

Data modeling with Energy Based Models

Beatriz Seoane

LISN Paris-Saclay University

Acknowledgments

Aurélien Decelle Giovanni Catania Alfonso Navas Lorenzo Rosset

Nicolas Béreux Cyril Furtlehner

Plan for the lecturers

• Class 1: Introduction to Energy Based Models

• Class 2: Interpretability. How can we learn from trained networks?

• Class 3: Training optimization, the role of MCMC. How can we improve the training mechanisms by understanding their physics?

Plan for the lecturers

• Class 1: Introduction to Energy Based Models

- Generative approach
- Introduction to Energy-Based Models
 - The Restricted Boltzmann Machine (RBM)
- Maximum likelihood training
- Generation
- Why I think RBMs are a cool tool

General definitions

Introduction : Generative approach

- Generative Adverarial Network (GAN)
- Autoregressive methods

Introduction : generative approach

Data

$$\mathcal{D} = \left\{ \boldsymbol{x}^{(1)}, \dots, \boldsymbol{x}^{(M)} \right\}$$
m-th entry $\boldsymbol{x}^{(m)} = \begin{bmatrix} x_1^{(m)} \\ \vdots \\ x_N^{(m)} \end{bmatrix}$

M: # of examples in the data set

$$N=28\times 28$$
 pixels

Data

$$\mathcal{D} = \left\{ \boldsymbol{x}^{(1)}, \dots, \boldsymbol{x}^{(M)} \right\}$$
m-th entry $\boldsymbol{x}^{(m)} = \begin{bmatrix} x_1^{(m)} \\ \vdots \\ x_N^{(m)} \end{bmatrix}$

	* . :		*	: : :	
M <mark>P</mark> REDR <mark>A</mark> TW	KSNYFLKIIQLLDDYP	KCFIV <mark>G</mark> A <mark>D</mark> NV <mark>GS</mark> K <mark>O</mark> M	QQ IRMS LRGK	- AVV LM <mark>GKNT</mark> MMR	KAIRGHLENNPALE
<mark>MP</mark> REDR <mark>A</mark> TW	KSNYFLKIIQLLDDYP	KCFIV <mark>G</mark> A <mark>D</mark> NV <mark>GS</mark> KQM	<mark>QQ IR</mark> MS LRGK	- AVV LM <mark>GKNT</mark> MMR	KAIRGHLENNPALE
M <mark>P</mark> REDR <mark>A</mark> TW	KSNYFLKIIQLLDDYP	KCFIV <mark>G</mark> A <mark>D</mark> NV <mark>GS</mark> KQM	QQIRMS LRGK	– AVV LM <mark>GKNT</mark> MMR	KAIRGHLENNPALE
<mark>MP</mark> REDR <mark>A</mark> TW	KSNYFLKIIQLLDDY <mark>P</mark>	KCFIV <mark>G</mark> A <mark>D</mark> NV <mark>GS</mark> KQM	<mark>QQ IR</mark> MS LRGK	– AVVLM <mark>GKNT</mark> MMR	KAIRGHLENNPALE
M <mark>P</mark> REDR <mark>A</mark> TW	KSNYFMKIIQLLDDYP	KCFVV <mark>G</mark> ADNV <mark>GS</mark> KQM	<mark>QQ IR</mark> MS LRGK	– AVV LM <mark>GKNT</mark> MMR	KAIRGHLENNPALE
M <mark>P</mark> REDR <mark>A</mark> TW	KSNYFLKIIQLLDDY <mark>P</mark>	KCFIV <mark>G</mark> A <mark>D</mark> NV <mark>GS</mark> KQM	<mark>QQ IR</mark> MS LRGK	– AVV LM <mark>GKNT</mark> MMR	KAIRGHLENNSALE
M <mark>P</mark> REDR <mark>A</mark> TW	KSNYFLKIIQLLDD <mark>Y</mark> P	KCFIV <mark>G</mark> ADNV <mark>GS</mark> K <mark>O</mark> M	QTIRLSLRGK	– AVV LM <mark>GKNT</mark> MMR	KAIRGHLENNPALE
M <mark>P</mark> REDR <mark>A</mark> TW	KSNYFLKIIQLLND <mark>Y</mark> P	KCFIV <mark>G</mark> ADNV <mark>GS</mark> K <mark>Q</mark> M	QTIRLSLRGK	- AIV LM <mark>GKNT</mark> MMR	KAIRGHLENNPALE
MVRENK <mark>A</mark> AW	<mark>K</mark> AQY <mark>F</mark> IK <mark>VVE</mark> LFDEF <mark>P</mark>	KCFIV <mark>G</mark> ADNVGSKQM	I <mark>QN IR</mark> TS <mark>LRG</mark> L·	– AVV LM <mark>GKNT</mark> MMR	KAIRGHLENNPQLE
SKR	R <mark>K</mark> KLF <mark>IEKA</mark> TK <mark>LF</mark> TT <mark>Y</mark> D	KMIVAEA <mark>d</mark> fv <mark>gs</mark> sQl	QKIRKSIRGI	– <mark>gav lmgk</mark> k <mark>tmi</mark> r	KVIRDLADSKPELD
SKR	R <mark>KNVF IEKATKLF</mark> TT <mark>Y</mark> D:	KMIVAEA <mark>D</mark> FV <mark>GS</mark> S <mark>Q</mark> L	QKIRKS IRG I	– <mark>gav lmgk</mark> k <mark>tmi</mark> r	KVIRDLADSK – – PELD
MAKLSKQQK	K <mark>K</mark> QMY <mark>IEKL</mark> SSLIQQ <mark>Y</mark> S	KILIVHV <mark>D</mark> NV <mark>GS</mark> N <mark>Q</mark> M	AS VRKS LRGK	– <mark>AT</mark> ILM <mark>GKNT</mark> RIR	T <mark>ALK</mark> KNL <mark>Q</mark> AV – – <mark>P</mark> QIE
<mark>MIG</mark> LAVTTTKK <mark>IA</mark> KW	KADEATERTEKTHK.	FIIIAN I <mark>EG</mark> F <mark>P</mark> ADKL	HE IRKK LRGK	- ADIKVTKNNLFN	I <mark>ALK</mark> NAGYDTK
<mark>M</mark> RI <mark>M</mark> AVITQERK <mark>IA</mark> KW	KIEEVKELE <mark>O</mark> KLRE <mark>X</mark> H	FIIIAN I <mark>EG</mark> FPADKL	HD IRKK MRGM	- AE I KVTKNTLFG	IAAKNAGLDVS
<mark>M</mark> KR <mark>L</mark> ALALKQRKVASW	KLEEVKELTELIKNSN	FILI <mark>G</mark> NL <mark>EGFP</mark> ADKL	HE IRKK LRGK	- A <mark>t i kvtknt</mark> lfk	IAAKNAGIDIE
S V V S L V <mark>G</mark> QMYKRE K <mark>P I P</mark> E W	KTLMLRELE <mark>ELF</mark> SKHR	VVLFADLT <mark>GTPT</mark> FVV	QRVRKK LWKK	- <mark>YPMMVAK</mark> KRIIL	RAMKAAGLE LDDN
A A A A A UDDIUDDEDA	The star and the south		TTO COMPANY AND T		

M: # of sequences in a protein family

GSKQMQQIRMSLRGK-AVVLMGKNTMMRKAIRGHLENN--PALE

 $N = L_{\mathrm{MSA}}$ Amino-acids

Goal: Create synthetic sequences

Data

$$\mathcal{D} = \left\{ \boldsymbol{x}^{(1)}, \dots, \boldsymbol{x}^{(M)} \right\}$$

$$\mathbf{m} \text{-th entry } \boldsymbol{x}^{(m)} = \begin{bmatrix} x_1^{(m)} \\ \vdots \\ x_N^{(m)} \end{bmatrix} \in \mathbb{R}^N$$

$$\mathbf{continuous}$$

$$\mathbf{binary}$$

$$\mathbf{binary}$$

$$\mathbf{continuous}$$

Data distribution

$$\mathcal{D} = \left\{ oldsymbol{x}^{(1)}, \dots, oldsymbol{x}^{(M)}
ight\}$$

Underlying assumption

i. i. d. realizations of a random variable

$$\boldsymbol{X} \sim P_{ ext{data}}$$

(Generally unknown)

Empirical data distribution

Empirical data distribution

Energy-based models

Energy based models (EBMs) Hinton, Hopfield, LeCun, Bengio

$$\begin{array}{ll} \textit{Empirical} & \textit{Model} \\ p_{\mathcal{D}}(\boldsymbol{x}) \sim p_{\boldsymbol{\theta}}(\boldsymbol{x}) = \frac{e^{-E_{\boldsymbol{\theta}}(\boldsymbol{x})}}{Z_{\boldsymbol{\theta}}} \end{array}$$

Gibbs-Boltzmann distribution

 $E_{\boldsymbol{\theta}}(\boldsymbol{x})$ energy function

$$Z_{m{ heta}} = \int dm{x} \; e^{-E_{m{ heta}}(m{x})}$$
 Partition function

Learning : adjust the parameters θ so that the dataset configurations are **typical** configurations of the model.

