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But �rst, how did we get
here?
Of course, to tell the whole history of machine learning and natural language processing
(NLP) would take quite some time. However, we can point towards some pivotal points in
the field, starting from the work of Michael I. Jordan in 1986 

, where it was trained a tiny the network with only a
handful of neurons to predict simple sequences of two symbols 1010101001 or ABABBAB

Michael I. Jordan

Serial Order: A Parallel
Distributed Processing Approach 

https://cseweb.ucsd.edu/~gary/PAPER-SUGGESTIONS/Jordan-TR-8604-OCRed.pdf
https://cseweb.ucsd.edu/~gary/PAPER-SUGGESTIONS/Jordan-TR-8604-OCRed.pdf


Michael I. Jordan

The key idea was to "mimic" how we "think" our mind works - where we have an
ongoing "state of mind" in which we use to decide next actions to be taken. This was
similar to give memory to the neural networks.



how did we get here?
Another good idea was how the "training" method was defined:

where the learning signal (loss) is the difference between the network s̓ guess of the next
symbol and the real data. And not only that, after training the NN Michael I. Jordan, set up
experiments in which the network would produce new sequences using the outputs from
previous sequences.

The NN would initially generate some mistakes, but such mistakes would go away after the
NN was trained for a bit more time.



The RNN was also trained in spatial data
patterns:
The learned sequences where not only memorized, they were generalized.

Michael I. Jordan Michael I. Jordan

in his words -> "An important fact about the learned trajectories is that they tend to
influence points nearby in the state space. Indeed, the learned trajectories tend to be
attractors."



5 years latter
Jeffrey Elman, picked up on Jordan s̓ research and did this same thing with a slightly bigger
network (~50 neurons) and trained the network on language:

"The sequence was composed of six different 6-bit binary vectors. Although the

vectors were not derived from real speech, one might think of them as representing

speech sounds, with the six dimensions of the vector corresponding to articulatory

features."

The sequence was semi-random; consonants occurred randomly, but following a

given consonant, the identity and number of following vowels was regular



FINDING STRUCTURE IN TIME

Jeffrey Elman

Jeffrey Elman

Elman noted that Error on predicting the first bit was consistently lower than error for the
fourth bit, but why?



The first bit represents the Consonant feature.

The fourth bit corresponds to the High feature.

While all consonants share the same value for the Consonant feature, they vary in

terms of the High feature.

The network has acquired knowledge about the sequential relationship between

consonants and vowels, leading to low error rates on vowels.

Additionally, the network has learned the frequency of vowels following each

consonant.



DISCOVERING THE NOTION “WORD”
As Elman pointed out  "... more extended sequential dependencies may not necessarily
be more difficult to learn. If the dependencies are structured, that structure may make
learning easier and not harder."

So, he designed a similar task, but now the sequences would form a real words. The letters
are presented in sequence, one at a time, with no breaks between the letters in a word, and
no breaks between the words of different sentences.

→



Jeffrey Elman

Jeffrey Elman

“at the onset of a new word the chance of error is high, as more of the word is received the
error rate declines, since the sequence is increasingly predictable…” at the end of a word
the error jumps up again, following the same pattern.



DISCOVERING LEXICAL CLASSES FROM WORD
ORDER
Elman continued his experiments and proposed an interesting question of whether a
network can learn any aspects of that underlying abstract structure, like if the network
could learn semantic structures encoded in language?

To answer this question, he implemented a new bigger network with 362 neurons (150 of
them acting as context units where learned patterns could be stored). And he created more
data, 10,000 two- & three-word sentences.

To understand what his network was doing he probed the internal neurons in the context
unit as it was processing words. (which took the form of 150 bit vectors), and then he
plotted them and compared the spatial arrangement.



Jeffrey Elman



The network would spatially cluster words based on meaning, for example it separated
nouns which are inanimate (car, rock) and animate (girl, boy), and within these groups he
saw subcategorization, for example the animate objects were broken down into “human”
and “non-human” clusters, and the “non-human” cluster broke down into “large animals”
and “small animals”...inanimate objects were broken down into “breakable” and “edible”...

DISCOVERING LEXICAL CLASSES FROM WORD
ORDER
Another insight Elman had was the representation of words as vectors in high dimensional
space, then sequences of words could be thought of as a pathway in this space, and
similar words would have similar pathways



Word embeddings

https://www.tensorflow.org/text/tutorials/word_embeddings


Following paths and pay
attention
It wasnʼt until 2011, when Ilya Sutskever, James Martens and Geoffrey Hinton pushed the
idea of word vectors and high dimensional pathways ahead on a much larger model and
made a bold observation in terms of the connection between prediction and intelligence.

