diego, 9500 Gilman Drive,
La Jolla, CA 92093 USA

Timothy Ravasi'-°, Franco Maria Montevecchi®,
2.%
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ISMB/ECCB 2013, Berlin, Germany, July 2013

Vol. 29 ISMB/ECCB 2013, pages i199-i209
doi:10. 1083/bioinformatics/btt208

Minimum curvilinearity to enhance topological prediction of
protein _interactions by network embedding

1 I‘EI‘*I‘

Carlo Vittorio Cannistraci
'Integrative

Gregorio Alanis-Lobato’#" and Timothy Ravasi'?*
iology Laboratory, Biological and Environmental Sciences and Engineering Division, Computer

Electrical and Mathematical Sciences and Engineering Division, Computational Bioscience Research Center, King
Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia and “Division of
Medical Genetics, Department of Medicine, University of California, San Diego, CA 92093-0688, USA

ABSTRACT

Motivation: Most functions within the cell emerge thanks to
protein—protein interactions (PPls), yet experimental determination of
PPls is both expensive and time-consuming. PPl networks present
significant levels of noise and incompleteness. Predicting inter-
actions using only PPl-network topology (topological prediction) is
difficult but essential when prior biclogical knowledge is absent or
unreliable.

1 INTRODUCTION

Detection of new imteractions between proteins is central to
modern biology. Its application in protein function prediction,
drug delivery control and disease diagnosis has developed along-
side a deeper understanding of the processes that occur within
the cell. One key task in systems biology is the experimental
detection of new protein—protein interactions (PPIs). However,
such experiments are time consuming and expensive. Because of
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Intuition (2012) Original Network

15

using nonlinear dimension
reduction unsupervised
0

machine learning methods
—15_15

Isomap MCE
(manifold embedding) (hierarchical embedding)
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RA Distance

Matrix

A

Pre-weighting rules

 Repulsion-Attraction (RA) - local a
1 CN
+ e+ e + e;e;
RA _ L J L)
T T4 N, bt

(Coalescent embedding
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RA Distance

Matrix

EBC Distance
Matrix

Coalescent embedding

Pre-weighting rules

A« Repulsion-Attraction (RA) - local

RA_1+ei+ej+el-ej .

U 14N ‘e ‘<e
[ i

X

A« Edge-Betweenness-Centrality (EBC) — global

£ EBC _ z o(s, tllij)
Y stev 0(s,t) G.inestra.
Bianconi
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Coalescent Embedding (2017) - (Model-free)
Network Weighted network

d +d; + dydy

RA1 _

el = . .
o i 1+CN; e 0"‘6.
°
L » RA2:1+ei+ej+eiej — ...... %
4 1+ CNy; St
D
EBC  xEBC — Z o (s tll;) o *e
v 5, tel’ 0(5; t)
Angular coalescence Nonlinear dimension reduction
® Isomap (ISO)
.‘ @
° Noncentered Isomap (nclSO)
47
0 Minimum Curvilinearity (MCE)
i o Noncentered Minimum Curvilinearity (ncMCE)
Laplacian Eigenmaps (LE)
CA EA
°® L .I..... ™~
Angular coordinates .
Circular adjustment (CA) —
Equidistant adjustment (EA) L
S ",
L] ° oy

Coalescent embedding Radial coordinates

Nodes are sortedi = 1,2, ..., N
-~ according to descending degree

Tizg[ﬁlni+(l—ﬁ)lnN]
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Geometry
%,

VSN
oy

PSO model

Testing on the benchmark

network
generation

——

Topology

Synthetic network

network
embedding

E—

Geometry

?