Energy based models (EBMs) Hinton, Hopfield, LeCun, Bengio

Boltzmann Machines (Ising/Hopfield/Potts models)

- Ackley, D. H., Hinton, G. E., & Sejnowski, T. J. **(1985)**. A learning algorithm for Boltzmann machines. Cognitive science, 9(1), 147-169.

$$E_{J,\boldsymbol{h}}(\boldsymbol{x}) = -\boldsymbol{x}^{\top} J \boldsymbol{x} - \boldsymbol{h}^{\top} \boldsymbol{x}$$

Pairwise interactions

Energy based models (EBMs) Hinton, Hopfield, LeCun, Bengio

Ising/Hopfield/Potts models

LeCun, Y., Chopra, S., Hadsell, R., Ranzato, M., & Huang, F. (2006). A *tutorial on energy-based learning.*Xie, J., Lu, Y., Zhu, S. C., & Wu, Y. (2016). A theory of generative convnet.

Energy (output)

 $E_{\theta}(\mathbf{x})$

Signal (input)

 $\mathcal{E}(\boldsymbol{x},\boldsymbol{h};\boldsymbol{\theta})$

Models with hidden variables

• Boltzmann Machines

- Ackley, D. H., Hinton, G. E., & Sejnowski, T. J. (1985). *A learning algorithm for Boltzmann machines*. Cognitive science, 9(1), 147-169.

Models with hidden variables

Restricted Boltzmann Machine

- Smolensky, P. (1986). Information processing in dynamical systems: Foundations of harmony theory.

$$\mathcal{E}(\mathbf{x}, \mathbf{h}; \boldsymbol{\theta})$$

$$\mathcal{E}_{\boldsymbol{ heta}}(\boldsymbol{x},\boldsymbol{h}) = -\boldsymbol{x}^{\top}W\boldsymbol{h} - \boldsymbol{\zeta}^{\top}\boldsymbol{x} - \boldsymbol{\eta}^{\top}\boldsymbol{h}$$

$$oldsymbol{ heta} = \{W, oldsymbol{\zeta}, oldsymbol{\eta}\}$$

$$p_{\boldsymbol{\theta}}(\boldsymbol{x}) = \frac{e^{-E_{\boldsymbol{\theta}}(\boldsymbol{x})}}{Z_{\boldsymbol{\theta}}} = \frac{\sum_{\boldsymbol{h}} e^{-\mathcal{E}_{\boldsymbol{\theta}}(\boldsymbol{x},\boldsymbol{h})}}{Z_{\boldsymbol{\theta}}} = \frac{e^{\sum_{i} x_{i}\zeta_{i}}}{Z_{\boldsymbol{\theta}}} \prod_{a=1}^{N_{h}} \sum_{h_{a}=0}^{1} e^{\sum_{i} x_{i}W_{ia}h_{a} + \eta_{a}h_{a}}$$

Models with hidden variables

Restricted Boltzmann Machine

- Smolensky, P. (1986). Information processing in dynamical systems: Foundations of harmony theory.

$$\mathcal{E}(\mathbf{x}, \mathbf{h}; \boldsymbol{\theta})$$

$$\mathcal{E}_{\boldsymbol{\theta}}(\boldsymbol{x}, \boldsymbol{h}) = -\boldsymbol{x}^{\top} W \boldsymbol{h} - \boldsymbol{\zeta}^{\top} \boldsymbol{x} - \boldsymbol{\eta}^{\top} \boldsymbol{h}$$

$$oldsymbol{ heta} = \{W, oldsymbol{\zeta}, oldsymbol{\eta}\}$$

$$p_{\theta}(\boldsymbol{x}) = \frac{e^{-E_{\theta}(\boldsymbol{x})}}{Z_{\theta}} = \frac{\sum_{h} e^{-\mathcal{E}_{\theta}(\boldsymbol{x},h)}}{Z_{\theta}} = \frac{e^{\sum_{i} x_{i}\zeta_{i}}}{Z_{\theta}} \prod_{a=1}^{N_{h}} \sum_{h_{a}=0}^{1} e^{\sum_{i} x_{i}W_{ia}h_{a} + \eta_{a}h_{a}}$$
$$= \frac{e^{\sum_{i} x_{i}\zeta_{i}}}{Z_{\theta}} \prod_{a=1}^{N_{h}} \left(1 + e^{\sum_{i} x_{i}W_{ia} + \eta_{a}}\right)$$

Models with hidden variables

Restricted Boltzmann Machine

- Smolensky, P. (1986). Information processing in dynamical systems: Foundations of harmony theory.

$$\mathcal{E}(\mathbf{x}, \mathbf{h}; \boldsymbol{\theta})$$

Latent variables Encode correlations

$$\mathcal{E}_{\boldsymbol{ heta}}(\boldsymbol{x},\boldsymbol{h}) = -\boldsymbol{x}^{\top}W\boldsymbol{h} - \boldsymbol{\zeta}^{\top}\boldsymbol{x} - \boldsymbol{\eta}^{\top}\boldsymbol{h}$$

$$oldsymbol{ heta} = \{W, oldsymbol{\zeta}, oldsymbol{\eta}\}$$

$$p_{\theta}(\boldsymbol{x}) = \frac{e^{-E_{\theta}(\boldsymbol{x})}}{Z_{\theta}} = \frac{\sum_{\boldsymbol{h}} e^{-\mathcal{E}_{\theta}(\boldsymbol{x},\boldsymbol{h})}}{Z_{\theta}} = \frac{e^{\sum_{i} x_{i}\zeta_{i}}}{Z_{\theta}} \prod_{a=1}^{N_{h}} \sum_{a=1}^{1} e^{\sum_{i} x_{i}W_{ia}h_{a} + \eta_{a}h_{a}}$$
$$= \frac{e^{\sum_{i} x_{i}\zeta_{i}}}{Z_{\theta}} \prod_{a=1}^{N_{h}} \left(1 + e^{\sum_{i} x_{i}W_{ia} + \eta_{a}}\right) \Rightarrow E_{\theta}(\boldsymbol{x}) = -\sum_{i} x_{i}\zeta_{i} - \sum_{a=1}^{N_{h}} \log\left(1 + e^{\sum_{i} x_{i}W_{ia} + \eta_{a}}\right)$$

.....

Models with hidden variables

Restricted Boltzmann Machine

- Smolensky, P. (1986). Information processing in dynamical systems: Foundations of harmony theory.

$$\mathcal{E}(\mathbf{x}, \mathbf{h}; \boldsymbol{\theta})$$

$$\mathcal{E}_{\boldsymbol{ heta}}(\boldsymbol{x},\boldsymbol{h}) = -\boldsymbol{x}^{\top}W\boldsymbol{h} - \boldsymbol{\zeta}^{\top}\boldsymbol{x} - \boldsymbol{\eta}^{\top}\boldsymbol{h}$$

$$oldsymbol{ heta} = \{W, oldsymbol{\zeta}, oldsymbol{\eta}\}$$

$$p_{\theta}(\boldsymbol{x}) = \frac{e^{-E_{\theta}(\boldsymbol{x})}}{Z_{\theta}} = \frac{\sum_{h} e^{-\mathcal{E}_{\theta}(\boldsymbol{x},h)}}{Z_{\theta}} = \frac{e^{\sum_{i} x_{i}\zeta_{i}}}{Z_{\theta}} \prod_{a=1}^{N_{h}} \sum_{a=1}^{1} e^{\sum_{i} x_{i}W_{ia}h_{a} + \eta_{a}h_{a}}$$
$$= \frac{e^{\sum_{i} x_{i}\zeta_{i}}}{Z_{\theta}} \prod_{a=1}^{N_{h}} \left(1 + e^{\sum_{i} x_{i}W_{ia} + \eta_{a}}\right) \Rightarrow E_{\theta}(\boldsymbol{x}) = -\sum_{i} x_{i}\zeta_{i} - \sum_{a=1}^{N_{h}} \log\left(1 + e^{\sum_{i} x_{i}W_{ia} + \eta_{a}}\right)$$

$$\Rightarrow E_{\boldsymbol{\theta}}(\boldsymbol{x}) = -\sum_{i} h_{i} x_{i} - \sum_{ij} J_{ij}^{(2)} x_{i} x_{j} - \sum_{ijk} J_{ijk}^{(3)} x_{i} x_{j} x_{k} - \sum_{ijkl} J_{ijkl}^{(4)} x_{i} x_{j} x_{k} x_{l} + \cdots$$

