Data modeling with Energy Based Models

Beatriz Seoane
LISN Paris-Saclay University

Aurélien Decelle
Giovanni Catania
Alfonso Navas Lorenzo Rosset

Nicolas Béreux
Cyril Furtlehner

0

Plan for the lecturers

- Class 1: Introduction to Energy Based Models
- Class 2: Interpretability. How can we learn from trained networks?
- Class 3: Training optimization, the role of MCMC. How can we improve the training mechanisms by understanding their physics?

Plan for the lecturers

- Class 1: Introduction to Energy Based Models
- Generative approach
- Introduction to Energy-Based Models
- The Restricted Boltzmann Machine (RBM)
- Maximum likelihood training
- Generation
- Why I think RBMs are a cool tool

General definitions

Introduction : Generative approach

training
generating

- Energy based models (RBMs, Generative Convnets)
- Diffusion models, normalizing flows, score based
- Variational AutoEncoder (VAE)
- Generative Adverarial Network (GAN)
- Autoregressive methods

Introduction : generative approach

Data

$$
\mathcal{D}=\left\{\boldsymbol{x}^{(1)}, \ldots, \boldsymbol{x}^{(M)}\right\}
$$

| 3 | 8 | 6 | 9 | 6 | 4 | 5 | 3 | 8 | 4 | 5 | 2 | 3 | 8 | 4 | 8 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 1 | 5 | 0 | 5 | 9 | 7 | 4 | 1 | 0 | 3 | 0 | 6 | 2 | 9 | 9 | 4 |
| 1 | 3 | 6 | 8 | 0 | 7 | 7 | 6 | 8 | 9 | 0 | 3 | 8 | 3 | 7 | 7 |
| 8 | 4 | 4 | 1 | 2 | 9 | 8 | 1 | 1 | 0 | 6 | 6 | 5 | 0 | 1 | 1 |

M: \# of examples in the data set

$$
N=28 \times 28
$$

pixels

Data

MPREDRATTKKSNYFLKIIOLLDDYPKCFIVGADNVGSKQMOXIRMSLRGK-AVVLMGKNTMMRKAIRGHLENN--PALE MPREDRATWKSNYFLKIIQLLDDYPKCFIVGADNVGSKQMQQIRMSLRGK-AVVLMGKNTMMRKAIRGHLENN--PALE -MPREDRATWKSN YFLKIIQLLDDYPKCFIVG ADNVGSKQMQQIRMSLRGK-AVV LMGKNTMMRKAIRGHLENN--PALE
-MPREDRAT WKSN YFLKIIQLLDDYPKCFIVGADNVGSKQMQQIRMS LRGK-AVVLMGKNTMMR KAIRGHLEN N--PALE -MPREDRATWKSNYFLKIIQLLDDYPKCFIVGADNVGSKQMQQIRMSLRGK-AVVLMGKNTMMRKAIRGHLENN--PALE -MPREDRATWKSNYFLKIOLLDD YPKCFIVGADNVGSKQMOQIRMS LRGK-AVVLMGNTMMR KAIRGHLENN--SALE -----------MPREDRATWKSNYFLKIIQLLDDYPKCFIVGADNVGSKQMQQIRMS LRGK-AVVLMGKNGNGELKIIQLLDDYPKCFIVGADNVGSKQMQTIRLSLRGK-AVVLMGKNTMMRKAIRGHLENN--PALE -----------MPREDRATWKSNYFLKIIQLLNDYPKCFIVGADNVGSKMQTIRLS LRGK-AIVLMGKNTMMRKAIRGHLENN--PALE ---------MSGAG-SKRKKLFIEKATKLFTTYDKMIV AEADFVGS SOLOKIRTS LRGL-AVV LMGKNTMMRKAIRGHLENN--PQLE -MSGAG-SKRKKLFIEKATKLFTTYDKMIV AEADFVGSSQLQKIRKS IRGI-GAVLMGKKTMIRKVIRDLADSK--PELD ----------MAKLSKQRKKQMYIEKLSSLIQQYSKILIVHVDNVGSNQMASVRKS LRGK-ATILMGKNTRIRTALKKNLQAV--PELE --MIGLAVTTTKKIAKWKVDEVAELTEKIKTHKTILIIANIEGFPADKLHEIRKKLRGK-ADIKVTKNTRIRTALKKNLQAV--PQIEMALKNAG---YDTK
 ---MKRLALALKQRKVASWKLEEVKELTELIKNSNTILIGNLEGFPADKLHETRKKLRGK-ATIKVTKNTLFKIAAKNAG-----IDIE MSVVSLVGQMYKRE KP IPEWKTLMLRELEELFSKHRVVLFADLTGTPTFVVQRVRKKLWKK-YPMMVAKKRIILRAMKAAGLE---LDDN

M : \# of sequences in a protein family

GSKQMQQIRMS LRGK-AVVLMGKNTMMRKAIRGHLENN--PALE

$$
N=L_{\mathrm{M} S A} \quad \text { Amino-acids }
$$

Data

$$
\mathcal{D}=\left\{\boldsymbol{x}^{(1)}, \ldots, \boldsymbol{x}^{(M)}\right\}
$$

$$
\begin{array}{lll}
& & \\
\text { m-th entry } & \boldsymbol{x}^{(m)}=\left[\begin{array}{c}
x_{1}^{(m)} \\
\vdots \\
x_{N}^{(m)}
\end{array}\right] & \in \mathbb{R}^{N} \\
& \in[0,1]^{N} & \text { continuous } \\
& \in[G, A \ldots, N, Q,-]^{N} & \text { binary } \\
\text { categorical }
\end{array}
$$

Data distribution

$$
\mathcal{D}=\left\{\boldsymbol{x}^{(1)}, \ldots, \boldsymbol{x}^{(M)}\right\}
$$

Underlying assumption

i. i. d. realizations of a random variable

$$
\boldsymbol{X} \sim P_{\text {data }} \quad \begin{aligned}
& \text { (Generally } \\
& \text { unknown) }
\end{aligned}
$$

Empirical data distribution

$$
\mathcal{D}=\left\{\boldsymbol{x}_{d}^{(1)}, \ldots, \boldsymbol{x}_{d}^{(M)}\right\}
$$

Underlying assumption

i. i. d. realizations of a random variable

$$
\boldsymbol{X}_{d} \sim P_{\text {data }} \quad \begin{gathered}
\text { (Generally } \\
\text { unknown) }
\end{gathered}
$$

Empirical distribution

$$
p_{\mathcal{D}}(\boldsymbol{x})=\frac{1}{M} \sum_{m=1}^{M} \delta\left(\boldsymbol{x}-\boldsymbol{x}_{d}^{(m)}\right) \xrightarrow{\text { Large } \mathrm{M}} p_{\text {data }}(\boldsymbol{x})
$$

Empirical data distribution

$$
\mathcal{D}=\left\{\boldsymbol{x}_{d}^{(1)}, \ldots, \boldsymbol{x}_{d}^{(M)}\right\}
$$

Underlying assumption

i. i. d. realizations of a random variable

$$
\boldsymbol{X}_{d} \sim P_{\text {data }} \quad \begin{aligned}
& \text { (Generally } \\
& \text { unknown) }
\end{aligned}
$$

Empirical distribution

$$
p_{\mathcal{D}}(\boldsymbol{x})=\frac{1}{M} \sum_{m=1}^{M} \delta\left(\boldsymbol{x}-\boldsymbol{x}_{d}^{(m)}\right) \xrightarrow{\text { Large } \mathrm{M}} p_{\text {data }}(\boldsymbol{x})
$$

Energy-based models

Energy based models (EBMs) Hirton, Hopied, Leeun, Bengio

$$
\begin{gathered}
\text { Empirical } \\
p_{\mathcal{D}}(x) \sim p_{\theta}(x)=\frac{e^{-E_{\theta}(x)}}{Z_{\theta}} \\
Z_{\theta}=\int d \boldsymbol{x} e^{-E_{\theta}(\boldsymbol{x})} \quad \text { Partition function }
\end{gathered}
$$

Learning : adjust the parameters θ so that the dataset configurations are typical configurations of the model.