Angular coordinates
Radial coordinate
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Testing on the benchmark

Geometry Topology Geometry
‘mﬁ" network network
3 c\. generation embedding ?
* %
:5»‘} —) —) :
Y

Angular coordinates

PSO model Synthetic network Radial coordinate
Compare to

the reference



Evaluation on PSO networks

Pairwise
Hyperbolic Distances
Original ‘
network
Pairwise
Hyperbolic Distances
Embedded

network

N

HD-Correlation
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HD-correlation

0.8

0.6

0.4

Evaluation on PSO networks: embedding quality

— RA-nclSO

— RA-ncMCE — HyperMap

1~ - 1 -
\ 3 0.6 \ 3 0.6 \
- =)
N=1000 m=2 T N=1000 m=4 T N=1000 m=6
0 0.3 0.6 0.9 0475 0.3 0.6 0.9 0475 0.3 0.6 0.9
Temperature Temperature Temperature

67



14000
12000}
10000
8000
6000 |
4000t
2000

Time [s]

Evaluation on PSO networks: computational time

N =1000

1.1s 1.2s 1.3s 1.4s 1.5s

3.2h

RA RA RA RA RA
LE ncMCE nclSOMCE  1SO
EA EA EA EA EA

Hyper
Map

60 r
o0 ¢
40 +

Time [s]

20+
10|

30+

N =10000
48s
34s 34s
21s
7s
RA RA RA RA RA
LE ncMCE nclSO MCE  1SO
EA EA EA EA EA

Time complexity ~ O(N?)

Time [min]

12 ¢

10 +

N = 30000

10min

8min

Bmin

3min

1min

[

RA RA RA RA RA
LE noMCE nclSO MCE  1SO
EA EA EA EA EA
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Community detection

A

EBC-nclSO, NMI =1

B

RA-MCE, NMI = 0.83
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Community detection
(hyperbolic Louvain)

Distance matrix

Coalescent — Community
embedding detection
Method Karate Opsahl 8 Opsahl 9 Opsahl Opsahl Polbooks Football Polblogs Mean
10 11 NMI
CoElEsEel 1.00 0.57 0.47 1.00 0.93 0.59 0.90 0.68 0.77
Embedding
Original 0.46 0.55 0.41 1.00 0.96 0.50 0.93 0.64 0.68
algorithm
AR 0.56 0.60 0.28 0.92 0.85 0.50 0.83 0.69 0.65
mapping
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Embedding in 3D

A Dimension reduction 2D Dimension reduction 3D

. 3 Original network
y } T=0

X

Adjustment on circle

B Dimension reduction 2D Dimension reduction 3D

Criginal network
T=06
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Conclusions on Coalescent Embedding

- ‘O(n3) or O(n*)’ = 0O(n?)

Unweighted networks = Weighted networks

Only 2D embedding = also 3D or any dimensional space

Community detection in the hyperbolic space algorithms

Not hyperparameters to tune!
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2017

VA AVaN

ARTICLE

Machine learning meets complex networks via
coalescent embedding in the hyperbolic space

Alessandro Muscoloni® !, Josephine Maria Thomas', Sara Ciucci*?, Ginestra Bianconi3

& Carlo Vittorio Cannistraci® ¥4

Physicists recently observed that realistic complex networks emerge as discrete samples
from a continuous hyperbolic geometry enclosed in a circle: the radius represents the node
centrality and the angular displacement between two nodes resembles their topological
proximity. The hyperbolic circle aims to become a universal space of representation and
analysis of many real networks. Yet, inferring the angular coordinates to map a real network
back to its latent geometry remains a challenging inverse problem. Here, we show that
intelligent machines for unsupervised recognition and visualization of similarities in big data
can also infer the network angular coordinates of the hyperbolic model according to a geo-
metrical organization that we term “angular coalescence.” Based on this phenomenon, we
propose a class of algorithms that offers fast and accurate "coalescent embedding” in the
hyperbolic circle even for large networks. This computational solution to an inverse problem
in physics of complex systems favors the application of network latent geornetry techniques
in disciplines dealing with big network data analysis including biology, medicine, and social
science.
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A question for you
?
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HD-correlation
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Evaluation on PSO networks: embedding quality