Models with hidden variables

Restricted Boltzmann Machine

- Smolensky, P. (1986). Information processing in dynamical systems: Foundations of harmony theory.

$$\mathcal{E}(\mathbf{x}, \mathbf{h}; \boldsymbol{\theta})$$

Latent variables Encode correlations

 $\mathcal{E}_{\boldsymbol{\theta}}(\boldsymbol{x},\boldsymbol{h}) = -\boldsymbol{x}^{\top}W\boldsymbol{h} - \boldsymbol{\zeta}^{\top}\boldsymbol{x} - \boldsymbol{n}^{\top}\boldsymbol{h}$ $\boldsymbol{\theta} = \{W, \boldsymbol{\zeta}, \boldsymbol{\eta}\}$ The marginal energy for the RBM encode high $p_{\theta}(\mathbf{x}) = \frac{e^{-E_{\theta}(\mathbf{x})}}{Z_{2}} = \frac{\sum_{h}}{2}$ order interactions! \rightarrow Universal approximator Le Roux and Bengio. Neural computation (2008) $= \frac{e^{\sum_{i} x_{i}\zeta_{i}}}{Z_{\theta}} \prod_{i} \left(1 + e^{\sum_{i} x_{i} w_{ia} + \eta_{a}} \right) \Rightarrow E_{\theta}(\boldsymbol{x}) = -\sum_{i} x_{i}\zeta_{i} - \sum_{a=1} \log \left(1 + e^{\sum_{i} x_{i} w_{ia} + \eta_{a}} \right)$ $\Rightarrow E_{\boldsymbol{\theta}}(\boldsymbol{x}) = -\sum_{i} h_{i} x_{i} - \sum_{ij} J_{ij}^{(2)} x_{i} x_{j} - \sum_{ijk} J_{ijk}^{(3)} x_{i} x_{j} x_{k} - \sum_{ijkl} J_{ijkl}^{(4)} x_{i} x_{j} x_{k} x_{l} + \cdots$

visible variables $\mathcal{E}(\mathbf{x}, \mathbf{h}; \boldsymbol{\theta})$ Models with hidden variables \boldsymbol{h} Boltzmann Machines (Ising/Hopfield/Potts models) • Latent variables - Ackley, D. H., Hinton, G. E., & Sejnowski, T. J. (1985). A learning Encode correlations algorithm for Boltzmann machines. Cognitive science, 9(1), 147-169. \boldsymbol{x} RBM **Restricted Boltzmann Machine** • \boldsymbol{h} - Smolensky, P. (1986). Information processing in dynamical systems: Foundations of harmony theory. $\boldsymbol{\mathcal{X}}$ $p_{\theta}(\boldsymbol{x}) = \frac{\sum_{\boldsymbol{h}} e^{-\mathcal{E}_{\theta}(\boldsymbol{x},\boldsymbol{h})}}{Z_{\theta}}$ b³′ \mathbf{W}^3 Deep Boltzmann Machines $=\frac{e^{-E_{\theta}(\boldsymbol{x})}}{Z_{\theta}}\sim p_{\mathcal{D}}(\boldsymbol{x})$ -Ruslan Salakhutdinov, Geoffrey Hinton (2009) Deep h \mathbf{h}^2 Boltzmann Machines. -Bengio, Y. (2009). Learning deep architectures for AI. \mathbf{W}^2 \mathbf{h}^{J} W \boldsymbol{x}

Goal of the training:

Goal of the training:

Empirical Model
$$p_{\mathcal{D}}(\boldsymbol{x}) \sim p_{\boldsymbol{\theta}}(\boldsymbol{x}) = \frac{e^{-E_{\boldsymbol{\theta}}(\boldsymbol{x})}}{Z_{\boldsymbol{\theta}}}$$

Minimize Kullback-Leibler (KL) divergence

$$D_{\mathrm{KL}}(p_{\mathcal{D}}||p_{\theta}) = \int d\boldsymbol{x} \, p_{\mathcal{D}}(\boldsymbol{x}) \log \frac{p_{\mathcal{D}}(\boldsymbol{x})}{p_{\theta}(\boldsymbol{x})}$$
$$= \int d\boldsymbol{x} \, p_{\mathcal{D}}(\boldsymbol{x}) \log p_{\mathcal{D}}(\boldsymbol{x}) - \int d\boldsymbol{x} \, p_{\mathcal{D}}(\boldsymbol{x}) \log p_{\theta}(\boldsymbol{x})$$
$$\underbrace{\mathsf{Constant}}$$

$$p_{\mathcal{D}}(\boldsymbol{x}) = \frac{1}{M} \sum_{m=1}^{M} \delta\left(\boldsymbol{x} - \boldsymbol{x}^{(m)}\right)$$

Goal of the training:

Empirical Model

$$p_{\mathcal{D}}(\boldsymbol{x}) \sim p_{\boldsymbol{\theta}}(\boldsymbol{x}) = \frac{e^{-E_{\boldsymbol{\theta}}(\boldsymbol{x})}}{Z_{\boldsymbol{\theta}}}$$

Minimize Kullback-Leibler (KL) divergence

$$D_{\mathrm{KL}}(p_{\mathcal{D}}||p_{\theta}) = \int d\boldsymbol{x} \ p_{\mathcal{D}}(\boldsymbol{x}) \log \frac{p_{\mathcal{D}}(\boldsymbol{x})}{p_{\theta}(\boldsymbol{x})} \qquad \qquad \text{log-likelihood}$$
$$= \int d\boldsymbol{x} \ p_{\mathcal{D}}(\boldsymbol{x}) \log p_{\mathcal{D}}(\boldsymbol{x}) - \int d\boldsymbol{x} \ p_{\mathcal{D}}(\boldsymbol{x}) \log p_{\theta}(\boldsymbol{x}) - \int d\boldsymbol{x} \ p_{\mathcal{D}}(\boldsymbol{x}) + \int d\boldsymbol{x} \ p_{\mathcal{D}}(\boldsymbol{x}) \log p_{\theta}(\boldsymbol{x}) - \int d\boldsymbol{x} \ p_{\mathcal{D}}(\boldsymbol{x}) - \int d\boldsymbol{x$$

$$p_{\mathcal{D}}(\boldsymbol{x}) = \frac{1}{M} \sum_{m=1}^{M} \delta\left(\boldsymbol{x} - \boldsymbol{x}^{(m)}\right)$$

 $\begin{array}{ll} \textit{Empirical} & \textit{Model} \\ p_{\mathcal{D}}(\boldsymbol{x}) \sim p_{\boldsymbol{\theta}}(\boldsymbol{x}) = \frac{e^{-E_{\boldsymbol{\theta}}(\boldsymbol{x})}}{Z_{\boldsymbol{\theta}}} \end{array}$ Goal of the training: **Minimize** Maximize Kullback-Leibler $D_{\mathrm{KL}}(p_{\mathcal{D}}||p_{\theta})$ $\log L(\mathcal{D}|\boldsymbol{\theta}) \equiv \mathcal{L}(\mathcal{D}|\boldsymbol{\theta})$ The logdivergence likelihood divergence $= \int d\boldsymbol{x} \, p_{\mathcal{D}}(\boldsymbol{x}) \log p_{\mathcal{D}}(\boldsymbol{x}) - (\int d\boldsymbol{x} \, p_{\mathcal{D}}(\boldsymbol{x}) \log p_{\boldsymbol{\theta}}(\boldsymbol{x}))$ Constant $-\frac{1}{M}\sum_{m=1}^{M}\log p_{\boldsymbol{\theta}}(\boldsymbol{x}^{(m)}) = -\frac{1}{M}\log\prod_{m=1}^{M}p_{\boldsymbol{\theta}}(\boldsymbol{x}^{(m)}) = -\frac{1}{M}\log L(\mathcal{D}|\boldsymbol{\theta})$ 30/69

$$p_{\mathcal{D}}(\boldsymbol{x}) = \frac{1}{M} \sum_{m=1}^{M} \delta\left(\boldsymbol{x} - \boldsymbol{x}_{d}^{(m)}\right)$$