In the paper  they demonstrate the use of
large RNNs (trained with the new Hessian-Free optimizer) in the task of predicting the next
character in a stream of text.

An interesting application for the solution to this task was a better improve in the
compression of text files, and in their words  "More speculatively, achieving the
asymptotic limit in text compression requires an understanding that is “equivalent to
intelligence” (Hutter, 2006)."

This was in line with one theory that biological brains, at their core, are prediction
machines.

Generating Text with Recurrent Neural Networks

→

http://www.cs.toronto.edu/~bonner/courses/2014s/csc321/readings/sutskever2011icml.pdf


If intelligence is the ability to learn.

This views learning as the compression of experience into a predictive model of the

world.Following paths and pay
attention
They trained a much larger RNN, which they refereed as Multiplicative (or "gated")
Recurrent Neural Network. This new “MRNN” architecture uses multiplicative connections
to allow the current input character to determine the hidden-to-hidden weight matrix.

Ilya Sutskever, James Martens and Geoffrey Hinton

"We trained MRNNs on over a hundred of megabytes of text for several days using 8
Graphics Processing Units in parallel to perform significantly better than one of the best
word-agnostic single character-level language models: the sequence memoizer" (very
likely training in a gt9800 series)



To generate phrases they first feed in the phrase "The meaning of life is", to which it
continues:

The meaning of life is the tradition of the ancient human reproduction: it is less
favorable to the good boy for when to remove her bigger. In the showʼs agreement
unanimously resurfaced. The wild pasteured with consistent street forests were
incorporated by the 15th century BE. In 1996 the primary rapford undergoes an effort that
the reserve conditioning, written into Jewish cities, sleepers to incorporate the .St Eurasia
that activates the population. Mar??a Nationale, Kelli, Zedlat-Dukastoe, Florendon, Ptuʼs
thought is. To adapt in most parts of North America, the dynamic fairy Dan please
believes, the free speech are much related to the

To their surprise the trained MRNN exhibited a significant amount of interesting and high-
level linguistic structure. However, beyond few words it would quickly fall into a "non-
sense" pathway. It was clear that some sort of learning was happening, but they were
hitting the capacity of the network to maintain coherent context over long sequences.



Following paths and pay
attention:
Uncover sentiments from words
In 2017 when a team of researchers (Alec Radford, Rafal Jozefowicz, Ilya Sutskever, at a
speculative lab called Open AI), and setup a larger recurrent network (an LSTM) and
trained it on a massive set of 82 million amazon and IMDB reviews - this training process
took a month. The largest model to date.



"...we discovered a single unit within the mLSTM that directly corresponds to sentiment."



Following paths and pay
attention
Uncover sentiments from words
To show this network had a good internal model (or understanding) of sentiment, they had
the network generate text, and while doing so they forced the sentiment neuron to be a
positive vs negative value, and it spit out positive and negative reviews which were entirely
artificial, but indistinguishable from a human review.



But simply going bigger with more data was hitting a practical limit at the time

there was still a key problem with RNN s̓, which is that they processed data serially, one
word at a time. And all the contexts had to be squeezed into the fixed internal memory, i.e.
the RNNs were struggling to connect concepts the longer the context was.



Following paths and pay
attention
An alternative to RNN s̓ tried to tackle this problem by simply processing the entire input
sequence of text in parallel by passing it through a very wide, fully connected, network ->

.The Sparsely-Gated Mixture-of-experts layer

https://arxiv.org/pdf/1701.06538.pdf


Noam Shazeer, et. al.

But this was impractical, since it requires many layers of depth to compensate the lack memory, since it builds
up the context of the sentence across multiple layers. This approach is tempting but the resulting network
becomes impossible to train.



The rise of transfromers
In 2017 a ground-breaking paper focused on the problem of translating between
languages, one of the key ideas on this paper was a solution to the memory constraint.

The self-attention mechanism:



seq2seq

https://google.github.io/seq2seq/


The rise of transfromers

These self-attention dynamical layers work by allowing every word in the input to look at & compare itself to
every other word, and "absorb the meaning" from the most relevant words to better capture the context of its



intended use in that sentence, this is done by a set of smaller neural networks refereed as attention heads.



The rise of transfromers
Self-Attention Process
Take as example the followng phrases:

I put on a light jacket.

[50256, 40, 1234, 319, 257, 1657, 15224, 13]

The room was filled with light.