— RA-nclSO

— RA-ncMCE — HyperMap
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HD-correlation

- 3

Clustering Clustering Clustering
10.72 0.47 0.22 0.09 10177 0.49 0.24 0.12 10.79 0.50 0.26 0.14
c c
g g =
0.8 g 0.8 —\ g 0.8
0.6 g 0.6 g 0.6
N=1000 m=2 » = N=1000 m=4 = = N=1000 m=6
04 04 04
0 0.3 0.6 09 0 0.3 0.6 0.9 0 0.3 0.6 0.9
Temperature Temperature Temperature
e RA. - RA-ncISO ~ RA-ncMCE - HyperMap —
| PR RA-ISO T RA-MCE R HyperMapCN ros

Manifold Minimum curvilinearity
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HD-correlation

Clustering Clustering Clustering
10.72 0.47 0.22 0.09 10.77 0.49 0.24 0.12 10.79 0.50 0.26 0.14
| o c
g | g
@ 08 o 0.8
o [
g 0.6 2 0.6
4 N=1000 m=2 I 0.4 N=1000 m=4 s 0.4 N=1000 m=6
0 0.3 0.6 0.9 0 0.3 0.6 0.9 0 0.3 0.6 0.9
Temperature Temperature Temperature
— RA - RA-ncISO ~ RA-ncMCE - HyperMap
| R — RA-ISO 1| = RA-MCE | HyperMapCN es
Manifold Minimum curvilinearity

Article | Open access | Published: 06 August 2021

The inherent community structure of hyperbolic
networks

Bianka Kovacs & Gergely Palla &

Scientific Reports 11, Article number: 16050 (2021) | Cite this article
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] .IVIe.chamsm of Network automata solution
similarity attachment Time complexity ~ O(E)

Initial step
Cornell University
Library
L& | 1,: arXiv.org > physics > arXiv:1802.01183 Search or Artidle
(Help | Advanc
Physics > Physics and Society
Minimum curvilinear automata with similarity attachment for
Intermediate step network embedding and link prediction in the hyperbolic space
Alessandro Muscoloni, Carlo Vittorio Cannistraci
(Submitted on 4 Feb 2018)
% The idea of minimum curvilinearity (MC) is that the hidden geometry of complex networks, in particular when

they are sufficiently sparse, clustered, small-world and heterogeneous, can be efficiently navigated using the
minimum spanning tree (MST), which is a greedy navigator. The local topological information drives the
global geometrical navigation and the MST can be interpreted as a growing path that greedily maximizes
local similarity between the nodes attached at each step by globally minimizing their overall distances in the
network. This is also valid in absence of the network structure and in presence of only the nodes

Final step geometrically located over the network generative manifold in a high-dimensional space. We know that

random geometric graphs in the hyperbolic space are an adequate model for realistic complex networks: the

explanation of this connection is that complex networks exhibit hierarchical, tree-like organization, and in

turn the hyperbolic geometry is the geometry of trees. Here we show that, according to a mechanism that

we define similarity attachment, the visited node sequence of a network automaton can efficiently

approximate the nodes' angular coordinates in the hyperbolic disk, that actually represent an ordering of

their similarities. This is a consequence of the fact that the MST, during its greedy growing process, at each
®

step sequentially attaches the node most similar (less distant) to its own cohort. Minimum curvilinear
automata (MCA) displays embedding accuracy which seems superior to HyperMap-CN and inferior to
coalescent embedding, however its link prediction performance on real networks is without precedent for
methods based on the hyperbolic space. Finally, depending on the data structure used to build the I\9§T, the
MCA's time complexity can also approach a linear dependence from the number of edges.
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Video of Minimum Curvilinear automata
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https://www.youtube.com/watch?v=xNzw8zCSnJI

The trilogy

Probabilistic-model
based

Maximum likelihood estimation

- Time complexity O(N3) —
O(N%

- Unweighted networks
- Only 2D-space

- Higher GR accuracy
Bogugna et al. 2010, Nat. com.