Energy based models (EBMs)

Boltzmann Machines (Ising/Hopfield/Potts models)

- Ackley, D. H., Hinton, G. E., \& Sejnowski, T. J. (1985). A learning algorithm for

Boltzmann machines. Cognitive science, 9(1), 147-169.

$$
E_{J, h}(\boldsymbol{x})=-\boldsymbol{x}^{\top} J \boldsymbol{x}-\boldsymbol{h}^{\top} \boldsymbol{x}
$$

Pairwise interactions

Energy based models (EBMs)

- Ising/Hopfield/Potts models

- Generative ConvNets tutorial on energy-based learning. - Xie, J., Lu, Y., Zhu, S. C., \& Wu, Y. (2016). A theory of generative convnet.

A feedforward ConvNet that maps the input signal to an energy or a score

Models with hidden variables

$\mathcal{E}(x, h ; \theta)$

- Boltzmann Machines
- Ackley, D. H., Hinton, G. E., \& Sejnowski, T. J. (1985). A learning algorithm for Boltzmann machines. Cognitive science, 9(1), 147-169

Latent variables
Encode correlations

Models with hidden variables

- Boltzmann Machines
- Ackley, D. H., Hinton, G. E., \& Sejnowski, T. J. (1985). A learning algorithm for Boltzmann machines. Cognitive science, 9(1), 147-169.
- Restricted Boltzmann Machine
- Smolensky, P. (1986). Information processing in dynamical systems: Foundations of harmony theory.

Latent variables Encode correlations

Hidden layer : interactions
x Visible layer: data

Models with hidden variables

- Restricted Boltzmann Machine
- Smolensky, P. (1986). Information processing in dynamical systems: Foundations of harmony theory.
$\mathcal{E}(x, h ; \boldsymbol{\theta})$

Latent variables

Encode correlations

$$
\mathcal{E}_{\boldsymbol{\theta}}(\boldsymbol{x}, \boldsymbol{h})=-\boldsymbol{x}^{\top} W \boldsymbol{h}-\boldsymbol{\zeta}^{\top} \boldsymbol{x}-\boldsymbol{\eta}^{\top} \boldsymbol{h} \quad \boldsymbol{\theta}=\{W, \boldsymbol{\zeta}, \boldsymbol{\eta}\}
$$

$$
p_{\boldsymbol{\theta}}(x)=\frac{e^{-E_{\boldsymbol{\theta}}(x)}}{Z_{\boldsymbol{\theta}}}=\frac{\sum_{\boldsymbol{h}} e^{-\mathcal{E}_{\boldsymbol{\theta}}(x, \boldsymbol{h})}}{Z_{\boldsymbol{\theta}}}=\frac{e^{\sum_{i} x_{i} \zeta_{i}}}{Z_{\boldsymbol{\theta}}} \prod_{a=1}^{N_{h}} \sum_{h_{a}=0}^{1} e^{\sum_{i} x_{i} W_{i a} h_{a}+\eta_{a} h_{a}}
$$

Models with hidden variables

- Restricted Boltzmann Machine
- Smolensky, P. (1986). Information processing in dynamical systems: Foundations of harmony theory.

$\mathcal{E}(\hat{x}, h ; \theta)$

Latent variables
Encode correlations

$$
\mathcal{E}_{\boldsymbol{\theta}}(\boldsymbol{x}, \boldsymbol{h})=-\boldsymbol{x}^{\top} W \boldsymbol{h}-\boldsymbol{\zeta}^{\top} \boldsymbol{x}-\boldsymbol{\eta}^{\top} \boldsymbol{h} \quad \boldsymbol{\theta}=\{W, \boldsymbol{\zeta}, \boldsymbol{\eta}\}
$$

$$
\begin{aligned}
p_{\boldsymbol{\theta}}(x) & =\frac{e^{-E_{\boldsymbol{\theta}}(x)}}{Z_{\boldsymbol{\theta}}}=\frac{\sum_{\boldsymbol{h}} e^{-\mathcal{E}_{\boldsymbol{\theta}}(x, \boldsymbol{h})}}{Z_{\boldsymbol{\theta}}}=\frac{e^{\sum_{i} x_{i} \zeta_{i}}}{Z_{\boldsymbol{\theta}}} \prod_{a=1 h_{a}=0}^{N_{h}} e^{\sum_{i} x_{i} W_{i a} h_{a}+\eta_{a} h_{a}} \\
& =\frac{e^{\sum_{i} x_{i} \zeta_{i}}}{Z_{\boldsymbol{\theta}}} \prod_{a=1}^{N_{\mathrm{h}}}\left(1+e^{\sum_{i} x_{i} W_{i a}+\eta_{a}}\right)
\end{aligned}
$$

Models with hidden variables

- Restricted Boltzmann Machine
- Smolensky, P. (1986). Information processing in dynamical systems: Foundations of harmony theory.

$$
\mathcal{E}_{\boldsymbol{\theta}}(\boldsymbol{x}, \boldsymbol{h})=-\boldsymbol{x}^{\top} W \boldsymbol{h}-\boldsymbol{\zeta}^{\top} \boldsymbol{x}-\boldsymbol{\eta}^{\top} \boldsymbol{h} \quad \boldsymbol{\theta}=\{W, \boldsymbol{\zeta}, \boldsymbol{\eta}\}
$$

$$
\begin{aligned}
p_{\boldsymbol{\theta}}(x) & =\frac{e^{-E_{\boldsymbol{\theta}}(x)}}{Z_{\boldsymbol{\theta}}}=\frac{\sum_{\boldsymbol{h}} e^{-\mathcal{E}_{\boldsymbol{\theta}}(x, \boldsymbol{h})}}{Z_{\boldsymbol{\theta}}}=\frac{e^{\sum_{i} x_{i} \zeta_{i}}}{Z_{\boldsymbol{\theta}}} \prod_{a=1}^{N_{h}} \sum_{h_{a}=0}^{1} e^{\sum_{i} x_{i} W_{i a} h_{a}+\eta_{a} h_{a}} \\
& =\frac{e^{\sum_{i} x_{i} \zeta_{i}}}{Z_{\boldsymbol{\theta}}} \prod_{a=1}^{N_{\mathrm{h}}}\left(1+e^{\sum_{i} x_{i} W_{i a}+\eta_{a}}\right) \Rightarrow E_{\boldsymbol{\theta}}(x)=-\sum_{i} x_{i} \zeta_{i}-\sum_{a=1}^{N_{\mathrm{h}}} \log \left(1+e^{\sum_{i} x_{i} W_{i a}+\eta_{a}}\right)
\end{aligned}
$$

Models with hidden variables

- Restricted Boltzmann Machine
- Smolensky, P. (1986). Information processing in dynamical systems: Foundations of harmony theory.

$\mathcal{E}(x, h ; \boldsymbol{\theta})$

Latent variables
Encode correlations

$$
\mathcal{E}_{\boldsymbol{\theta}}(\boldsymbol{x}, \boldsymbol{h})=-\boldsymbol{x}^{\top} W \boldsymbol{h}-\boldsymbol{\zeta}^{\top} \boldsymbol{x}-\boldsymbol{\eta}^{\top} \boldsymbol{h} \quad \boldsymbol{\theta}=\{W, \boldsymbol{\zeta}, \boldsymbol{\eta}\}
$$

$$
\begin{aligned}
p_{\boldsymbol{\theta}}(x)= & \frac{e^{-E_{\boldsymbol{\theta}}(x)}}{Z_{\boldsymbol{\theta}}}=\frac{\sum_{\boldsymbol{h}} e^{-\mathcal{E}_{\boldsymbol{\theta}}(x, \boldsymbol{h})}}{Z_{\boldsymbol{\theta}}}=\frac{e^{\sum_{i} x_{i} \zeta_{i}}}{Z_{\boldsymbol{\theta}}} \prod_{a=1}^{N_{h}} \sum_{h_{a}=0}^{1} e^{\sum_{i} x_{i} W_{i a} h_{a}+\eta_{a} h_{a}} \\
= & \frac{e^{\sum_{i} x_{i} \zeta_{i}}}{Z_{\boldsymbol{\theta}}} \prod_{a=1}^{N_{\mathrm{h}}}\left(1+e^{\sum_{i} x_{i} W_{i a}+\eta_{a}}\right) \Rightarrow E_{\boldsymbol{\theta}}(x)=-\sum_{i} x_{i} \zeta_{i}-\sum_{a=1}^{N_{\mathrm{h}}} \log \left(1+e^{\sum_{i} x_{i} W_{i a}+\eta_{a}}\right) \\
& \Rightarrow E_{\boldsymbol{\theta}}(x)=-\sum_{i} h_{i} x_{i}-\sum_{i j} J_{i j}^{(2)} x_{i} x_{j}-\sum_{i j k} J_{i j k}^{(3)} x_{i} x_{j} x_{k}-\sum_{i j k l} J_{i j k l}^{(4)} x_{i} x_{j} x_{k} x_{l}+\cdots
\end{aligned}
$$

Models with hidden variables

- Restricted Boltzmann Machine
- Smolensky, P. (1986). Information processing in dynamical systems: Foundations of harmony theory.