Model Empirical Goal of the training: Z_{θ} **Minimize** Maximize $\log L(\mathcal{D}|\boldsymbol{\theta}) \equiv \mathcal{L}(\mathcal{D}|\boldsymbol{\theta})$ Kullback-Leibler $D_{\mathrm{KL}}(p_{\mathcal{D}}||p_{\theta}) \longleftrightarrow$ The logdivergence likelihood divergence $d\boldsymbol{x} p_{\mathcal{D}}(\boldsymbol{x}) \log p_{\mathcal{D}}(\boldsymbol{x}) - (\boldsymbol{f})$ $d\boldsymbol{x} p_{\mathcal{D}}(\boldsymbol{x}) \log p_{\boldsymbol{\theta}}(\boldsymbol{x})$ =**Recall Bayes-Theorem** bnstant $-\frac{1}{M}\log\prod_{\boldsymbol{\theta}}^{m} p_{\boldsymbol{\theta}}(\boldsymbol{x}^{(m)}) = -\frac{1}{M}\log L(\boldsymbol{\mathcal{D}}|\boldsymbol{\theta})$ $p(\mathcal{D}|\boldsymbol{\theta})p(\boldsymbol{\theta}) = p(\boldsymbol{\theta}|\mathcal{D})p(\mathcal{D})$ 31/69 likelihood posterior

$$\mathcal{L}(\mathcal{D}|\boldsymbol{ heta}) = \sum_{m=1}^{M} \log p_{\boldsymbol{ heta}} \left(\boldsymbol{x} = \boldsymbol{x}^{(m)}
ight)$$

$$p_{\boldsymbol{\theta}}(\boldsymbol{x}) = \frac{e^{-E_{\boldsymbol{\theta}}(\boldsymbol{x})}}{Z_{\boldsymbol{\theta}}}$$

$$\mathcal{L}(\mathcal{D}|\boldsymbol{\theta}) = \sum_{m=1}^{M} \log p_{\boldsymbol{\theta}} \left(\boldsymbol{x} = \boldsymbol{x}^{(m)} \right) \qquad p_{\boldsymbol{\theta}}(\boldsymbol{x}) = \frac{e^{-E_{\boldsymbol{\theta}}(\boldsymbol{x})}}{Z_{\boldsymbol{\theta}}}$$

$$\mathcal{L}(\mathcal{D}|\boldsymbol{\theta}) = \langle \log p_{\boldsymbol{\theta}}(\boldsymbol{x}) \rangle_{p_{\mathcal{D}}} = \langle -E_{\boldsymbol{\theta}}(\boldsymbol{x}) \rangle_{p_{\mathcal{D}}} + \underbrace{\log Z_{\boldsymbol{\theta}}}_{Z_{\boldsymbol{\theta}} = \sum_{\{\boldsymbol{x}\}} e^{-E_{\boldsymbol{\theta}}(\boldsymbol{x})}} \\ If x_{i} \text{ binary } \rightarrow 2^{N} \\ Intractable}$$

$$\mathcal{L}(\mathcal{D}|\boldsymbol{\theta}) = \sum_{m=1}^{M} \log p_{\boldsymbol{\theta}} \left(\boldsymbol{x} = \boldsymbol{x}^{(m)} \right) \qquad p_{\boldsymbol{\theta}}(\boldsymbol{x}) = \frac{e^{-E_{\boldsymbol{\theta}}(\boldsymbol{x})}}{Z_{\boldsymbol{\theta}}}$$
Partition function

$$\mathcal{L}(\mathcal{D}|\boldsymbol{\theta}) = \left\langle \log p_{\boldsymbol{\theta}}(\boldsymbol{x}) \right\rangle_{p_{\mathcal{D}}} = \left\langle -E_{\boldsymbol{\theta}}(\boldsymbol{x}) \right\rangle_{p_{\mathcal{D}}} + \log Z_{\boldsymbol{\theta}}$$

(Stochastic) gradient **ascent**

$$\nabla_{\theta} \mathcal{L}$$

 $\theta_{i}^{(t+1)} \leftarrow \theta_{i}^{t} + \gamma \left. \frac{\partial \mathcal{L}}{\partial \theta_{i}} \right|_{\theta = \theta_{i}^{(t)}}$

$$Z_{\theta} = \sum_{\{x\}} e^{-E_{\theta}(x)}$$

If x_i binary $\rightarrow 2^{\mathbb{N}}$

Intractable

34 / 69

$$\mathcal{L}_{\partial \theta_{i}} = \left\langle -\frac{\partial E}{\partial \theta_{i}} \right\rangle_{p_{\mathcal{D}}} - \frac{\partial \log Z}{\partial \theta_{i}}$$

$$\mathcal{L}(\mathcal{D}|\boldsymbol{\theta}) = \left\langle \log p_{\boldsymbol{\theta}}(\boldsymbol{x}) \right\rangle_{p_{\mathcal{D}}} = \left\langle -E_{\boldsymbol{\theta}}(\boldsymbol{x}) \right\rangle_{p_{\mathcal{D}}} + \log Z_{\boldsymbol{\theta}}$$
Partition function

(Stochastic) gradient **ascent**

$$\nabla_{\boldsymbol{\theta}} \mathcal{L}$$

$$\theta_{i}^{(t+1)} \leftarrow \theta_{i}^{t} + \boldsymbol{\gamma} \left. \frac{\partial \mathcal{L}}{\partial \theta_{i}} \right|_{\boldsymbol{\theta} = \theta_{i}^{(t)}}$$

35 / 69

Log-likelihood maximization

$$\begin{array}{l} \frac{\partial \mathcal{L}}{\partial \theta_{i}} = \left\langle -\frac{\partial E}{\partial \theta_{i}} \right\rangle_{p_{\mathcal{D}}} - \underbrace{\frac{\partial \log Z}{\partial \theta_{i}}}_{p_{\mathcal{D}}} & \underbrace{\frac{\partial \log Z}{\partial \theta_{i}} = \sum_{\{x\}} \frac{e^{-E(x)}}{Z} \frac{\partial E(x)}{\partial \theta_{i}}}_{q_{i}} = \left\langle \frac{\partial E(x)}{\partial \theta_{i}} \right\rangle_{p_{\theta}(x)} \\ \mathcal{L}(\mathcal{D}|\theta) = \left\langle \log p_{\theta}(x) \right\rangle_{p_{\mathcal{D}}} = \left\langle -E_{\theta}(x) \right\rangle_{p_{\mathcal{D}}} + \underbrace{\log Z_{\theta}}_{l_{\theta}(x)} \\ (\text{Stochastic) gradient ascent} \\ \left. \nabla_{\theta} \mathcal{L} \\ \theta_{i}^{(t+1)} \leftarrow \theta_{i}^{t} + \gamma \frac{\partial \mathcal{L}}{\partial \theta_{i}} \right|_{\theta = \theta_{i}^{(t)}} \end{array}$$

$$\begin{array}{l}
\textbf{Log-likelihood maximization} \\
\begin{pmatrix}
\frac{\partial \mathcal{L}}{\partial \theta_i} = \left\langle -\frac{\partial E}{\partial \theta_i} \right\rangle_{p_{\mathcal{D}}} - \left\langle \frac{\partial \log Z}{\partial \theta_i} \right\rangle_{p_{\mathcal{D}}} \\
= \left\langle \frac{\partial \log Z}{\partial \theta_i} = \sum_{\{x\}} \frac{e^{-E(x)}}{Z} \frac{\partial E(x)}{\partial \theta_i} \\
= \left\langle \frac{\partial E(x)}{\partial \theta_i} \right\rangle_{p_{\theta}(x)} \\
\hline \nabla E_{\theta} \\
p_{\mathcal{D}}(x) = \frac{1}{M} \sum_{m=1}^{M} \delta\left(x - x_d^{(m)}\right) \\
\end{array}$$

$$\begin{array}{l}
\textbf{(Stochastic) gradient ascent} \\
\nabla_{\theta} \mathcal{L} \\
\theta_i^{(t+1)} \leftarrow \theta_i^t + \gamma \left. \frac{\partial \mathcal{L}}{\partial \theta_i} \right|_{\theta = \theta_i^{(t)}} \\
\end{array}$$

$$\begin{array}{l}
\nabla \mathcal{L}_{\theta} = \left\langle -\nabla E_{\theta} \right\rangle_{p_{\mathcal{D}}} - \left\langle -\nabla E_{\theta} \right\rangle_{p_{\theta}} \\
\hline \text{data} \\
\textbf{model} \\
\hline \textbf{Stros}
\end{array}$$