Papadopulos et al. 2015 IEEE/ACM

Model-free

Nonlinear dimension reduction

- Time complexity O(N?)

- Unweighted/weighted networks

- Any dimension

- Higher HD accuracy

Muscoloni et al. 2018, Nat. com.

Mechanistic-model
based

Network Automata

- Time complexity ~ O(E)
- Unweighted/weighted networks
- Only 2D-space

- Higher LP accuracy

Muscoloni et al. 2018, ArXiv.
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Problem 2
(absence of community structure)



Popularity-Similarity-Optimization (PSO) model
(2012)

Real network properties:
VI Clustering

1 Small-world

V1 Scale-free

— controllabl%ommunitv structure

Uniform distribution
of angular coordinates
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Community structure
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Community membership

Communities = 4 Communities = 8

Gaussian mixture
(equal proportions)

* Node label: mixture
component whose mean is at
the lowest angular distance

» Scenarios with communities
non-overlapping

Gaussian mixture
(custom proportions)

Gaussian and Gamma mixture
(equal proportions)
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Temperature

Temperature for tuning

clustering and
mixing between the communities
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Implementation for links generation

Time for 1 network

(N = 1000)
50000 :
Original
40000 t ~
_ 10h  pso/GRA)
L. 30000 |
o
£ 20000 |
= 0000 | Proposed
(nPSO)
OrF - . :
0.1 0.3 0.5
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Implementation for links generation

Time for 1 network

(N =1000)
50000 :
_ Original ]
- 0 ~10h " (pso/GPA) « Time complexity O(EN)
o | « N =10000 = 5 min
£ 20000 | ]
= 10000 | Proposed
(nPSO)
Ot - . :
0.1 0.3 0.5



Generative procedure (with community)

For each iterationt = 1...N
1) Update radial coordinates of existing nodes j < t:r; = f(j,t,¥)
2) Introduce new node

 Radial coordinate: f(t)
» Angular coordinate: sampled from distribution

3) Establish m links
* Connection probability: p;; = f(h;, T, ...)

N=100,m=4,T=0,y=3
4 communities




Solution to problem 2 published in 2018

1. The first article on the theoretical model

A nonuniform popularity-similarity optimization (nPSO) model to efficiently generate
realistic complex ngtworks Wlth_cor_nmunlt!es _ Alessandro Muscoloni
Alessandro Muscolini and Carlo Vittorio Cannistraci

http://iopscience.iop.org/article/10.1088/1367-2630/aac06f/meta

2. The second article on the application

Leveraging the nonuniform PSO network model as a benchmark for performance evaluation in
community detection and link prediction

Alessandro Muscolini and Carlo Vittorio Cannistraci Nonuniform PSO
http://iopscience.iop.org/article/10.1088/1367-2630/aac6f9 4 communities
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http://iopscience.iop.org/article/10.1088/1367-2630/aac06f/meta
http://iopscience.iop.org/article/10.1088/1367-2630/aac6f9

Generative models in Network Science

Erdés-Rényi S\:\I{s;t;’;z BaA"I%foi' PSO nPSO 2977
(1959) (1998) (1999) (2012) (2018)
Clustering e —_—
Small-world
Scale-free —_— —
Community — — —_— —
Assortativity — o —_— —_— .