Latent variables
Encode correlations

$$
\mathcal{E}_{\boldsymbol{\theta}}(\boldsymbol{x}, \boldsymbol{h})=-\boldsymbol{x}^{\top} W \boldsymbol{h}-\boldsymbol{C}^{\top} \boldsymbol{x}-\boldsymbol{n}^{\top} \boldsymbol{h} \quad \boldsymbol{\theta}=\{W, \boldsymbol{\zeta}, \boldsymbol{\eta}\}
$$

The marginal energy for the RBM encode high

$$
\left.\begin{array}{rl}
p_{\boldsymbol{\theta}}(x)= & \frac{e^{-E_{\boldsymbol{\theta}}(x)}}{Z_{\boldsymbol{\theta}}}=\underline{\sum_{h}} \text { order interactions! } \rightarrow \text { Universal approximator } \\
= & \frac{e^{\sum_{i} x_{i} \zeta_{i}}}{Z_{\boldsymbol{\theta}}} \prod_{a=1}^{N_{\mathrm{h}}}\left(1+e^{L_{i} \mu_{2}} \quad \begin{array}{l}
\text { Le Roux and Bengio. Neural computation (2008) }
\end{array}\right) \Rightarrow E_{\boldsymbol{\theta}}(x)=-\sum_{i} x_{i} \zeta_{i}-\sum_{a=1} \log \left(1+e^{\sum_{i} \omega_{i} \omega_{2} a}+\eta_{a}\right.
\end{array}\right)
$$

Models with hidden variables

- Boltzmann Machines (Ising/Hopfield/Potts models)
- Ackley, D. H., Hinton, G. E., \& Sejnowski, T. J. (1985). A learning algorithm for Boltzmann machines. Cognitive science, 9(1), 147-169.
- Restricted Boltzmann Machine
- Smolensky, P. (1986). Information processing in dynamical systems: Foundations of harmony theory.

Latent variables Encode correlations

- Deep Boltzmann Machines
-Ruslan Salakhutdinov, Geoffrey Hinton (2009) Deep Boltzmann Machines.
-Bengio, Y. (2009). Learning deep architectures for AI.

$$
\begin{array}{r}
p_{\theta}(x)=\frac{\sum_{h} e^{-\mathcal{E}_{\theta}(x, h)}}{Z_{\theta}} \\
\quad=\frac{e^{-E_{\theta}(x)}}{Z_{\theta}} \sim p_{\mathcal{D}}(x)
\end{array}
$$

Training procedure

Training procedure

Goal of the training:

$$
\begin{aligned}
& \begin{array}{l}
\text { Empirical Model } \\
p_{\mathcal{D}}(\boldsymbol{x}) \sim p_{\theta}(\boldsymbol{x})=\frac{e^{-E_{\theta}(\boldsymbol{x})}}{Z_{\theta}} \\
\qquad p_{\mathcal{D}}(\boldsymbol{x})=\frac{1}{M} \sum_{m=1}^{M} \delta\left(\boldsymbol{x}-\boldsymbol{x}^{(m)}\right)
\end{array}
\end{aligned}
$$

Training procedure

Goal of the training:

$$
p_{\mathcal{D}}(\boldsymbol{x}) \sim p_{\theta}(\boldsymbol{x})=\frac{e^{-E_{\theta}(\boldsymbol{x})}}{Z_{\theta}}
$$

Minimize
Kullback-Leibler (KL) divergence

$$
\begin{aligned}
D_{\mathrm{KL}}\left(p_{\mathcal{D}} \| p_{\theta}\right) & =\int d \boldsymbol{x} p_{\mathcal{D}}(\boldsymbol{x}) \log \frac{p_{\mathcal{D}}(\boldsymbol{x})}{p_{\theta}(\boldsymbol{x})} \\
& =\int \underbrace{d \boldsymbol{x} p_{\mathcal{D}}(\boldsymbol{x}) \log p_{\mathcal{D}}(\boldsymbol{x})}_{\text {Constant }}-\int d \boldsymbol{x} p_{\mathcal{D}}(\boldsymbol{x}) \log p_{\theta}(\boldsymbol{x})
\end{aligned}
$$

Training procedure

$$
p_{\mathcal{D}}(\boldsymbol{x})=\frac{1}{M} \sum_{m=1}^{M} \delta\left(\boldsymbol{x}-\boldsymbol{x}^{(m)}\right)
$$

Goal of the training:

$$
p_{\mathcal{D}}(\boldsymbol{x}) \sim p_{\theta}(\boldsymbol{x})=\frac{e^{-E_{\theta}(\boldsymbol{x})}}{Z_{\theta}}
$$

Minimize
Kullback-Leibler (KL) divergence

$$
\begin{aligned}
D_{\mathrm{KL}}\left(p_{\mathcal{D}} \| p_{\theta}\right) & =\int d \boldsymbol{x} p_{\mathcal{D}}(\boldsymbol{x}) \log \frac{p_{\mathcal{D}}(\boldsymbol{x})}{p_{\theta}(\boldsymbol{x})} \quad \text { log-likelihood } \\
& =\int \underbrace{\int d \boldsymbol{x} p_{\mathcal{D}}(\boldsymbol{x}) \log p_{\mathcal{D}}(\boldsymbol{x})}_{\text {Constant }}-\int d \boldsymbol{x} p_{\mathcal{D}}(\boldsymbol{x}) \log p_{\theta}(\boldsymbol{x})
\end{aligned}
$$

Training procedure

$$
p_{\mathcal{D}}(\boldsymbol{x})=\frac{1}{M} \sum_{m=1}^{M} \delta\left(\boldsymbol{x}-\boldsymbol{x}^{(m)}\right)
$$

Goal of the training:

$$
p_{\mathcal{D}}(\boldsymbol{x}) \sim p_{\theta}(\boldsymbol{x})=\frac{e^{-E_{\theta}(\boldsymbol{x})}}{Z_{\theta}}
$$

Minimize

Kullback-Leibler $D_{\mathrm{KL}}\left(p_{\mathcal{D}} \| p_{\theta}\right)$ divergence

Maximize
The log-
likelihood

$$
=\int \underbrace{d \boldsymbol{x} p_{\mathcal{D}}(\boldsymbol{x}) \log p_{\mathcal{D}}(\boldsymbol{x})}_{\text {Constant }}-\left(\int d \boldsymbol{x} p_{\mathcal{D}}(\boldsymbol{x}) \log p_{\theta}(\boldsymbol{x}),\right.
$$

$$
-\frac{1}{M} \sum_{m=1}^{M} \log p_{\theta}\left(\boldsymbol{x}^{(m)}\right)=-\frac{1}{M} \log \prod_{m=1}^{M} p_{\theta}\left(\boldsymbol{x}^{(m)}\right)=-\frac{1}{M} \log L(\mathcal{D} \mid \theta)
$$

Training procedure

$$
p_{\mathcal{D}}(\boldsymbol{x})=\frac{1}{M} \sum_{m=1}^{M} \delta\left(\boldsymbol{x}-\boldsymbol{x}_{d}^{(m)}\right)
$$

Goal of the training:

$$
\begin{array}{cl}
\text { Empirical Model } \\
p_{\mathcal{D}}(\boldsymbol{x}) \sim p_{\theta}(\boldsymbol{x})=\frac{e^{-E_{\theta}(\boldsymbol{x})}}{Z_{\theta}}
\end{array}
$$

Minimize
Kullback-Leibler $D_{\mathrm{KL}}\left(p_{\mathcal{D}} \| p_{\theta}\right)$ divergence