[50256, 464, 2119, 373, 5901, 351, 1657, 13]

She had a light workload that day.

[3347, 550, 257, 1657, 26211, 326, 1110, 13]

We see that the value for the word light in the vector is the same in all phrases, this initial
token set is just a lookup table. It is only in the next step that the transformers allow the
surround information to be passed around each embedding vector.



obs: The embedding matrix for a gpt-2 model has 50257x768 (vocab x embedding size), it
also have a positional encoding matirx of 1024 x 768, which is a trainable parameter.



The rise of transfromers
Self-Attention Process
In our case the word light can be seen as different vectors in the "concept" space, where
the directions of these vectors points to the meanings of the word light in each context
applied.



The main gist of the attention mechanism is to change the embeddings vectors to move in the "concept"
space of each word and adjust the direction of each vector (i.e. its meaning) to be more aligned to the context
as a whole, hence the name transformers.



Self-Attention Process
As initial input we have the embeddings of each token from the phrase "I put on a light
jacket.", these embeddings only encoding the meaning of each token and their position and
nothing else.

the goal is to have a new refine set of embedding vectors which hopefully will ingest the
meaning of the words around in a more broad context and continue the text without fell into
non-sense.

�. each tokens "emits" a Querry, Key and Value, these can be seen as hidden

representations of each token, and to allow the mechanism to model relevance, we

let each word ask questions and receive answers.

To make it easy to visualize it like we are trying to model the relationship between nouns
and adjectives, and in this case each noun is asking to all other words if there is an
adjective in front of itself? and this question is encoded, by the matrix , as our Querry.

At the same time we also have another set of Keys, vectors encoded by the matrix , to
which we can interpret as the answers to the querries Q.

When the question asked by a word matches the answer sent by another word, we will
interpret this as the two words having high relevance for each other, in machine learning

Wq

Wk



lingo is said that the embeddings of a given token "attend" to a respective one.





check here

Self-Attention Process
�. Computing the Attention Matrix: We take the dot product of all the N query vectors

with all the N key vectors. Since the dot product of two vectors (no matter how

large) is just a number, the result is an NxN matrix A, whose each element  is the

dot product of the i-th query vector with the j-th key vector.

This process is neatly summarized by the equation:

The dot product between Keys and Queries vectors can yield quite large, or small,
numbers, we can interpret this as the relevance level representation of each word. To have
numerical stability and still keep the relevance level as we intend, we have to "normalize"
these values. Thus, the SoftMax function, but before we apply the SoftMax function, we
need to make sure that future words do not affect the attention matrices for the past
words, since this would render the task of predicting next word useless. To do this we apply
masking (setting to ) all inputs that gives this problem (upper diagonal elements).

Points to note:

Aij

Attention(Q,K,V ) = softmax( ) .V
Q.KT

√dk

−∞

https://huggingface.co/spaces/exbert-project/exbert


In the vanila self-attention mechanism, each word (token) interacts with every other,

there is no temporal ordering in the inputs.

The computational complexity of calculating the attention matrix is . Hence this

"arms" race for bigger hardware and the increasing in the number of tokens that can

be processed by the model.

the ‘selfʼ in self-attention refers to the fact that we also take the dot product of a

given word s̓ query with its own key vector.

We also have cross-attention, which is commonly used in translations, text-to-

speech and vision transformers models, usually models that make use of two (or

more) different types of inputs.

N 2



Self-Attention Process
�. Attend: We take the dot product of the normalized attention scores and the value

vectors.

Since the value vector V are encoded for each word using a dense layer, the output of the
attention mechanism has N vectors, the same as the number of input words. Finally, to
obtain the output of the self-attention layer, we transform the Attention(Q,K,V) vector into
the same size string as the input with a dense layer. These value vectors can be seen as a
correction factor to the relevance of the predicted words, in essence is like a course
predictions for the vectors of the next word. It can also see as a ranking system for the
most likely word in the sequence.

During the training phase, the model would try to predict the next word of the sequence in
a manner of first start with small sequences of tokens and gradually increasing it

softmax( ) .V
Q.KT

√dk



I -> ???

I put -> ???

I put on -> ???

I put on a -> ???

I put on a light -> ???

Also at training time, the model would process larger batch sizes (512) vs. the batch size of
one that evaluation uses.



There we have - The
transformer model, Ladies
and Gentlemen





Ofcourse, there was quite a lot over-simplefications and I skipped to a lot of details, suxh as:

multi-head attention: Multi-head attention allows the model to jointly attend to information from

different representation subspaces at different positions.