Log-likelihood maximization

$$\begin{pmatrix}
\frac{\partial \mathcal{L}}{\partial \theta_{i}} = \left\langle -\frac{\partial E}{\partial \theta_{i}} \right\rangle_{p_{\mathcal{D}}} - \left(\frac{\partial \log Z}{\partial \theta_{i}} \right) \\
= \left\langle \frac{\partial \log Z}{\partial \theta_{i}} = \sum_{\{x\}} \frac{e^{-E(x)}}{Z} \frac{\partial E(x)}{\partial \theta_{i}} \\
= \left\langle \frac{\partial E(x)}{\Delta \theta_{i}} \right\rangle \\
= \left\langle \frac{\partial E(x)}{\Delta \theta_{i}} \right\rangle \\
p_{\theta}(x) = \frac{1}{M} \sum_{m=1}^{M} \delta\left(x - x_{d}^{(m)}\right) \\
\text{MCMC sampling} \\
\text{Stochastic) gradient ascent} \\
\begin{bmatrix}
\nabla_{\theta} \mathcal{L} \\
\theta_{i}^{(t+1)} \leftarrow \theta_{i}^{t} + \gamma \frac{\partial \mathcal{L}}{\partial \theta_{i}} \\
\theta_{\theta} = \theta_{i}^{(t)}
\end{bmatrix}$$

On the gradient ascent

$\boldsymbol{\theta}(t+t) \longleftarrow \boldsymbol{\theta}(t) + \gamma \boldsymbol{\nabla} \mathcal{L}(t)$

Update rule:

$$\boldsymbol{\nabla} \mathcal{L}_{\boldsymbol{\theta}} = \left\langle -\boldsymbol{\nabla} E_{\boldsymbol{\theta}} \right\rangle_{p_{\mathcal{D}}} - \left\langle -\boldsymbol{\nabla} E_{\boldsymbol{\theta}} \right\rangle_{p_{\boldsymbol{\theta}}}$$

On the gradient ascent

Fixed point :

$$abla \mathcal{L}_{oldsymbol{ heta}} = \mathbf{0}$$

$$\left|\frac{\partial E}{\partial \theta_i}\right\rangle_{p_{\mathcal{D}}} = \left\langle\frac{\partial E}{\partial \theta_i}\right\rangle_{p_{\theta}} \quad \forall \theta_i$$

Moment matching statistics

 $\boldsymbol{\theta}(t+t) \longleftarrow \boldsymbol{\theta}(t) + \gamma \boldsymbol{\nabla} \mathcal{L}(t)$

Update rule:

$$\boldsymbol{\nabla} \mathcal{L}_{\boldsymbol{\theta}} = \left\langle -\boldsymbol{\nabla} E_{\boldsymbol{\theta}} \right\rangle_{p_{\mathcal{D}}} - \left\langle -\boldsymbol{\nabla} E_{\boldsymbol{\theta}} \right\rangle_{p_{\boldsymbol{\theta}}}$$

On the gradient ascent

Update rule:

$$f_{\theta_i}(\boldsymbol{x}, \boldsymbol{\theta}) \equiv \frac{\partial E_{\boldsymbol{\theta}}(\boldsymbol{x})}{\partial \theta_i}$$

 $\stackrel{\wedge}{ imes}$ Fixed point : $\mathbf{
abla}\mathcal{L}_{oldsymbol{ heta}}=\mathbf{0}$

$$\left\langle \frac{\partial E}{\partial \theta_i} \right\rangle_{p_{\mathcal{D}}} = \left\langle \frac{\partial E}{\partial \theta_i} \right\rangle_{p_{\theta}} \quad \forall \theta_i$$

Hessian matrix

$$H_{ij}(\boldsymbol{\theta}) \equiv \frac{\partial^{2} \mathcal{L}(\boldsymbol{\theta})}{\partial \theta_{i} \partial \theta_{j}} = \left\langle \frac{\partial f_{\theta_{j}}(\boldsymbol{x})}{\partial \theta_{i}} \right\rangle_{p_{\boldsymbol{\theta}}} - \left\langle \frac{\partial f_{\theta_{j}}(\boldsymbol{x})}{\partial \theta_{i}} \right\rangle_{p_{\mathcal{D}}}$$
$$- \left\langle f_{\theta_{i}}(\boldsymbol{x}, \boldsymbol{\theta}) f_{\theta_{j}}(\boldsymbol{x}, \boldsymbol{\theta}) \right\rangle_{p_{\boldsymbol{\theta}}} + \left\langle f_{\theta_{i}}(\boldsymbol{x}, \boldsymbol{\theta}) \right\rangle_{p_{\boldsymbol{\theta}}} \left\langle f_{\theta_{j}}(\boldsymbol{x}, \boldsymbol{\theta}) \right\rangle_{p_{\boldsymbol{\theta}}}$$

 $\boldsymbol{\nabla} \mathcal{L}_{\boldsymbol{\theta}} = \left\langle -\boldsymbol{\nabla} E_{\boldsymbol{\theta}} \right\rangle_{p_{\mathcal{D}}} - \left\langle -\boldsymbol{\nabla} E_{\boldsymbol{\theta}} \right\rangle_{p_{\boldsymbol{\theta}}}$

Moment matching statistics

43 / 69

On the gradient ascent
$$f_{\theta_i}(x,\theta) \equiv \frac{\partial E_{\theta}(x)}{\partial \theta_i}$$
 \checkmark Fixed point : $\nabla \mathcal{L}_{\theta} = \mathbf{0}$ $\left\langle \frac{\partial E}{\partial \theta_i} \right\rangle_{p_{\mathcal{D}}} = \left\langle \frac{\partial E}{\partial \theta_i} \right\rangle_{p_{\theta}} \forall \theta_i$ Hessian matrixif $H_{ij}(\theta) \equiv \frac{\partial^2 \mathcal{L}(\theta)}{\partial \theta_i \partial \theta_j} = \left\langle \frac{\partial f_{\theta_j}(x)}{\partial \theta_i} \right\rangle_{p_{\theta}} \left\langle \frac{\partial f_{\theta_j}(x)}{\partial \theta_i} \right\rangle_{p_{\theta}} \langle f_{\theta_j}(x, \theta) \rangle_{p_{\theta}}$ $-\langle f_{\theta_i}(x, \theta) f_{\theta_j}(x, \theta) \rangle_{p_{\theta}} + \langle f_{\theta_i}(x, \theta) \rangle_{p_{\theta}} \langle f_{\theta_j}(x, \theta) \rangle_{p_{\theta}}$ Moment matching statistics $\nabla \mathcal{L}_{\theta} = \langle -\nabla E_{\theta} \rangle_{p_{\mathcal{D}}} - \langle -\nabla E_{\theta} \rangle_{p_{\theta}}$

 $\stackrel{\wedge}{ agged}$ Fixed point : $oldsymbol{
alpha} \mathcal{L}_{oldsymbol{ heta}} = oldsymbol{0}$

$$\left\langle \frac{\partial E}{\partial \theta_i} \right\rangle_{p_{\mathcal{D}}} = \left\langle \frac{\partial E}{\partial \theta_i} \right\rangle_{p_{\theta}} \quad \forall \theta_i$$

Moment matching statistics

$$\frac{\partial \mathcal{L}}{\partial J_{ij}} = \langle S_i S_j \rangle_{p_{\mathcal{D}}} - \langle S_i S_j \rangle_{p_{\theta}}$$
$$\frac{\partial \mathcal{L}}{\partial h_i} = \langle S_i \rangle_{p_{\mathcal{D}}} - \langle S_i \rangle_{p_{\theta}}$$

Ising-like model

$$E_{J,\mathbf{h}}(\mathbf{S}) = -\sum_{ij} J_{ij} S_i S_j - \sum_i h_i S_i$$
$$\frac{\partial E}{\partial J_{ij}} = -S_i S_j \qquad \frac{\partial E}{\partial h_i} = -S_i$$

 $\stackrel{\wedge}{ imes}$ Fixed point : $\mathbf{
abla} \mathcal{L}_{oldsymbol{ heta}} = \mathbf{0}$

$$\left\langle \frac{\partial E}{\partial \theta_i} \right\rangle_{p_{\mathcal{D}}} = \left\langle \frac{\partial E}{\partial \theta_i} \right\rangle_{p_{\theta}} \quad \forall \theta_i$$

Ising-like model

$$E_{J,\boldsymbol{h}}(\boldsymbol{S}) = -\sum_{ij} J_{ij} S_i S_j - \sum_i h_i S_i$$

Moment matching statistics

 \precsim Fixed point : $oldsymbol{
abla} \mathcal{L}_{oldsymbol{ heta}} = oldsymbol{0}$

$$\left\langle \frac{\partial E}{\partial \theta_i} \right\rangle_{p_{\mathcal{D}}} = \left\langle \frac{\partial E}{\partial \theta_i} \right\rangle_{p_{\theta}} \quad \forall \theta_i$$