Maximize The loglikelihood

Recall Bayes-Theorem

$$
\underbrace{p(\mathcal{D} \mid \boldsymbol{\theta})}_{\text {likelihood }} p(\boldsymbol{\theta})=\underbrace{p(\boldsymbol{\theta} \mid \mathcal{D})}_{\text {posterior }} p(\mathcal{D})
$$

$$
=\int_{1} d \boldsymbol{x} p_{\mathcal{D}}(\boldsymbol{x}) \log p_{\mathcal{D}}(\boldsymbol{x})-\left(\int_{\text {onstant }} d \boldsymbol{x} p_{\mathcal{D}}(\boldsymbol{x}) \log p_{\theta}(\boldsymbol{x})\right.
$$

$$
-\frac{1}{M} \log \prod_{m=1}^{M} p_{\theta}\left(\boldsymbol{x}^{(m)}\right)=-\frac{1}{M} \log L(\mathcal{D} \mid \theta)
$$

Log-likelihood maximization

$\mathcal{L}(\mathcal{D} \mid \boldsymbol{\theta})=\sum_{m=1}^{M} \log p_{\theta}\left(\boldsymbol{x}=\boldsymbol{x}^{(m)}\right)$

$$
p_{\theta}(\boldsymbol{x})=\frac{e^{-E_{\theta}(\boldsymbol{x})}}{Z_{\theta}}
$$

Log-likelihood maximization

$$
\mathcal{L}(\mathcal{D} \mid \boldsymbol{\theta})=\sum_{m=1}^{M} \log p_{\theta}\left(\boldsymbol{x}=\boldsymbol{x}^{(m)}\right) \quad p_{\theta}(\boldsymbol{x})=\frac{e^{-E_{\theta}(\boldsymbol{x})}}{Z_{\theta}}
$$

$$
\begin{aligned}
& \mathcal{L}(\mathcal{D} \mid \theta)=\left\langle\log p_{\theta}(\boldsymbol{x})\right\rangle_{p_{\mathcal{D}}}=\left\langle-E_{\theta}(\boldsymbol{x})\right\rangle_{p_{\mathcal{D}}}-\log Z_{\theta} \\
& Z_{\theta}=\sum_{\{\boldsymbol{x}\}} e^{-E_{\theta}(\boldsymbol{x})} \\
& \text { If } x_{i} \text { binary } \rightarrow 2^{N} \\
& \text { Intractable }
\end{aligned}
$$

Log-likelihood maximization

$$
\mathcal{L}(\mathcal{D} \mid \boldsymbol{\theta})=\sum_{m=1}^{M} \log p_{\theta}\left(\boldsymbol{x}=\boldsymbol{x}^{(m)}\right) \quad p_{\theta}(\boldsymbol{x})=\frac{e^{-E_{\theta}(\boldsymbol{x})}}{Z_{\theta}}
$$

$$
\mathcal{L}(\mathcal{D} \mid \theta)=\left\langle\log p_{\theta}(\boldsymbol{x})\right\rangle_{p_{\mathcal{D}}}=\left\langle-E_{\theta}(\boldsymbol{x})\right\rangle_{p_{\mathcal{D}}}
$$

(Stochastic) gradient ascent

$$
\begin{gathered}
\boldsymbol{\nabla}_{\theta} \mathcal{L} \\
\theta_{i}^{(t+1)} \leftarrow \theta_{i}^{t}+\left.\gamma \frac{\partial \mathcal{L}}{\partial \theta_{i}}\right|_{\theta=\theta_{i}^{(t)}}
\end{gathered}
$$

Log-likelihood maximization

$$
\left\{\begin{array}{c}
\frac{\partial \mathcal{L}}{\partial \theta_{i}}=\left\langle-\frac{\partial E}{\partial \theta_{i}}\right\rangle_{p_{\mathcal{D}}}-\frac{\partial \log Z}{\partial \theta_{i}} \\
\mathcal{L}(\mathcal{D} \mid \theta)=\left\langle\log p_{\theta}(\boldsymbol{x})\right\rangle_{p_{\mathcal{D}}}= \\
\begin{array}{c}
\text { Stochastic) gradient ascent } \\
\boldsymbol{\nabla}_{\theta} \mathcal{L} \\
\theta_{i}^{(t+1)} \leftarrow \theta_{i}^{+}+\left.\gamma \frac{\partial \mathcal{L}}{\partial \theta_{i}}\right|_{\theta_{\theta=\theta_{i}^{(t)}}}
\end{array}
\end{array}\right.
$$

$$
\mathcal{L}(\mathcal{D} \mid \theta)=\left\langle\log p_{\theta}(\boldsymbol{x})\right\rangle_{p_{\mathcal{D}}}=\left\langle-E_{\theta}(\boldsymbol{x})\right\rangle_{p_{\mathcal{D}}}-\log Z_{\theta}
$$

Log-likelihood maximization

$$
\begin{aligned}
& \frac{\partial \mathcal{L}}{\partial \theta_{i}}=\left\langle-\frac{\partial E}{\partial \theta_{i}}\right\rangle_{p_{\mathcal{D}}}-\frac{\partial \log Z}{\partial \theta_{i}}, \begin{aligned}
\frac{\partial \log Z}{\partial \theta_{i}} & =\sum_{\{x\}} \frac{e^{-E(x)}}{Z} \frac{\partial E(x)}{\partial \theta_{i}} \\
& =\left\langle\frac{\partial E(\boldsymbol{x})}{\partial \theta_{i}}\right\rangle_{p_{\theta}(x)}
\end{aligned} \\
& \mathcal{L}(\mathcal{D} \mid \theta)=\left\langle\log p_{\theta}(\boldsymbol{x})\right\rangle_{p_{\mathcal{D}}}=\left\langle-E_{\theta}(\boldsymbol{x})\right\rangle_{p_{\mathcal{D}}}
\end{aligned}
$$

(Stochastic) gradient ascent
$\nabla_{\theta} \mathcal{L}$

$$
\theta_{i}^{(t+1)} \leftarrow \theta_{i}^{t}+\left.\gamma \frac{\partial \mathcal{L}}{\partial \theta_{i}}\right|_{\theta=\theta_{i}^{(t)}}
$$

$$
\nabla \mathcal{L}_{\theta}={\underset{\text { data }}{\left\langle-\nabla E_{\theta}\right\rangle_{p_{\mathcal{D}}}}-\underbrace{\left\langle-\nabla E_{\theta}\right\rangle_{p^{\prime}}}_{\text {model }} p_{\theta}}^{\langle-\nabla}
$$

Log-likelihood maximization

$$
\left\{\begin{array}{c}
\frac{\partial \mathcal{L}}{\partial \theta_{i}}=\left\langle-\frac{\partial E}{\partial \theta_{i}}\right\rangle_{p_{\mathcal{D}}}-\frac{\partial 1}{} \\
\begin{array}{c}
\text { (Stochastic) gradient ascent } \\
\nabla_{\theta} \mathcal{L} \\
\theta_{i}^{(t+1)} \leftarrow \theta_{i}^{t}+\left.\gamma \frac{\partial \mathcal{L}}{\partial \theta_{i}}\right|_{\theta=\theta_{i}^{(t)}}
\end{array}
\end{array}\right.
$$

$$
p_{\mathcal{D}}(\boldsymbol{x})=\frac{1}{M} \sum_{m=1}^{M} \delta\left(\boldsymbol{x}-\boldsymbol{x}_{d}^{(m)}\right)
$$

Log-likelihood maximization

$$
\text { Lo -likeliho } \boldsymbol{x}_{\text {gen }}^{(m)} \quad m=1, \ldots, n_{\text {chains }}
$$

Every time we want to update the parameters
$\boldsymbol{X}_{\text {gen }} \sim P_{\theta} \quad$ Via a Markov Chain Monte
Carlo process

$$
\left\langle-\nabla E_{\theta}\right\rangle_{p_{\theta}} \approx \frac{1}{n_{\text {chains }}} \sum_{m=1}^{n_{\text {chains }}} \nabla E\left(\boldsymbol{x}_{\text {gen }}^{(m)}\right)
$$

$$
p_{\theta}(\boldsymbol{x})=\frac{e^{-E_{\theta}(\boldsymbol{x})}}{Z_{\theta}}
$$