Transformers use a lot of layer normalization, did not mentioned but it is used quite a lot in the

architecture.

Did not mention temperature, but it is another component of the self-attention mechanism that helps

the performance of the model

MultiHead(Q,K,V ) = Concat(head1, . . . ,headh)W O

headi = Attention(QW
Q
i ,KW K

i ,VW V
i )



From Transformers to
Generative Pre-trained
Transformers (GPT) and
beyond
The “attention is all you need” paper that gave birth to transformers, was still focused on
the problem of translation trained in a supervised way.

Meanwhile, Open AI saw the result and immediately tried this more powerful transformer
architecture on the next word prediction problem at a larger scale not before possible.



They split the training in two stages:

�. learning a high-capacity language model on a large corpus of text.

�. a fine-tuning stage, where we adapt the model to a discriminative task with labelled data.

And the results found was nothing shorter than surprisingly, as most important:



Whem prompted with text segments it would continue with more coerent text -> 

It showed some capability in answering general questions.

It also exhibits zero-shot learning behaviour, the model was capable of answering questions not

present in the training data.

Zero-shot Behaviors: "Weʼd like to better understand why language model pre-training of transformers is
effective. A hypothesis is that the underlying generative model learns to perform many of the tasks we
evaluate on in order to improve its language modeling..."

see by yourself

From Transformers to
Generative Pre-trained
Transformers (GPT) and
beyond
The success of GPT-1 gave a boost on the incentive to build larger models and training in
even bigger datasets, so OpenAI quickly follow with GPT-2 (~ 1.5 billion of parameters) and
GPT-3 (175 billion of parameters).

https://transformer.huggingface.co/doc/gpt


GPT-3 showed an increase performance in all metrics tested (zero-shot, text
comprehension, ...), but one capability really jumped out. Once training was complete you
could still teach the network new things. This is also know as in context learning also
called “zero-shot transfer”.



Lets build a GPT-2 model
In [1]: import torch

import numpy as np
import matplotlib.pyplot as plt

from torch import nn
from torch.optim import Adam

from tqdm import tqdm

from sklearn.metrics import confusion_matrix
from sklearn.metrics import ConfusionMatrixDisplay

In [2]: from transformers import GPT2Model, GPT2Tokenizer

2024-04-18 10:40:16.460544: I tensorflow/core/util/port.cc:110] 
oneDNN custom operations are on. You may see slightly different 
numerical results due to floating-point round-off errors from d
ifferent computation orders. To turn them off, set the environm
ent variable `TF_ENABLE_ONEDNN_OPTS=0`.
2024-04-18 10:40:16.534527: I tensorflow/core/platform/cpu_feat
ure_guard.cc:182] This TensorFlow binary is optimized to use av
ailable CPU instructions in performance-critical operations.



To enable the following instructions: SSE4.1 SSE4.2 AVX AVX2 AV
X512F AVX512_VNNI FMA, in other operations, rebuild TensorFlow 
with the appropriate compiler flags.

In [3]: import pandas as pd



Dataset and task
For this example we are going to use the BBC news classification dataset, comprised of
2225 articles, each labeled under one of 5 categories: business, entertainment, politics,
sport or tech.:

BBC News Train.csv - the training set of 1490 records

BBC News Test.csv - the test set of 736 records

BBC News Sample Solution.csv - a sample submission file in the correct format

The task is quite simple: just classify if a given sentence belongs to one of the 5 categories:



Loading the model into a dataframe:

Checking the dataframe

ArticleId Text Category

0 1833 worldcom ex-boss launches defence lawyers defe... business

1 154 german business confidence slides german busin... business

2 1101 bbc poll indicates economic gloom citizens in ... business

3 1976 lifestyle governs mobile choice faster bett... tech

4 917 enron bosses in $168m payout eighteen former e... business

In [4]: df = pd.read_csv("datasets/bbc_data/BBC News Train.csv")

In [5]: df.head(5)

Out[5]:



In [6]: df.groupby("Category").size().plot.bar()

Out[6]: <Axes: xlabel='Category'>



Preparing the building blocks: starting from the
tokenizer

Obs: Some models are trained with left or right padding, in this
case our model is trained with left padding, but other models and
even trained in other languages a right padded model might be
prefeered.