Motifs
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Problem 3
(Geometrical markers from brain diseases)



Human brain
diffusion weighted magnetic resonance imaging (DW-MRI)
structural connectomes

Nodes are brain areas
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Anatomical Brain Lobe Characterization

Parietal lobe
Frontal lobe | Occipital lobe

Temporal lobe
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- _ Brain Informatics 2015
... December 2015, Volume 2, Issue 4, pp 197-210

Brain

Informatics The intrinsic geometry of the human brain connectome

Authors Authors and affiliations

Allen Q. Ye, Olusola A. Ajilore, Giorgio Conte, Johnson GadElkarim, Galen Thomas-Ramos, Liang Zhan, Shaolin Yang,
Anand Kumar, Richard L. Magin, Angus G. Forbes, Alex D. Leow [~

Open Access | Article Cite this article as: . . 1k
_ ) Ye, A.Q., Ajilore, O.A., Conte, G. et al.
PRI CY [ el ST Brain Inf. (2015) 2: 197. Citations Shares Downloads

DOI: 10.1007/540708-015-0022-2 doi:10.1007/s40708-015-0022-2

“Intrinsic brain network geometry only minimally relates to neuroanatomy!”
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Open Problem to solve!



Coalescent
Embedding

Precentral
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* Not assigned 97




Applied example

Network-based markers for brain diseases: brain imaging quantification of disease state
psychiatric (depression) and neurodegenerative (Parkinson, Alzheimer, etc. ) disorders.

Nodes are brain areas

98
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Geometrical modifications of the brain in diseases

de novo drug nawe Parkinson’s Disease (PD) patients
compared with
Healthy Controls (HC)

mean marker | mean marker
AUC
_ (HC) (PD) $-m

"~ HyperMap 13.0 14.0 0.026 0.80 0.76
Original network 222.0 215.8 0.307 0.64 0.64
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Coalescent Embedding in the 3D



Coalescent Embedding in the 3D

Brain Network of an individual












Real application Network Neuroscience

GEse Cornell University
&)

ﬂ; Library

arXiv.org > g-bio > arXiv:1705.04192

Quantitative Biology > Neurons and Cognition

Coalescent embedding in the hyperbolic space
unsupervisedly discloses the hidden geometry of the

Alberto Cacciola brain

Alberto Cacciola, Alessandro Muscoloni, Vaibhav Narula, Alessandro Calamuneri, Salvatore

Nigro, Emeran A. Mayer, Jennifer S. Labus, Giuseppe Anastasi, Aldo Quattrone, Angelo
Quartarone, Demetrio Milardi, Carlo Vittorio Cannistraci

(Submitted on 10 May 2017)

The human brain displays a complex network topology. whose structural organization is widely
studied using diffusion tensor imaging. The original geometry from which emerges the network
topology is known, as well as the localization of the network nodes in respect to the brain
morphology and anatomy. One of the most challenging problems of current network science is to
infer the latent geometry from the mere topology of a complex network. The human brain structural
connectome represents the perfect benchmark to test algorithms aimed to solve this problem.
Coalescent embedding was recently designed to map a complex network in the hyperbolic space,
inferring the node angular coordinates. Here we show that this methodology is able to
unsupervisedly reconstruct the latent geometry of the brain with an incredible accuracy and that the
intrinsic geometry of the brain networks strongly relates to the lobes organization known in
neurcanatomy. Furthermare, coalescent embedding allowed the detection of geometrical
pathological changes in the connectomes of Parkinson's Disease patients. The present study
represents the first evidence of brain networks' angular coalescence in the hyperbolic space,
opening a completely new perspective, possibly towards the realization of latent geometry network
markers for evaluation of brain disorders and pathologies. 105




Problem 4
(Geometrical congruence of a network)



nature communications

Article

https://doi.org/10.1038/s41467-022-34634-6

Geometrical congruence, greedy navigability
and myopic transfer in complex networks
and brain connectomes