Moment matching statistics

Ising-like model $E_{J,h}(S) = -\sum_{ij} J_{ij} S_i S_j - \sum_i h_i S_i$ $\frac{\partial E}{\partial J_{ij}} = -S_i S_j \qquad \frac{\partial E}{\partial h_i} = -S_i$

$$\frac{\partial \mathcal{L}}{\partial J_{ij}} = \langle S_i S_j \rangle_{p_{\mathcal{D}}} - \langle S_i S_j \rangle_{p_{\theta}}$$
$$\frac{\partial \mathcal{L}}{\partial h_i} = \langle S_i \rangle_{p_{\mathcal{D}}} - \langle S_i \rangle_{p_{\theta}}$$

47 / 69

Fixed point:
$$\nabla \mathcal{L}_{\theta} = \mathbf{0}$$

 $\left\langle \frac{\partial E}{\partial \theta_{i}} \right\rangle_{p_{\mathcal{D}}} = \left\langle \frac{\partial E}{\partial \theta_{i}} \right\rangle_{p_{\theta}} \forall \theta_{i}$
Moment matching statistics
 $\frac{\partial \mathcal{L}}{\partial J_{ij}} = \langle S_{i}S_{j} \rangle_{p_{\mathcal{D}}} - \langle S_{i}S_{j} \rangle_{p_{\theta}}$
 $\frac{\partial \mathcal{L}}{\partial h_{i}} = \langle S_{i} \rangle_{p_{\mathcal{D}}} - \langle S_{i} \rangle_{p_{\theta}}$
 $\frac{\partial \mathcal{L}}{\partial h_{i}} = \langle S_{i} \rangle_{p_{\mathcal{D}}} - \langle S_{i} \rangle_{p_{\theta}}$
Solution
 $\frac{\partial \mathcal{L}}{\partial h_{i}} = \langle S_{i} \rangle_{p_{\mathcal{D}}} - \langle S_{i} \rangle_{p_{\theta}}$

$$\mathcal{E}_{\boldsymbol{\theta}}(\boldsymbol{x},\boldsymbol{h}) = -\boldsymbol{x}^{\top}W\boldsymbol{h} - \boldsymbol{\zeta}^{\top}\boldsymbol{x} - \boldsymbol{\eta}^{\top}\boldsymbol{h} \qquad p_{\boldsymbol{\theta}}(\boldsymbol{x}) = \frac{\sum_{\boldsymbol{h}} e^{-\mathcal{E}_{\boldsymbol{\theta}}(\boldsymbol{x},\boldsymbol{h})}}{Z_{\boldsymbol{\theta}}}$$

$$h_{a} = \{0,1\} \quad \Rightarrow E_{\boldsymbol{\theta}}(\boldsymbol{x}) = -\sum_{i} x_{i}\zeta_{i} - \sum_{a=1}^{N_{h}} \log\left(1 + e^{\sum_{i} x_{i}W_{ia} + \eta_{a}}\right)$$

$$\mathcal{E}_{\boldsymbol{\theta}}(\boldsymbol{x},\boldsymbol{h}) = -\boldsymbol{x}^{\top}W\boldsymbol{h} - \boldsymbol{\zeta}^{\top}\boldsymbol{x} - \boldsymbol{\eta}^{\top}\boldsymbol{h} \qquad p_{\boldsymbol{\theta}}(\boldsymbol{x}) = \frac{\sum_{\boldsymbol{h}} e^{-\mathcal{E}_{\boldsymbol{\theta}}(\boldsymbol{x},\boldsymbol{h})}}{Z_{\boldsymbol{\theta}}}$$

$$h_{a} = \{0,1\} \quad \Rightarrow E_{\boldsymbol{\theta}}(\boldsymbol{x}) = -\sum_{i} x_{i}\zeta_{i} - \sum_{a=1}^{N_{h}} \log\left(1 + e^{\sum_{i} x_{i}W_{ia} + \eta_{a}}\right)$$

$$\frac{\partial E}{\partial W_{ia}} = -\sigma \left(\sum_{a} W_{ia} \boldsymbol{x}_{i} + \eta_{a} \right) \boldsymbol{x}_{i}$$
$$\frac{\partial E}{\partial \eta_{a}} = -\sigma \left(\sum_{a} W_{ia} \boldsymbol{x}_{i} + \eta_{a} \right)$$

 $\frac{\partial E}{\partial \zeta_i} = -x_i \qquad \qquad \sigma(x) = \frac{1}{1 + e^{-x}} = \text{sigmoid}(x)$

$$\frac{\partial E}{\partial W_{ia}} = -\sigma \left(\sum_{a} W_{ia} \boldsymbol{x}_{i} + \eta_{a} \right) \boldsymbol{x}_{i}$$
$$\frac{\partial E}{\partial \eta_{a}} = -\sigma \left(\sum_{a} W_{ia} \boldsymbol{x}_{i} + \eta_{a} \right)$$

 $\frac{\partial E}{\partial \zeta_i} = -x_i$

$$p(h_a = 1 | \boldsymbol{x}, \boldsymbol{h}_{-a}, \boldsymbol{\theta}) = \frac{e^{\sum_i W_{ia} x_i + \eta_a}}{1 + e^{\sum_i W_{ia} x_i + \eta_a}}$$
$$= \sigma \left(\sum_i W_{ia} x_i + \eta_a \right) = \langle h_a \rangle_{p_{\mathcal{E}}(\boldsymbol{h} | \boldsymbol{x})}$$

51/69

RBM

 \cap

RBM

7

$$\mathcal{E}_{\boldsymbol{\theta}}(\boldsymbol{x},\boldsymbol{h}) = -\boldsymbol{x}^{\top}W\boldsymbol{h} - \boldsymbol{\zeta}^{\top}\boldsymbol{x} - \boldsymbol{\eta}^{\top}\boldsymbol{h} \qquad p_{\boldsymbol{\theta}}(\boldsymbol{x}) = \frac{\sum_{\boldsymbol{h}} e^{-\mathcal{E}_{\boldsymbol{\theta}}(\boldsymbol{x},\boldsymbol{h})}}{Z_{\boldsymbol{\theta}}}$$

$$h_{a} = \{0,1\} \quad \Rightarrow E_{\boldsymbol{\theta}}(\boldsymbol{x}) = -\sum_{i} x_{i}\zeta_{i} - \sum_{a=1}^{N_{h}} \log\left(1 + e^{\sum_{i} x_{i}W_{ia} + \eta_{a}}\right)$$

$$\frac{\partial E}{\partial W_{ia}} = -\sigma \left(\sum_{a} W_{ia} \boldsymbol{x}_{i} + \eta_{a} \right) \boldsymbol{x}_{i} = -\langle h_{a} \rangle_{p_{\mathcal{E}}(\boldsymbol{h}|\boldsymbol{x})} \boldsymbol{x}_{i}$$

$$\frac{\partial E}{\partial \eta_{a}} = -\sigma \left(\sum_{a} W_{ia} \boldsymbol{x}_{i} + \eta_{a} \right) = -\langle h_{a} \rangle_{p_{\mathcal{E}}(\boldsymbol{h}|\boldsymbol{x})}$$

$$p(h_{a} = 1|\boldsymbol{x}, \boldsymbol{h}_{-a}, \boldsymbol{\theta}) = \frac{e^{\sum_{i} W_{ia} \boldsymbol{x}_{i} + \eta_{a}}}{1 + e^{\sum_{i} W_{ia} \boldsymbol{x}_{i} + \eta_{a}}}$$

$$= \sigma \left(\sum_{i} W_{ia} \boldsymbol{x}_{i} + \eta_{a} \right) = \langle h_{a} \rangle_{p_{\mathcal{E}}(\boldsymbol{h}|\boldsymbol{x})}$$

$$= \sigma \left(\sum_{i} W_{ia} \boldsymbol{x}_{i} + \eta_{a} \right) = \langle h_{a} \rangle_{p_{\mathcal{E}}(\boldsymbol{h}|\boldsymbol{x})}$$

$$= \sigma \left(\sum_{i} W_{ia} \boldsymbol{x}_{i} + \eta_{a} \right) = \langle h_{a} \rangle_{p_{\mathcal{E}}(\boldsymbol{h}|\boldsymbol{x})}$$

$$= \sigma \left(\sum_{i} W_{ia} \boldsymbol{x}_{i} + \eta_{a} \right) = \langle h_{a} \rangle_{p_{\mathcal{E}}(\boldsymbol{h}|\boldsymbol{x})}$$