In [7]: tokenizer = GPT2Tokenizer.from_pretrained('gpt2')

In [9]: tokenizer.padding_side = "left"
tokenizer.pad_token = tokenizer.eos_token



Encoding a sentence
In [10]: example_text = "i don't like sand it's coarse and rough and gets everyw

In [11]: gpt2_input = tokenizer(example_text, padding="max_length", max_length=2

In [12]: gpt2_input

Out[12]: {'input_ids': tensor([[50256, 50256, 50256, 50256, 50256, 5025
6, 50256,    72,   836,   470,
           588,  6450,   340,   338, 36076,   290,  5210,   29
0,  3011,  8347]]), 'attention_mask': tensor([[0, 0, 0, 0, 0, 
0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]])}



Decoding
In [13]: example_text = tokenizer.decode(gpt2_input.input_ids[0])

print(example_text)

<|endoftext|><|endoftext|><|endoftext|><|endoftext|><|endoftext
|><|endoftext|><|endoftext|>i don't like sand it's coarse and r
ough and gets everywhere



Wrapping our tokenizer
In [14]: tokenizer = GPT2Tokenizer.from_pretrained('gpt2')

tokenizer.padding_side = "left"
tokenizer.pad_token = tokenizer.eos_token
labels = {
    "business": 0,
    "entertainment": 1,
    "sport": 2,
    "tech": 3,
    "politics": 4
         }



Building a dataset
Usually when using pytorch we create a dataset object which expose the data to our model
to be trained, is a simple class that nowadays are automagically built by some wrappers,
like we did with ultralytics, or we can build our own custom dataset, we just need to
implement a class that contains the following 3 methods:

__init__  : to kick start our dataset object when its called, We initialize the
dataframe containing the features and targets of our dataset

__len__ : to returns the number of samples in our dataset.

and

__getitem__ : to loads and returns a sample from the dataset at the given index

idx



In [15]: class Dataset(torch.utils.data.Dataset):
    def __init__(self, df):
        self.labels = [labels[label] for label in df['Category']]
        self.texts = [tokenizer(text,
                                padding='max_length',
                                max_length=128,
                                truncation=True,
                                return_tensors="pt") for text in df['Te
        
    def classes(self):
        return self.labels
    
    def __len__(self):
        return len(self.labels)
    
    def get_batch_labels(self, idx):
        # Get a batch of labels
        return np.array(self.labels[idx])
    
    def get_batch_texts(self, idx):
        # Get a batch of inputs
        return self.texts[idx]
    
    def __getitem__(self, idx):
        batch_texts = self.get_batch_texts(idx)
        batch_y = self.get_batch_labels(idx)
        return batch_texts, batch_y



In [16]: np.random.seed(42)
df_train, df_val, df_test = np.split(df.sample(frac=1, random_state=35)
                                     [int(0.8*len(df)), int(0.9*len(df)

print(len(df_train), len(df_val), len(df_test))

1192 149 149

/opt/conda/lib/python3.10/site-packages/numpy/core/fromnumeric.
py:59: FutureWarning: 'DataFrame.swapaxes' is deprecated and wi
ll be removed in a future version. Please use 'DataFrame.transp
ose' instead.
  return bound(*args, **kwds)



Building our model
For our task we need to modify a little bit the original gpt-2 model, luck for us that is not a
diffucult task. We just need first load the original model by doing:

GPT2Model.from_pretrained(gpt_model_name)

and latter we create a classification head using a dense layer where we pass the final
tensors from the gpt-2 model and outputs the logits for each one of the categories



In [19]: class SimpleGPT2SequenceClassifier(nn.Module):
    def __init__(self, hidden_size: int, num_classes:int ,max_seq_len:i
        super(SimpleGPT2SequenceClassifier,self).__init__()
        self.gpt2model = GPT2Model.from_pretrained(gpt_model_name)
        self.fc1 = nn.Linear(hidden_size*max_seq_len, num_classes)

    def forward(self, input_id, mask):
        """
        Args:
                input_id: encoded inputs ids of sent.
        """
        gpt_out, _ = self.gpt2model(input_ids=input_id, attention_mask=
        batch_size = gpt_out.shape[0]
        linear_output = self.fc1(gpt_out.view(batch_size,-1))
        return linear_output



Obs**
One very common mistake while we re-using models is the dimension shapes of the inputs
and outputs, a tip for this problem is to use as best as you can the view , reshape  and
other reshape functions that manipulate the tensors. Just keep in mind that some of these
functions create new copies of the tensors, which can put a price on memory space and
overheads.