MCMC
sampling
(Stochastic) gradient ascent

$$
\begin{gathered}
\nabla_{\theta} \mathcal{L} \\
\theta_{i}^{(t+1)} \leftarrow \theta_{i}^{t}+\left.\gamma \frac{\partial \mathcal{L}}{\partial \theta_{i}}\right|_{\theta=\theta_{i}^{(t)}}
\end{gathered}
$$

$$
p_{\mathcal{D}}(\boldsymbol{x})=\frac{1}{M} \sum_{m=1}^{M} \delta\left(\boldsymbol{x}-\boldsymbol{x}_{d}^{(m)}\right)
$$

Lo lolikeliho $\boldsymbol{x}_{\text {gen }}^{(m)} \quad m=1, \ldots, n_{\text {chains }}$
Every time $\quad \boldsymbol{X}_{\text {gen }} \sim P_{\theta} \quad$ Via a Markov Chain Monte we want to update the parameters

$$
\left\langle-\nabla E_{\theta}\right\rangle_{p_{\theta}} \approx \frac{1}{n_{\text {chains }}} \sum_{m=1}^{n_{\text {chains }}} \nabla E\left(\boldsymbol{x}_{\mathrm{gen}}^{(m)}\right)
$$

Origin of all the difficulties ! $\rightarrow \underline{3}^{\text {rd }}$ lecture

$$
p_{\theta}(\boldsymbol{x})=\frac{e^{-E_{\theta}(\boldsymbol{x})}}{Z_{\theta}}
$$

$$
p_{\mathcal{D}}(\boldsymbol{x})=\frac{1}{M} \sum_{m=1}^{M} \delta\left(\boldsymbol{x}-\boldsymbol{x}_{d}^{(m)}\right)
$$

(Stochastic) gradient ascent

$$
\begin{gathered}
\nabla_{\theta} \mathcal{L} \\
\theta_{i}^{(t+1)} \leftarrow \theta_{i}^{t}+\left.\gamma \frac{\partial \mathcal{L}}{\partial \theta_{i}}\right|_{\theta=\theta_{i}^{(t)}}
\end{gathered}
$$

On the gradient ascent

$$
\boldsymbol{\theta}(t+t) \longleftarrow \boldsymbol{\theta}(t)+\gamma \boldsymbol{\nabla} \mathcal{L}(t)
$$

Update rule:

$$
\boldsymbol{\nabla} \mathcal{L}_{\theta}=\left\langle-\boldsymbol{\nabla} E_{\theta}\right\rangle_{p_{\mathcal{D}}}-\left\langle-\boldsymbol{\nabla} E_{\theta}\right\rangle_{p_{\theta}}
$$

On the gradient ascent

Fixed point: $\quad \nabla \mathcal{L}_{\theta}=\mathbf{0}$

$$
\left\langle\frac{\partial E}{\partial \theta_{i}}\right\rangle_{p_{\mathcal{D}}}=\left\langle\frac{\partial E}{\partial \theta_{i}}\right\rangle_{p_{\theta}} \forall \theta_{i}
$$

Moment matching statistics

Update rule: $\quad \nabla \mathcal{L}_{\theta}=\left\langle-\nabla E_{\theta}\right\rangle_{p_{\mathcal{D}}}-\left\langle-\nabla E_{\theta}\right\rangle_{p_{\theta}}$

On the gradient ascent $\quad f_{\theta_{i}}(x, \theta) \equiv \frac{\partial E_{\boldsymbol{\theta}}(x)}{\partial \theta_{i}}$

Fixed point : $\quad \nabla \mathcal{L}_{\theta}=\mathbf{0}$
Hessian matrix

$$
H_{i j}(\boldsymbol{\theta}) \equiv \frac{\partial^{2} \mathcal{L}(\boldsymbol{\theta})}{\partial \theta_{i} \partial \theta_{j}}=\left\langle\frac{\partial f_{\theta_{j}}(\boldsymbol{x})}{\partial \theta_{i}}\right\rangle_{p_{\theta}}-\left\langle\frac{\partial f_{\theta_{j}}(\boldsymbol{x})}{\partial \theta_{i}}\right\rangle_{p_{\mathcal{D}}}
$$

$$
\left\langle\frac{\partial E}{\partial \theta_{i}}\right\rangle_{p_{\mathcal{D}}}=\left\langle\frac{\partial E}{\partial \theta_{i}}\right\rangle_{p_{\theta}} \forall \theta_{i}
$$

Moment matching statistics

Update rule:

$$
\nabla \mathcal{L}_{\theta}=\left\langle-\nabla E_{\theta}\right\rangle_{p_{\mathcal{D}}}-\left\langle-\nabla E_{\theta}\right\rangle_{p_{\theta}}
$$

On the gradient ascent
 $$
f_{\theta_{i}}(\boldsymbol{x}, \boldsymbol{\theta}) \equiv \frac{\partial E_{\boldsymbol{\theta}}(\boldsymbol{x})}{\partial \theta_{i}}
$$

Fixed point: $\quad \nabla \mathcal{L}_{\theta}=\mathbf{0}$
Hessian matrix
if
$H_{i j}(\boldsymbol{\theta}) \equiv \frac{\partial^{2} \mathcal{L}(\boldsymbol{\theta})}{\partial \theta_{i} \partial \theta_{j}}=\left\langle\frac{\partial f_{\theta_{j}}(\boldsymbol{x})}{\partial \theta_{i}}\right\rangle_{p_{\boldsymbol{\theta}}}\left\langle\frac{\partial f_{\theta_{j}}(\boldsymbol{x})}{\partial \theta_{i}}\right\rangle_{p_{\mathcal{D}}}$
$\left\langle\frac{\partial E}{\partial \theta_{i}}\right\rangle_{p_{\mathcal{D}}}=\left\langle\frac{\partial E}{\partial \theta_{i}}\right\rangle_{p_{\theta}} \forall \theta_{i}$
Moment matching statistics

Update rule:

$$
\boldsymbol{\nabla} \mathcal{L}_{\theta}=\left\langle-\boldsymbol{\nabla} E_{\theta}\right\rangle_{p_{\mathcal{D}}}-\left\langle-\boldsymbol{\nabla} E_{\theta}\right\rangle_{p_{\theta}}
$$

Example 1: Boltzmann Machine

Fixed point: $\quad \nabla \mathcal{L}_{\theta}=\mathbf{0}$

$$
\left\langle\frac{\partial E}{\partial \theta_{i}}\right\rangle_{p_{\mathcal{D}}}=\left\langle\frac{\partial E}{\partial \theta_{i}}\right\rangle_{p_{\theta}} \forall \theta_{i}
$$

Moment matching statistics

Ising-like model

$$
\begin{aligned}
E_{J, h}(\boldsymbol{S}) & =-\sum_{i j} J_{i j} S_{i} S_{j}-\sum_{i} h_{i} S_{i} \\
\frac{\partial E}{\partial J_{i j}} & =-S_{i} S_{j} \quad \frac{\partial E}{\partial h_{i}}=-S_{i}
\end{aligned}
$$

$$
\begin{aligned}
& \frac{\partial \mathcal{L}}{\partial J_{i j}}=\left\langle S_{i} S_{j}\right\rangle_{p_{\mathcal{D}}}-\left\langle S_{i} S_{j}\right\rangle_{p_{\theta}} \\
& \frac{\partial \mathcal{L}}{\partial h_{i}}=\left\langle S_{i}\right\rangle_{p_{\mathcal{D}}}-\left\langle S_{i}\right\rangle_{p_{\theta}}
\end{aligned}
$$

Example 1: Boltzmann Machine

Fixed point: $\quad \nabla \mathcal{L}_{\theta}=\mathbf{0}$

$$
\left\langle\frac{\partial E}{\partial \theta_{i}}\right\rangle_{p_{\mathcal{D}}}=\left\langle\frac{\partial E}{\partial \theta_{i}}\right\rangle_{p_{\theta}} \forall \theta_{i}
$$

Moment matching statistics

Ising-like model

$$
E_{J, h}(\boldsymbol{S})=-\sum_{i j} J_{i j} S_{i} S_{j}-\sum_{i} h_{i} S_{i}
$$

Example 1: Boltzmann Machine

Fixed point: $\quad \nabla \mathcal{L}_{\theta}=\mathbf{0}$

$$
\left\langle\frac{\partial E}{\partial \theta_{i}}\right\rangle_{p_{\mathcal{D}}}=\left\langle\frac{\partial E}{\partial \theta_{i}}\right\rangle_{p_{\theta}} \forall \theta_{i}
$$