$$= \sigma \left(\sum_{i} W_{ia} \boldsymbol{x}_{i} + \eta_{a} \right) = \langle h_{a} \rangle_{p_{\mathcal{E}}(\boldsymbol{h}|\boldsymbol{x})}$$

$$= \sigma \left(\sum_{i} W_{ia} \boldsymbol{x}_{i} + \eta_{a} \right) = \langle h_{a} \rangle_{p_{\mathcal{E}}(\boldsymbol{h}|\boldsymbol{x})}$$

$$p_{\mathcal{E}}(\boldsymbol{x}, \boldsymbol{h}) = p_{\mathcal{E}}(\boldsymbol{h}|\boldsymbol{x})p_{\boldsymbol{\theta}}(\boldsymbol{x})$$

$$\frac{\partial \mathcal{L}}{\partial W_{ia}} = \left\langle x_i \left\langle h_a \right\rangle_{p_{\mathcal{E}}(\boldsymbol{h}|\boldsymbol{x})} \right\rangle_{p_{\mathcal{D}}} - \left\langle x_i \left\langle h_a \right\rangle_{p_{\mathcal{E}}(\boldsymbol{h}|\boldsymbol{x})} \right\rangle_{p_{\boldsymbol{\theta}}}$$
$$\frac{\partial \mathcal{L}}{\partial \eta_a} = \left\langle \left\langle h_a \right\rangle_{p_{\mathcal{E}}(\boldsymbol{h}|\boldsymbol{x})} \right\rangle_{p_{\mathcal{D}}} - \left\langle \left\langle h_a \right\rangle_{p_{\mathcal{E}}(\boldsymbol{h}|\boldsymbol{x})} \right\rangle_{p_{\boldsymbol{\theta}}}$$
$$\frac{\partial \mathcal{L}}{\partial \zeta_i} = \left\langle x_i \right\rangle_{p_{\mathcal{D}}} - \left\langle x_i \right\rangle_{p_{\boldsymbol{\theta}}}$$

53/69

RBM

 \cap

$$\mathcal{E}_{\boldsymbol{\theta}}(\boldsymbol{x},\boldsymbol{h}) = -\boldsymbol{x}^{\top}W\boldsymbol{h} - \boldsymbol{\zeta}^{\top}\boldsymbol{x} - \boldsymbol{\eta}^{\top}\boldsymbol{h} \qquad p_{\boldsymbol{\theta}}(\boldsymbol{x}) = \frac{\sum_{\boldsymbol{h}} e^{-\mathcal{E}_{\boldsymbol{\theta}}(\boldsymbol{x},\boldsymbol{h})}}{Z_{\boldsymbol{\theta}}}$$

$$h_{a} = \{0,1\} \quad \Rightarrow E_{\boldsymbol{\theta}}(\boldsymbol{x}) = -\sum_{i} x_{i}\zeta_{i} - \sum_{a=1}^{N_{h}} \log\left(1 + e^{\sum_{i} x_{i}W_{ia} + \eta_{a}}\right)$$

 $p_{\mathcal{E}}(\boldsymbol{x}, \boldsymbol{h}) = p_{\mathcal{E}}(\boldsymbol{h}|\boldsymbol{x})p_{\boldsymbol{\theta}}(\boldsymbol{x})$

$$\frac{\partial \mathcal{L}}{\partial W_{ia}} = \left\langle x_i \left\langle h_a \right\rangle_{p_{\mathcal{E}}(\boldsymbol{h}|\boldsymbol{x})} \right\rangle_{p_{\mathcal{D}}} - \left\langle x_i h_a \right\rangle_{\mathcal{E}}$$
$$\frac{\partial \mathcal{L}}{\partial \eta_a} = \left\langle \left\langle h_a \right\rangle_{p_{\mathcal{E}}(\boldsymbol{h}|\boldsymbol{x})} \right\rangle_{p_{\mathcal{D}}} - \left\langle h_a \right\rangle_{\mathcal{E}}$$
$$\frac{\partial \mathcal{L}}{\partial \zeta_i} = \left\langle x_i \right\rangle_{p_{\mathcal{D}}} - \left\langle x_i \right\rangle_{\mathcal{E}}$$

$$\mathcal{E}_{\boldsymbol{\theta}}(\boldsymbol{x},\boldsymbol{h}) = -\boldsymbol{x}^{\top}W\boldsymbol{h} - \boldsymbol{\zeta}^{\top}\boldsymbol{x} - \boldsymbol{\eta}^{\top}\boldsymbol{h} \qquad p_{\boldsymbol{\theta}}(\boldsymbol{x}) = \frac{\sum_{\boldsymbol{h}} e^{-\mathcal{E}_{\boldsymbol{\theta}}(\boldsymbol{x},\boldsymbol{h})}}{Z_{\boldsymbol{\theta}}}$$
$$h_{a} = \{0,1\} \quad \Rightarrow E_{\boldsymbol{\theta}}(\boldsymbol{x}) = -\sum_{i} x_{i}\zeta_{i} - \sum_{a=1}^{N_{h}} \log\left(1 + e^{\sum_{i} x_{i}W_{ia} + \eta_{a}}\right)$$

$$\frac{\partial \mathcal{L}}{\partial W_{ia}} = \langle x_i h_a \rangle_{p_{\mathcal{D}}} - \langle x_i h_a \rangle_{\mathcal{E}}$$
$$\frac{\partial \mathcal{L}}{\partial \eta_a} = \langle h_a \rangle_{p_{\mathcal{D}}} - \langle h_a \rangle_{\mathcal{E}}$$
$$\frac{\partial \mathcal{L}}{\partial \zeta_i} = \langle x_i \rangle_{p_{\mathcal{D}}} - \langle x_i \rangle_{\mathcal{E}}$$

55 / 69

$$\mathcal{E}_{\boldsymbol{\theta}}(\boldsymbol{x},\boldsymbol{h}) = -\boldsymbol{x}^{\top}W\boldsymbol{h} - \boldsymbol{\zeta}^{\top}\boldsymbol{x} - \boldsymbol{\eta}^{\top}\boldsymbol{h} \qquad p_{\boldsymbol{\theta}}(\boldsymbol{x}) = \frac{\sum_{\boldsymbol{h}} e^{-\mathcal{E}_{\boldsymbol{\theta}}(\boldsymbol{x},\boldsymbol{h})}}{Z_{\boldsymbol{\theta}}}$$

$$h_{a} = \{0,1\} \quad \Rightarrow E_{\boldsymbol{\theta}}(\boldsymbol{x}) = -\sum_{i} x_{i}\zeta_{i} - \sum_{a=1}^{N_{h}} \log\left(1 + e^{\sum_{i} x_{i}W_{ia} + \eta_{a}}\right)$$

Boltzmann machine:

$$\frac{\partial \mathcal{L}}{\partial J_{ij}} = \left\langle S_i S_j \right\rangle_{p_{\mathcal{D}}} - \left\langle S_i S_j \right\rangle_{p_{\theta}}$$

$$\frac{\partial \mathcal{L}}{\partial h_i} = \left\langle S_i \right\rangle_{p_{\mathcal{D}}} - \left\langle S_i \right\rangle_{p_{\theta}}$$

$$\frac{\partial \mathcal{L}}{\partial W_{ia}} = \langle x_i h_a \rangle_{p_{\mathcal{D}}} - \langle x_i h_a \rangle_{\mathcal{E}}$$
$$\frac{\partial \mathcal{L}}{\partial \eta_a} = \langle h_a \rangle_{p_{\mathcal{D}}} - \langle h_a \rangle_{\mathcal{E}}$$
$$\frac{\partial \mathcal{L}}{\partial \zeta_i} = \langle x_i \rangle_{p_{\mathcal{D}}} - \langle x_i \rangle_{\mathcal{E}}$$

 $C \left(- L \right)$

56 / 69

$$\mathcal{E}_{\boldsymbol{\theta}}(\boldsymbol{x},\boldsymbol{h}) = -\boldsymbol{x}^{\top}W\boldsymbol{h} - \boldsymbol{\zeta}^{\top}\boldsymbol{x} - \boldsymbol{\eta}^{\top}\boldsymbol{h} \qquad p_{\boldsymbol{\theta}}(\boldsymbol{x}) = \frac{\sum_{\boldsymbol{h}} e^{-\mathcal{E}_{\boldsymbol{\theta}}(\boldsymbol{x},\boldsymbol{h})}}{Z_{\boldsymbol{\theta}}}$$

$$h_{a} = \{0,1\} \quad \Rightarrow E_{\boldsymbol{\theta}}(\boldsymbol{x}) = -\sum_{i} x_{i}\zeta_{i} - \sum_{a=1}^{N_{h}} \log\left(1 + e^{\sum_{i} x_{i}W_{ia} + \eta_{a}}\right)$$