Received: 6 July 2020

Accepted: 1 November 2022

Carlo Vittorio Cannistraci ® 23458 g Alessandro Muscoloni ® 4

Published online: 27 November 2022

M) Check for updates

We introduce in network geometry a measure of geometrical congruence (GC)
to evaluate the extent a network topology follows an underlying geometry.
This requires finding all topological shortest-paths for each nonadjacent node
pair in the network: a nontrivial computational task. Hence, we propose an
optimized algorithm that reduces 26 years of worst scenario computation to
one week parallel computing. Analysing artificial networks with patent geo-
metry we discover that, different from current belief, hyperbolic networks do
not show in general high GC and efficient greedy navigability (GN) with respect
to the geodesics. The myopic transfer which rules GN works best only when
degree-distribution power-law exponent is strictly close to two. Analysing real
networks—whose geometry is often latent—GC overcomes GN as marker to
differentiate phenotypical states in macroscale structural-MRI brain con-
nectomes, suggesting connectomes might have a latent neurobiological geo-
metry accounting for more information than the visible tridimensional
Euclidean.

November
2022
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Artistic

representation
of the topics
of toda '
y o %@@ ‘\" has a skeleton
%865) Simplicial Complex\‘
Cb \_/
O O building a Cech complex
Point Cloud or Vietoris-Rips complex Network

https://menchelab.com/higher-order-networks-and-the-
topology-of-data
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Computational measure of the soft congruence
of a topology with a geometry

Manlfold

Network
<<

Soft congruence : Measuring to which extent
a topology of a network follows a generative geometry

Measuring how modifications of general network properties
modifies soft congruence
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Network in a geometrical space

Navigability measure (previous)
Muscoloni,..., Cannistraci et al.
Nat. Com. 2017

i
P
v /:
@
Geometrical
4—
shortest path

Navigability geodesic

path

Congruency measure (New)
Cannistraci et al. Nat. Com. 2022

%

Geometrical
4—

Ensemble shortest path

topological
shortest

path
i <«— geodesic
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Krioukov, D. et al. Hyperbolic geometry of complex networks. Phys
Rev E (2010).

l . Bogufia, M. & Krioukov, D. Navigating ultrasmall worlds in ultrashort
Previous literature oMo banees
Bogufa, M. et al. Network geometry. Nature Reviews Physics 2021
3:2 3, 114-135 (2021).
* |t was considering success ratio and stretch separately therefore
there was not a unique measure of navigability efficiency

* [t was considering the ‘congruency’ of successful greedy paths only
supporting the believe that hyperbolic networks are maximally
congruent with their underlying geometry

* [t was not considering the ensemble of shortest path but only the
geometrical shortest path.
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Bogufa, M. et al. Network geometry. Nature Reviews
Dhhwricire 272N21 2:9 2 114 112K /’)n’)_l).
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Bogufia, M. et al. Network geometry. Nature Reviews
Physics 2021 3:2 3, 114-135 (2021).

- D_ .0 A
Bogufia et al.8 proposed a theoretical demonstration that greedy
navigation in networks with y<3 and strong clustering (such as
hyperbolic networks4) can always find these ultrashort paths which
follow the geodesicsl,8, and thus navigation in hyperbolic networks
with y<3 is believed maximally efficient because of their supposed

geometrical congruencel 4.
5 ueouesic .

.
*

Krioukov, D. et al. Hyperbolic geometry of complex networks. Phys Rev E (2010).
Bogufia, M. & Krioukov, D. Navigating ultrasmall worlds in ultrashort time. Phys Rev Lett 102, 058701 (2009).




Results
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Navigability measure (previous)
Muscoloni, -+, Cannistraci et al. Nat. Com. 2017

GRE (pGRP RD)—( - ) Z RD()) . ith (i,j) € F
PEre ) = i thi=1) =2-e pGRP(,j) )

o 2 N RDGD)
GC(pTSP'RD)_(n-(n—l)—Z-e) Zm(i,j) ; with (i,j) € E

i<j



Navigability measure (previous)
Muscoloni, -+, Cannistraci et al. Nat. Com. 2017

GRE (pGRP RD)—( - ) Z RD()) . ith (i,j) € F
PEre ) = i thi=1) =2-e pGRP(,j) )