Moment matching statistics

Ising-like model

$$
E_{J, h}(\boldsymbol{S})=-\sum_{i j} J_{i j} S_{i} S_{j}-\sum_{i} h_{i} S_{i}
$$

$$
\frac{\partial E}{\partial J_{i j}}=-S_{i} S_{j} \quad \frac{\partial E}{\partial h_{i}}=-S_{i}
$$

$$
\frac{\partial \mathcal{L}}{\partial J_{i j}}=\left\langle S_{i} S_{j}\right\rangle_{p_{\mathcal{D}}}-\left\langle S_{i} S_{j}\right\rangle_{p_{\theta}}
$$

$$
\frac{\partial \mathcal{L}}{\partial h_{i}}=\left\langle S_{i}\right\rangle_{p_{\mathcal{D}}}-\left\langle S_{i}\right\rangle_{p_{\theta}}
$$

Example 1: Boltzmann Machine

Fixed point: $\quad \nabla \mathcal{L}_{\theta}=\mathbf{0}$
Ising-like model

$$
E_{J, h}(\boldsymbol{S})=-\sum_{i j} J_{i j} S_{i} S_{j}-\sum_{i} h_{i} S_{i}
$$

$$
\left\langle\frac{\partial E}{\partial \theta_{i}}\right\rangle_{p_{\mathcal{D}}}=\left\langle\frac{\partial E}{\partial \theta_{i}}\right\rangle_{p_{\theta}} \forall \theta_{i}
$$

$$
\frac{\partial E}{\partial J_{i j}}=-S_{i} S_{j} \quad \frac{\partial E}{\partial h_{i}}=-S_{i}
$$

We can encode the covariance matrix of the data but nothing beyond that!

Fixed point

$$
\begin{aligned}
& \frac{\partial \mathcal{L}}{\partial J_{i j}}=\left\langle S_{i} S_{j}\right\rangle_{p_{\mathcal{D}}}-\left\langle S_{i} S_{j}\right\rangle_{p_{\theta}} \\
& \frac{\partial \mathcal{L}}{\partial h_{i}}=\left\langle S_{i}\right\rangle_{p_{\mathcal{D}}}-\left\langle S_{i}\right\rangle_{p_{\theta}}
\end{aligned}
$$

Example 2: Restricted Boltzmann Machine

$\mathcal{E}_{\theta}(x, h)=-x^{\top} W h-\zeta^{\top} x-\eta^{\top} h \quad p_{\theta}(x)=\frac{\sum_{h} e^{-\mathcal{E}_{\theta}(x, h)}}{Z_{\theta}}$ or

$$
h_{a}=\{0,1\} \Rightarrow E_{\boldsymbol{\theta}}(x)=-\sum_{i} x_{i} \zeta_{i}-\sum_{a=1}^{N_{\mathrm{h}}} \log \left(1+e^{\sum_{i} x_{i} W_{i a}+\eta_{a}}\right)
$$

Example 2: Restricted Boltzmann Machine

$$
\mathcal{E}_{\boldsymbol{\theta}}(x, \boldsymbol{h})=-x^{\top} W \boldsymbol{h}-\boldsymbol{\zeta}^{\top} x-\boldsymbol{\eta}^{\top} \boldsymbol{h} \quad p_{\theta}(\boldsymbol{x})=\frac{\sum_{\boldsymbol{h}} e^{-\mathcal{E}_{\theta}(\boldsymbol{x}, \boldsymbol{h})}}{Z_{\theta}}
$$

$$
h_{a}=\{0,1\} \quad \Rightarrow E_{\boldsymbol{\theta}}(x)=-\sum_{i} x_{i} \zeta_{i}-\sum_{a=1}^{N_{\mathrm{h}}} \log \left(1+e^{\sum_{i} x_{i} W_{i a}+\eta_{a}}\right)
$$

$$
\begin{aligned}
\frac{\partial E}{\partial W_{i a}} & =-\sigma\left(\sum_{a} W_{i a} x_{i}+\eta_{a}\right) x_{i} \\
\frac{\partial E}{\partial \eta_{a}} & =-\sigma\left(\sum_{a} W_{i a} x_{i}+\eta_{a}\right) \\
\frac{\partial E}{\partial \zeta_{i}} & =-x_{i} \quad \sigma(x)=\frac{1}{1+e^{-x}}=\operatorname{sigmoid}(x)
\end{aligned}
$$

Example 2: Restricted Boltzmann Machine

$$
\mathcal{E}_{\boldsymbol{\theta}}(x, \boldsymbol{h})=-x^{\top} W h-\boldsymbol{\zeta}^{\top} x-\boldsymbol{\eta}^{\top} h \quad p_{\theta}(\boldsymbol{x})=\frac{\sum_{\boldsymbol{h}} e^{-\mathcal{E}_{\theta}(\boldsymbol{x}, \boldsymbol{h})}}{Z_{\theta}}
$$

$$
h_{a}=\{0,1\} \Rightarrow E_{\boldsymbol{\theta}}(x)=-\sum_{i} x_{i} \zeta_{i}-\sum_{a=1}^{N_{\mathrm{h}}} \log \left(1+e^{\sum_{i} x_{i} W_{i a}+\eta_{a}}\right)
$$

$$
\begin{aligned}
\frac{\partial E}{\partial W_{i a}} & =-\sigma\left(\sum_{a} W_{i a} x_{i}+\eta_{a}\right) x_{i} \\
\frac{\partial E}{\partial \eta_{a}} & =-\sigma\left(\sum_{a} W_{i a} x_{i}+\eta_{a}\right) \\
\frac{\partial E}{\partial \zeta_{i}} & =-x_{i}
\end{aligned}
$$

$$
\begin{aligned}
& p\left(h_{a}=1 \mid \boldsymbol{x}, \boldsymbol{h}_{-a}, \boldsymbol{\theta}\right)=\frac{e^{\sum_{i} W_{i a} x_{i}+\eta_{a}}}{1+e^{\sum_{i} W_{i a} x_{i}+\eta_{a}}} \\
& \quad=\sigma\left(\sum_{i} W_{i a} x_{i}+\eta_{a}\right)=\left\langle h_{a}\right\rangle_{p_{\mathcal{E}}(\boldsymbol{h} \mid x)}
\end{aligned}
$$

Example 2: Restricted Boltzmann Machine

$$
\mathcal{E}_{\boldsymbol{\theta}}(x, \boldsymbol{h})=-x^{\top} W h-\boldsymbol{\zeta}^{\top} x-\boldsymbol{\eta}^{\top} h \quad p_{\theta}(\boldsymbol{x})=\frac{\sum_{\boldsymbol{h}} e^{-\mathcal{E}_{\theta}(\boldsymbol{x}, \boldsymbol{h})}}{Z_{\theta}}
$$

$$
h_{a}=\{0,1\} \quad \Rightarrow E_{\boldsymbol{\theta}}(x)=-\sum_{i} x_{i} \zeta_{i}-\sum_{a=1}^{N_{\mathrm{h}}} \log \left(1+e^{\sum_{i} x_{i} W_{i a}+\eta_{a}}\right)
$$

$$
\frac{\partial E}{\partial W_{i a}}=-\sigma\left(\sum_{a} W_{i a} x_{i}+\eta_{a}\right) x_{i}=-\left\langle h_{a}\right\rangle_{p \varepsilon(h \mid x)} x_{i}
$$

$$
\frac{\partial E}{\partial \eta_{a}}=-\sigma\left(\sum_{a} W_{i a} x_{i}+\eta_{a}\right)=-\left\langle h_{a}\right\rangle_{p_{\mathcal{E}}(h \mid x)}
$$

$$
p\left(h_{a}=1 \mid \boldsymbol{x}, \boldsymbol{h}_{-a}, \boldsymbol{\theta}\right)=\frac{e^{\sum_{i} W_{i a} x_{i}+\eta_{a}}}{1+e^{\sum_{i} W_{i a} x_{i}+\eta_{a}}}
$$

$$
\frac{\partial E}{\partial \zeta_{i}}=-x_{i}
$$

$$
=\sigma\left(\sum_{i} W_{i a} x_{i}+\eta_{a}\right)=\left\langle h_{a}\right\rangle_{p_{\mathcal{E}}(h \mid x)}
$$