Boltzmann machine:

$$\frac{\partial \mathcal{L}}{\partial J_{ij}} = \left\langle S_i S_j \right\rangle_{p_{\mathcal{D}}} - \left\langle S_i S_j \right\rangle_{p_{\theta}}$$

$$\frac{\partial \mathcal{L}}{\partial h_i} = \left\langle S_i \right\rangle_{p_{\mathcal{D}}} - \left\langle S_i \right\rangle_{p_{\theta}}$$

$$\begin{aligned} \frac{\partial \mathcal{L}}{\partial W_{ia}} &= \langle x_i h_a \rangle_{p_{\mathcal{D}}} - \langle x_i h_a \rangle_{\mathcal{E}} \\ \frac{\partial \mathcal{L}}{\partial \eta_a} &= \langle h_a \rangle_{p_{\mathcal{D}}} - \langle h_a \rangle_{\mathcal{E}} \\ \frac{\partial \mathcal{L}}{\partial \zeta_i} &= \langle x_i \rangle_{p_{\mathcal{D}}} - \langle x_i \rangle_{\mathcal{E}} \end{aligned}$$

 $C \left(- L \right)$

57 / 69

Sample generation

Empirical Model $p_{\mathcal{D}}(\boldsymbol{x}) \sim \frac{e^{-E_{\boldsymbol{\theta}}(\boldsymbol{x})}}{Z_{\boldsymbol{\theta}}}$

Dominated minimum free-energy configurations

$$\{m{x}\}_{\mathrm{eq},m{ heta}}\sim\mathcal{D}$$

Empirical Model $p_{\mathcal{D}}(\boldsymbol{x}) \sim \frac{e^{-E_{\boldsymbol{\theta}}(\boldsymbol{x})}}{Z_{\boldsymbol{\theta}}}$

Dominated minimum free-energy configurations

$$\{\boldsymbol{x}\}_{\mathrm{eq},\boldsymbol{\theta}} \sim \mathcal{D}$$
$$\left\langle \frac{\partial E}{\partial \theta_i} \right\rangle_{p_{\boldsymbol{\theta}}} \approx \left\langle \frac{\partial E}{\partial \theta_i} \right\rangle_{p_{\mathcal{D}}} \quad \forall \theta_i$$

Dominated minimum free-energy configurations

$$\{m{x}\}_{\mathrm{eq},m{ heta}}\sim\mathcal{D}$$

Dominated minimum free-energy configurations

$$\{ x \}_{\mathrm{eq}, oldsymbol{ heta}} \sim \mathcal{D}$$

 $E_{\pmb{\theta}}(\pmb{x})$ Effective model for the data

If simple, we can analyze it!

 \Rightarrow Free-energy landscape

Modeling, interpretability

Why Restricted Boltzmann Machines (RBMs) are good for that?

Why RBMs?

Simple enough to allow some level of analytical treatment (MF)

A Decelle, C Furtlehner - Chinese Physics B, 2021

- Phase diagram

J Tubiana, R Monasson - Physical review letters, 2017 A Decelle, G Fissore, C Furtlehner - Journal of Statistical Physics, 2018

A Decelle, G Fissore, C Furtlehner

- Learning : sub-sequence of phase transitions

Europhysics Letters, 2017

Biroli, Decelle, Bachtis, Seoane (2024, in prep.)

- Approximate methods to compute the free energy (TAP eqs.)

Gabrié, M., Tramel, E. W., & Krzakala, F. NeurIPS (2015) Tramel, E. W., Gabrié, M., Manoel, A., Caltagirone, F., & Krzakala, F. Physical Review X (2018) Decelle, A., Rosset, L., & Seoane, B. PRE (2023)

- Can be mapped to a physical interacting system

Decelle, Furtlehner, Navas & Seoane, B. SciPost Phys (2024)

- They are **expressive** : they can describe interesting datsets
- The are **frugal** models : fast code and to train
- They are sample efficient : perform well with small amounts of data 4 / 69

- **Simple enough** to allow some level of analytical treatment (MF)
 - Phase diagram

Aurélien Decelle's lecture tomorrow

A Decelle, C Furtlehner - Chinese Physics B, 2021 J Tubiana, R Monasson - Physical review letters, 2017 A Decelle, G Fissore, C Furtlehner - Journal of Statistical Physics, 2018

> A Decelle, G Fissore, C Furtlehner Europhysics Letters, 2017

Learning : sub-sequence of phase transitions

Biroli, Decelle, Bachtis, Seoane (2024, in prep.)

Approximate methods to compute the free energy (TAP eqs.)

Gabrié, M., Tramel, E. W., & Krzakala, F. NeurIPS (2015) Tramel, E. W., Gabrié, M., Manoel, A., Caltagirone, F., & Krzakala, F. Physical Review X (2018) Decelle, A., Rosset, L., & Seoane, B. PRE (2023)

- Can be mapped to a physical interacting system

Decelle, Furtlehner, Navas & Seoane, B. SciPost Phys (2024)

- They are **expressive** : they can describe interesting datsets
- The are **frugal** models : fast code and to train
- They are sample efficient : perform well with small amounts of data 5 / 69

- Simple enough to allow some level of analytical treatment (MF)
 - Phase diagram

A Decelle, C Furtlehner - Chinese Physics B, 2021

J Tubiana, R Monasson - Physical review letters, 2017

A Decelle, G Fissore, C Furtlehner - Journal of Statistical Physics, 2018

A Decelle, G Fissore, C Furtlehner

- Learning : sub-sequence of phase transitions

li, Decelle, Bachtis, Seoane (2024, in prep.)

Approximate methods to compute the free energy (TAP eqs.)

Gabrié, M., Tramel, E. W., & Krzakala, F. NeurIPS (2015) el, E. W., Gabrié, M., Manoel, A., Caltagirone, F., & Krzakala, F. Physical Review X (2018)

Decelle, A., Rosset, L., & Seoane, B. PRE (2023)

Can be mapped to a physical interacting system

Decelle, Furtlehner, Navas & Seoane, B. SciPost Phys (2024)

- They are **expressive** : they can describe interesting datasets
- The are **frugal** models : fast code and to train
- They are **sample efficient** : perform well with small amounts of data 6 / 69

ABOUT

SEARCH

PLOS GENETICS

GOPEN ACCESS DEPER-REVIEWED

Creating artificial human genomes using generative neural networks

Burak Yelmen 🔄 Aurélien Decelle, Linda Ongaro, Davide Marnetto, Corentin Tallec, Francesco Montinaro, Cyril Furtlehner, Luca Pagani, Flora Jay 🖬

PLOS COMPUTATIONAL BIOLOGY

G OPEN ACCESS 🔌 PEER-REVIEWED

RESEARCH ARTICLE

Deep convolutional and conditional neural networks for large-scale genomic data generation

Burak Yelmen 🔟, Aurélien Decelle, Leila Lea Boulos, Antoine Szatkownik, Cyril Furtlehner, Guillaume Charpiat, Flora Jay

Version 2 v Published: October 30, 2023 • https://doi.org/10.1371/journal.pcbi.1011584

	advanced sea	arch
109 Save	78 Citation	
20,493 _{View}	102 Share	

12

Save

1.520

View

advanced search

Citation

15

Share

Currently the most accurate method to generate artificial human genome

Europhysics Letters, 2017

Biroli, Decelle, Bachtis, Seoane (2024, in prep.)

e energy (TAP eqs.)

Gabrié, M., Tramel, E. W., & Krzakala, F. NeurIPS (2015) anoel, A., Caltagirone, F., & Krzakala, F. Physical Review X (2018) Decelle, A., Rosset, L., & Seoane, B. PRE (2023) **System** Decelle, Eurtlebber, Navas, & Seoane, B. SciPost Phys (2024)

- They are expressive : they can describe interesting datasets
- The are **frugal** models : fast code and to train

BROWSE

PUBLISH

They are sample efficient : perform well with small amounts of data 7 / 69

Editoria

- They are **expressive** : they can describe interesting datasets
- The are **frugal** models : fast code and to train
- They are sample efficient : perform well with small amounts of datas / 69

Simple enough to allow some level of analytical treatment (MF)

- If they are so cool, why are not they used more often?
- Learning : sub-sequence of phase transitions → EBMs are very difficult to train properly Approximate methods to compute the free energy (TAP eqs.)

Class 2 : Interpretability Can be mapped to a physical interacting system

Class 3: Controlling the training

- They are **expressive** : they can describe interesting datsets
- The are **frugal** models : fast code and to train
- They are sample efficient : perform well with small amounts of data 9/69