Greedy (approximated) measure

o 2 N RDGD)
GC(pTSP'RD)_(n-(n—l)—Z-e) Zm(i,j) ; with (i,j) € E

Exact measure i<j



average degree (d)

average degree (d)

N =
S o o %+

nPSO (C=4 T=0.1 N=100)

GC(pTSP,GEO)
0.79 0.67 0.59 0.54 0.50
0.74 0.66 0.60 0.55
0.76 0.68 0.63 0.60
0.76 0.70 0.65 0.62
0.75 0.71 0.66 0.64
GC(pTSP,GSP)

2
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power-law exponent (y)
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3
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b

low medium high

GRE(pGRP,GEO)

0.74 0.62 0.53 0.47 0.45
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1
o
A

average degree (d) average degree (

GC(pTSP, GEO)

d)

GC(pTSP, GSP)

nPSO (C=4 N=10000)

negligible low medium high

0 04 06 038 1

GRE(pGRP, GEO)

GRE(pGRP,GSP)
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]

o

Optimized algorithm to find all shortest paths

Y% v=3 B our algorithm
O vy=25 B brute-force
O y=225
O v=2
<1s 1s 3-42min
<1s 1s 1-9min
£ £
100 1000 10000 100000

N
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Optimized algorithm to find all shortest paths

b N = 100000

3r 128 cores single core
- Z 5:3.75 I our algorithm 668,734 . 0 o
S o2t O v=25 I orute-force 2y +— -90.7%
S O y=225 o
£ O v=2 8mo +— -88.5%
2 1
£ _ 3y
- :12 12 ﬁ’iﬁﬂ?i? 2 T4 +— -00.6% 3mo +— -92.8%

0 £ £ A e
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Suppl. Note 2. Pseudocode to compute the pTSP between all node pairs.

INPUT
N - number of nodes
A - adjacency list, containing for each node the list of neighbours;
A[1] is the list of neighbours of node 1, A[2] the same for node 2, and so on for N nodes.
G - NxN matrix of geodesics between all node pairs.
T - NxN matrix of topological shortest paths between all node pairs.

OUTPUT
P = NxN matrix of pTSP between all node pairs.

function P = compute_pTSP(A, T, S, order)

# compute for each node the mean of the topological shortest paths to all other nodes
Tmean = numerical vector of N elements, initialized to zeros
forsin[1..N]
fortin [s+1..N]
Tmean[s] = Tmean[s] + T[s,t]
Tmean[t] = Tmean[t] + T[s,t]
Tmean[s] = Tmean[s] / (N-1)

# sort nodes by decreasing mean of the topological shortest paths

order = numerical vector of N elements, initialized to zeros

order = get_sort_indexes(Tmean, ‘decreasing”)

# the hypothetical function get_sort_indexes sorts the elements of Tmean
# by decreasing order and returns the indexes of the sorted elements

# compute L, which indicates for each node the maximum path length to evaluate
L = numerical vector of N elements, initialized to zeros
mask = logical vector of N elements, initialized to false
foriin[1...N]

s = order]i]

fortin[1..N]

if (mask[t]==false) & (T[s,t]>L[s])
L[s] = T[s,t]

0(N)
0(N)
O(N)
ey
ey
ey

O(N)
O(NlogN)

O(N)
O(N)
0(N)
ey
O(N)
ey
o)
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# compute for

# sort nndes by decreasing mean of the topological shortest paths
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Tmepdfs] = Tiieanifs] + Tls.H
Aream|t] = Tmean|[t] # T[s/f]
Tmedn[s] = Tmeans] / (NA)
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# by decttasing ovler GAdAAGrE (e mtd e of the gafted Slemb ik

APt | vl EAn dved ves for £ath nodi dar maxinin W pai et to el att
L = smericgl vectof 6 N elemedts, itialiZed &6 zeros
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each node the mean of the topological shortest paths to all other nodes
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Testing GC as a phenotypic marker on Human brain connectomes
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M) Check for updates