Example 2: Restricted Boltzmann Machine

$$
\begin{aligned}
& \mathcal{E}_{\boldsymbol{\theta}}(x, \boldsymbol{h})=-\boldsymbol{x}^{\top} W \boldsymbol{h}-\boldsymbol{\zeta}^{\top} \boldsymbol{x}-\boldsymbol{\eta}^{\top} \boldsymbol{h} \quad p_{\boldsymbol{\theta}}(\boldsymbol{x})=\frac{\sum_{\boldsymbol{h}} e^{-\mathcal{E}_{\theta}(\boldsymbol{x}, \boldsymbol{h})}}{Z_{\boldsymbol{\theta}}} \\
& h_{a}=\{0,1\} \Rightarrow E_{\boldsymbol{\theta}}(x)=-\sum_{i} x_{i} \zeta_{i}-\sum_{a=1}^{N_{\mathrm{h}}} \log \left(1+e^{\sum_{i} x_{i} W_{i a}+\eta_{a}}\right) \\
& p_{\mathcal{E}}(\boldsymbol{x}, \boldsymbol{h})=p_{\mathcal{E}}(\boldsymbol{h} \mid \boldsymbol{x}) p_{\boldsymbol{\theta}}(\boldsymbol{x}) \quad \frac{\partial \mathcal{L}}{\partial W_{i a}}=\left\langle x_{i}\left\langle h_{a}\right\rangle_{p_{\mathcal{E}}(\boldsymbol{h} \mid x)}\right\rangle_{p_{\mathcal{D}}}-\left\langle x_{i}\left\langle h_{a}\right\rangle_{p_{\mathcal{E}}(h \mid x)}\right\rangle_{p_{\theta}} \\
& \frac{\partial \mathcal{L}}{\partial \eta_{a}}=\left\langle\left\langle h_{a}\right\rangle_{p_{\varepsilon}(h \mid x)}\right\rangle_{p_{\mathcal{D}}}-\left\langle\left\langle h_{a}\right\rangle_{p_{\varepsilon}(h \mid x)}\right\rangle_{p_{\theta}} \\
& \frac{\partial \mathcal{L}}{\partial \zeta_{i}}=\left\langle x_{i}\right\rangle_{p_{\mathcal{D}}}-\left\langle x_{i}\right\rangle_{p_{\theta}}
\end{aligned}
$$

Example 2: Restricted Boltzmann Machine

$$
\begin{aligned}
& \mathcal{E}_{\boldsymbol{\theta}}(\boldsymbol{x}, \boldsymbol{h})=-\boldsymbol{x}^{\top} W \boldsymbol{h}-\boldsymbol{\zeta}^{\top} \boldsymbol{x}-\boldsymbol{\eta}^{\top} \boldsymbol{h} \quad p_{\boldsymbol{\theta}}(\boldsymbol{x})=\frac{\sum_{\boldsymbol{h}} e^{-\mathcal{E}_{\boldsymbol{\theta}}(\boldsymbol{x}, \boldsymbol{h})}}{Z_{\boldsymbol{\theta}}} \\
& h_{a}=\{0,1\} \Rightarrow E_{\boldsymbol{\theta}}(\boldsymbol{x})=-\sum_{i} x_{i} \zeta_{i}-\sum_{a=1}^{N_{\mathrm{h}}} \log \left(1+e^{\sum_{i} x_{i} W_{i a}+\eta_{a}}\right) \\
& p_{\mathcal{E}}(\boldsymbol{x}, \boldsymbol{h})=p_{\mathcal{E}}(\boldsymbol{h} \mid \boldsymbol{x}) p_{\boldsymbol{\theta}}(\boldsymbol{x}) \quad \begin{aligned}
\frac{\partial \mathcal{L}}{\partial W_{i a}} & =\left\langle x_{i}\left\langle h_{a}\right\rangle_{p_{\mathcal{E}}(\boldsymbol{h} \mid x)}\right\rangle_{p_{\mathcal{D}}}-\left\langle x_{i} h_{a}\right\rangle_{\mathcal{E}} \\
\frac{\partial \mathcal{L}}{\partial \eta_{a}} & =\left\langle\left\langle h_{a}\right\rangle_{p_{\mathcal{E}}(\boldsymbol{h} \mid x)}\right\rangle_{p_{\mathcal{D}}}-\left\langle h_{a}\right\rangle_{\mathcal{E}} \\
\frac{\partial \mathcal{L}}{\partial \zeta_{i}} & =\left\langle x_{i}\right\rangle_{p_{\mathcal{D}}}-\left\langle x_{i}\right\rangle_{\mathcal{E}}
\end{aligned}
\end{aligned}
$$

Example 2: Restricted Boltzmann Machine

$$
\begin{gathered}
\mathcal{E}_{\boldsymbol{\theta}}(\boldsymbol{x}, \boldsymbol{h})=-\boldsymbol{x}^{\top} W \boldsymbol{h}-\boldsymbol{\zeta}^{\top} \boldsymbol{x}-\boldsymbol{\eta}^{\top} \boldsymbol{h} \quad p_{\boldsymbol{\theta}}(\boldsymbol{x})=\frac{\sum_{\boldsymbol{h}} e^{-\mathcal{E}_{\boldsymbol{\theta}}(\boldsymbol{x}, \boldsymbol{h})}}{Z_{\boldsymbol{\theta}}} \\
h_{a}=\{0,1\} \Rightarrow E_{\boldsymbol{\theta}}(x)=-\sum_{i} x_{i} \zeta_{i}-\sum_{a=1}^{N_{\mathrm{h}}} \log \left(1+e^{\sum_{i} x_{i} W_{i a}+\eta_{a}}\right)
\end{gathered}
$$

$$
\frac{\partial \mathcal{L}}{\partial W_{i a}}=\left\langle x_{i} h_{a}\right\rangle_{p_{\mathcal{D}}}-\left\langle x_{i} h_{a}\right\rangle_{\mathcal{E}}
$$

$$
\frac{\partial \mathcal{L}}{\partial \eta_{a}}=\left\langle h_{a}\right\rangle_{p_{\mathcal{D}}}-\left\langle h_{a}\right\rangle_{\mathcal{E}}
$$

$$
\frac{\partial \mathcal{L}}{\partial \zeta_{i}}=\left\langle x_{i}\right\rangle_{p_{\mathcal{D}}}-\left\langle x_{i}\right\rangle_{\mathcal{E}}
$$

Example 2: Restricted Boltzmann Machine

$$
\mathcal{E}_{\boldsymbol{\theta}}(x, \boldsymbol{h})=-x^{\top} W \boldsymbol{h}-\boldsymbol{\zeta}^{\top} x-\boldsymbol{\eta}^{\top} \boldsymbol{h} \quad p_{\theta}(\boldsymbol{x})=\frac{\sum_{\boldsymbol{h}} e^{-\mathcal{E}_{\theta}(\boldsymbol{x}, \boldsymbol{h})}}{Z_{\theta}}
$$

$$
h_{a}=\{0,1\} \Rightarrow E_{\boldsymbol{\theta}}(x)=-\sum_{i} x_{i} \zeta_{i}-\sum_{a=1}^{N_{\mathrm{h}}} \log \left(1+e^{\sum_{i} x_{i} W_{i a}+\eta_{a}}\right)
$$

Boltzmann machine:

$$
\begin{aligned}
& \frac{\partial \mathcal{L}}{\partial J_{i j}}=\left\langle S_{i} S_{j}\right\rangle_{p_{\mathcal{D}}}-\left\langle S_{i} S_{j}\right\rangle_{p_{\theta}} \\
& \frac{\partial \mathcal{L}}{\partial h_{i}}=\left\langle S_{i}\right\rangle_{p_{\mathcal{D}}}-\left\langle S_{i}\right\rangle_{p_{\theta}}
\end{aligned}
$$

$$
\begin{aligned}
\frac{\partial \mathcal{L}}{\partial W_{i a}} & =\left\langle x_{i} h_{a}\right\rangle_{p_{\mathcal{D}}}-\left\langle x_{i} h_{a}\right\rangle_{\mathcal{E}} \\
\frac{\partial \mathcal{L}}{\partial \eta_{a}} & =\left\langle h_{a}\right\rangle_{p_{\mathcal{D}}}-\left\langle h_{a}\right\rangle_{\mathcal{E}} \\
\frac{\partial \mathcal{L}}{\partial \zeta_{i}} & =\left\langle x_{i}\right\rangle_{p_{\mathcal{D}}}-\left\langle x_{i}\right\rangle_{\mathcal{E}}
\end{aligned}
$$