The training and test loops
In [20]: def train(model, train_data, val_data, learning_rate, epochs):

    train, val = Dataset(train_data), Dataset(val_data)
    
    train_dataloader = torch.utils.data.DataLoader(train, batch_size=2,
    val_dataloader = torch.utils.data.DataLoader(val, batch_size=2)
    
    use_cuda = torch.cuda.is_available()
    device = torch.device("cuda" if use_cuda else "cpu")
    
    criterion = nn.CrossEntropyLoss()
    optimizer = Adam(model.parameters(), lr=learning_rate)
    
    if use_cuda:
        model = model.cuda()
        criterion = criterion.cuda()

    for epoch_num in range(epochs):
        total_acc_train = 0
        total_loss_train = 0
        
        for train_input, train_label in tqdm(train_dataloader):
            train_label = train_label.to(device)
            mask = train_input['attention_mask'].to(device)
            input_id = train_input["input_ids"].squeeze(1).to(device)
            
            model.zero_grad()



            output = model(input_id, mask)
            
            batch_loss = criterion(output, train_label)
            total_loss_train += batch_loss.item()
            
            acc = (output.argmax(dim=1)==train_label).sum().item()
            total_acc_train += acc

            batch_loss.backward()
            optimizer.step()
            
        total_acc_val = 0
        total_loss_val = 0
        
        with torch.no_grad():
            
            for val_input, val_label in val_dataloader:
                val_label = val_label.to(device)
                mask = val_input['attention_mask'].to(device)
                input_id = val_input['input_ids'].squeeze(1).to(device)
                
                output = model(input_id, mask)
                
                batch_loss = criterion(output, val_label)
                total_loss_val += batch_loss.item()
                
                acc = (output.argmax(dim=1)==val_label).sum().item()
                total_acc_val += acc
                
            print(



            f"Epochs: {epoch_num + 1} | Train Loss: {total_loss_train/l
            | Train Accuracy: {total_acc_train / len(train_data): .3f} 
            | Val Loss: {total_loss_val / len(val_data): .3f} \
            | Val Accuracy: {total_acc_val / len(val_data): .3f}")



In [21]:             
EPOCHS = 3
model = SimpleGPT2SequenceClassifier(hidden_size=768, num_classes=5, ma
LR = 1e-5

In [22]: train(model, df_train, df_val, LR, EPOCHS)

100%|██████████| 596/596 [00:50<00:00, 11.87it/s]

Epochs: 1 | Train Loss:  0.302             | Train Accuracy:  
0.794             | Val Loss:  0.207             | Val Accurac
y:  0.899

100%|██████████| 596/596 [00:50<00:00, 11.85it/s]

Epochs: 2 | Train Loss:  0.038             | Train Accuracy:  
0.975             | Val Loss:  0.099             | Val Accurac
y:  0.953

100%|██████████| 596/596 [00:50<00:00, 11.81it/s]

Epochs: 3 | Train Loss:  0.008             | Train Accuracy:  
0.996             | Val Loss:  0.125             | Val Accurac
y:  0.960



In [23]: def evaluate(model, test_data):

    test = Dataset(test_data)

    test_dataloader = torch.utils.data.DataLoader(test, batch_size=2)

    use_cuda = torch.cuda.is_available()
    device = torch.device("cuda" if use_cuda else "cpu")

    if use_cuda:

        model = model.cuda()

        
    # Tracking variables
    predictions_labels = []
    true_labels = []
    
    total_acc_test = 0
    with torch.no_grad():

        for test_input, test_label in test_dataloader:

            test_label = test_label.to(device)
            mask = test_input['attention_mask'].to(device)
            input_id = test_input['input_ids'].squeeze(1).to(device)

            output = model(input_id, mask)

            acc = (output.argmax(dim=1) == test_label).sum().item()



            total_acc_test += acc
            
            # add original labels
            true_labels += test_label.cpu().numpy().flatten().tolist()
            # get predicitons to list
            predictions_labels += output.argmax(dim=1).cpu().numpy().fl
    
    print(f'Test Accuracy: {total_acc_test / len(test_data): .3f}')
    return true_labels, predictions_labels



In [24]: true_labels, pred_labels = evaluate(model, df_test)

Test Accuracy:  0.987

In [25]: # Plot confusion matrix.
fig, ax = plt.subplots(figsize=(8, 8))
cm = confusion_matrix(y_true=true_labels, y_pred=pred_labels, labels=ra
disp = ConfusionMatrixDisplay(confusion_matrix=cm, display_labels=list(
disp.plot(ax=ax)

Out[25]: <sklearn.metrics._plot.confusion_matrix.ConfusionMatrixDisplay 
at 0x7f32faab3e20>