We introduce in network geometry a measure of geometrical congruence (GC)
to evaluate the extent a network topology follows an underlying geometry.
This requires finding all topological shortest-paths for each nonadjacent node
pair in the network: a nontrivial computational task. Hence, we propose an
optimized algorithm that reduces 26 years of worst scenario computation to
one week parallel computing. Analysing artificial networks with patent geo-
metry we discover that, different from current belief, hyperbolic networks do
not show in general high GC and efficient greedy navigability (GN) with respect
to the geodesics. The myopic transfer which rules GN works best only when
degree-distribution power-law exponent is strictly close to two. Analysing real
networks—whose geometry is often latent—GC overcomes GN as marker to
differentiate phenotypical states in macroscale structural-MRI brain con-
nectomes, suggesting connectomes might have a latent neurobiological geo-
metry accounting for more information than the visible tridimensional
Euclidean.
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Next direction

* Application of congruence to spatial network in general with any
underlying geometry

* Application of congruence to design markers for brain diseases

* Application of navigability and congruency to urban science and
human mobility networks.




Problem 5
(De Novo single cell spatial reconstruction
by Coalescence Embedding)
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The idea of Jackie

<< To leverage the general
concept of network embedding
angular coalescence and the
methodology  of  coalescence
embedding for De novo (landmark
and  marker free) reverse-
engineering the mesoscale spatial
organization of single cell directly
from their transcriptome. >>
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Theoretical Background and Method



Coalescent embedding (CE)

This is a machine intelligence theory for nonlinear embedding of networks of complex
interconnected systems in a geometrical space, which is called coalescent embedding (CE)
because it relies on a phenomenon that in physics of complexity takes the name of
angular coalescence. This phenomenon states that for a network that derives from a
complex interconnected system, whose connections between its parts (nodes) emerge in
a latent geometrical space, the network embedding in a 2D or 3D visualization space will
display a typical pattern of node aggregation that respects the intrinsic geometry of the
system in the latent geometrical space in terms of both congruence and navigability.

De Novo Coalescent Embedding (D-CE)

Building upon this theory, we developed a novel algorithm called De Novo Coalescent
Embedding (D-CE) which unveils single-cell mesoscale spatial organization, where densely
interacting network neighborhoods or communities are associated with spatial domains.



D-CE algorithm
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D-CE algorithm

De novo reconstruction

a and B : dimensionality reduction 3D reconstruction
r : strength-dependent hierarchy (optinal)
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Evaluation

-----------------------
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Computational Results



Reconstruction of spatial domain labels from oligo or single cell RNA -

seq data
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Reconstruction of spatial domain labels from oligo or single cell RNA -

seq data
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Reconstruction of spatial domain labels from oligo or single cell RNA -
seq data

g Human embryonic
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Spatial reconstruction and spatial marker gene detection of cancerous prostate spatial transcriptomic
dataset
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Spatial reconstruction and spatial marker gene detection of cancerous prostate spatial transcriptomic
dataset
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1. We developed D-CE which is an effective landmark free and model free de novo 3D reconstruction
method for oligo and single cell analysis.

2. The proposed algorithm for de novo coalescent embedding (D-CE) of oligo/single cell
transcriptomic networks is based on the physics principle of angular coalescence and relies
only on the spatial information encoded in the expression patterns of genes, without need of
prior information.

3. We found that D-CE of cell-cell association transcriptomic networks, by preserving mesoscale
network organization, captures spatial domains, identifies spatially expressed genes,
reconstructs cell samples’ 3D spatial distribution, and uncovers spatial domains and markers
necessary for understanding the design principles on spatial organization and pattern formation.

4. Comparison to the novoSpaRC and CSOmap on 14 datasets and 497 reconstructions,
reveals a significantly superior performance of D-CE.

5. Angular coalescence: the same principle of organization of complex connected systems can be
used to analyze systems at different scale from single-cell to brain to society.
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