Example 2: Restricted Boltzmann Machine

$$
\mathcal{E}_{\boldsymbol{\theta}}(x, \boldsymbol{h})=-x^{\top} W \boldsymbol{h}-\boldsymbol{\zeta}^{\top} x-\boldsymbol{\eta}^{\top} \boldsymbol{h} \quad p_{\theta}(\boldsymbol{x})=\frac{\sum_{\boldsymbol{h}} e^{-\mathcal{E}_{\theta}(\boldsymbol{x}, \boldsymbol{h})}}{Z_{\theta}}
$$

$$
h_{a}=\{0,1\} \Rightarrow E_{\boldsymbol{\theta}}(x)=-\sum_{i} x_{i} \zeta_{i}-\sum_{a=1}^{N_{\mathrm{h}}} \log \left(1+e^{\sum_{i} x_{i} W_{i a}+\eta_{a}}\right)
$$

Boltzmann machine:

$$
\begin{aligned}
& \frac{\partial \mathcal{L}}{\partial J_{i j}}=\left\langle S_{i} S_{j}\right\rangle_{p_{\mathcal{D}}}-\left\langle S_{i} S_{j}\right\rangle_{p_{\theta}} \\
& \frac{\partial \mathcal{L}}{\partial h_{i}}=\left\langle S_{i}\right\rangle_{p_{\mathcal{D}}}-\left\langle S_{i}\right\rangle_{p_{\theta}}
\end{aligned}
$$

$$
\begin{aligned}
\frac{\partial \mathcal{L}}{\partial W_{i a}} & =\left\langle x_{i} h_{a}\right\rangle_{p_{\mathcal{D}}}-\left\langle x_{i} h_{a}\right\rangle_{\mathcal{E}} \\
\frac{\partial \mathcal{L}}{\partial \eta_{a}} & =\left\langle h_{a}\right\rangle_{p_{\mathcal{D}}}-\left\langle h_{a}\right\rangle_{\mathcal{E}} \\
\frac{\partial \mathcal{L}}{\partial \zeta_{i}} & =\left\langle x_{i}\right\rangle_{p_{\mathcal{D}}}-\left\langle x_{i}\right\rangle_{\mathcal{E}}
\end{aligned}
$$

Sample generation

Generating new samples

> Empirical Model
> $p_{\mathcal{D}}(\boldsymbol{x}) \sim \frac{e^{-E_{\theta}(\boldsymbol{x})}}{Z_{\theta}}$
> Dominated minimum
> free-energy configurations
> $\{\boldsymbol{x}\}_{\mathrm{eq}, \boldsymbol{\theta}} \sim \mathcal{D}$

Generating new samples

$$
\left.\begin{array}{rc}
\text { Empirical } & \begin{array}{c}
\text { Model } \\
p_{\mathcal{D}}(\boldsymbol{x}) \sim \frac{e^{-E_{\theta}(\boldsymbol{x})}}{Z_{\theta}}
\end{array} \\
& \{\boldsymbol{x}\}_{\mathrm{eq}, \theta} \sim \mathcal{D} \\
\text { cominated minimum } \\
\text { free-energy }
\end{array}\right]
$$

Generating new samples

Generating new samples

Modeling, interpretability

Why Restricted Boltzmann Machines (RBMs) are good for that?

Why RBMs?

- Simple enough to allow some level of analytical treatment (MF)

A Decelle, C Furtlehner - Chinese Physics B, 2021

- Phase diagram

J Tubiana, R Monasson - Physical review letters, 2017
A Decelle, G Fissore, C Furtlehner - Journal of Statistical Physics, 2018 A Decelle, G Fissore, C Furtlehner

- Learning : sub-sequence of phase transitions
- Approximate methods to compute the free energy (TAP eqs.)
- Can be mapped to a physical interacting system

Decelle, Furtlehner, Navas \& Seoane, B. SciPost Phys (2024)

- They are expressive : they can describe interesting datsets
- The are frugal models : fast code and to train
- They are sample efficient : perform well with small amounts of data64/69

Why Restricted Boltzmann Machines

- Simple enough to allow some level of analytical treatment (MF)
- Phase diagram Aurélien Decelle's

A Decelle, C Furtlehner - Chinese Physics B, 2021
J Tubiana, R Monasson - Physical review letters, 2017
$\begin{aligned} \text { lecture tomorrow } & \begin{array}{r}\text { A Decelle, G F Fissore, C Curtlehner - Journal of Statistical Physics, } 2018 \\ \text { A Decelle, } G \text { Fissore, } C \text { C Furtlehner } \\ \text { Europhysis Leters, } 2017\end{array} \\ \text { |uence of phase transitions } & \text { Biroli, Decelle, Bachtis, Seoane (2024, in prep.) }\end{aligned}$

- Learning: sub-sequence of phase transitions
- Approximate methods to compute the free energy (TAP eqs.)

Gabrié, M., Tramel, E. W., \& Krzakala, F. NeurIPS (2015)
Tramel, E. W., Gabrié, M., Manoel, A., Caltagirone, F., \& Krzakala, F. Physical Review X (2018)
Decelle, A., Rosset, L., \& Seoane, B. PRE (2023)

- Can be mapped to a physical interacting system

Decelle, Furtlehner, Navas \& Seoane, B. SciPost Phys (2024)

- They are expressive : they can describe interesting datsets
- The are frugal models : fast code and to train
- They are sample efficient : perform well with small amounts of data65/69

Why Restricted Boltzmann Machines

Simple enough to allow some level of analytical treatment (MF)
Phase diagram
Learning : sub-sequence of phase transitions
Approximate methods to compute the free energy (TAP eqs.)

Can be mapped to a physical interacting system

- They are expressive : they can describe interesting datasets
- The are frugal models : fast code and to train
- They are sample efficient : perform well with small amounts of data66/69

Whv Restricted Boltzmann Machines

 PLOS GENETICSCurrently the most accurate method to generate artificial human genome

```
G openaccess peer-revewed
```

RESEARCH ARTICLE

Creating artificial human genomes using generative neural networks
Burak Yelmen 回，Aurélien Decelle，Linda Ongaro，Davide Marnetto，Corentin Tallec，Francesco Montinaro，Cyril Furtlehner Luca Pagani，Flora Jay 回

PLOS COMPUTATIONAL BIOLOGY

6 openaccess peer－revewed
RESEARCH ARTICLE
Deep convolutional and conditional neural networks for large－scale genomic data generation
Burak Yelmen 回，Aurélien Decelle，Leila Lea Boulos，Antoine Szatkownik，Cyril Furtlehner，Guillaume Charpiat，Flora Jay
Version 2 \checkmark Published：October 30,2023 • https：／／doi．org／10．1371／journal．pobi． 1011584

－They are expressive ：they can describe interesting datasets
－The are frugal models ：fast code and to train
－They are sample efficient ：perform well with small amounts of data6／69

Why Restricted Boltzmann Machines

©

Learning protein constitutive motifs from sequence data
Jérôme Tubiana, Simona Cocco, Rémi Monasson* Research, Paris, France

Propose mutational paths that can be validated in experiments

They are able to capture biologically interpretable features related to function or structure...

PHYSICAL REVIEW LETTERS

Highlights
Recent
Accepted
Collections
Referees
Search
Press
About
Editorial

Mutational Paths with Sequence-Based Models of Proteins: From Sampling to Mean-Field Characterization
Eugenio Mauri, Simona Cocco, and Rémi Monasson
Phys. Rev. Lett. 130, 158402 - Published 12 April 2023

Article	References	Citing Articles (3)	Supplemental Material	PDF	HTML	Export Citation

- They are expressive : they can describe interesting datasets
- The are frugal models : fast code and to train
- They are sample efficient : perform well with small amounts of data68/69

Why Restricted Boltzmann Machines

simple enough to ollow some leee of fandictat reament MHF
If they are so cool, why are not they used more often?
\rightarrow EBMs are very difficult to train properly

Class 2 : Interpretability

Class 3: Controlling the training

[^0]The are frugal models: fast code and to train
\qquad

[^0]: They are expressive datsets

