Class 2: Interpreting RBMs

Plan for the lecturers

- Elass 1: Introduction to Energy Based Models
- Class 2: Interpretability. How can we learn from trained networks?
- Class 3: Training optimization, the role of MCMC. How can we improve the training mechanisms by understanding their physics?

Summary $\quad p_{\theta}(\boldsymbol{x})=\frac{e^{-E_{\theta}(\boldsymbol{x})}}{Z_{\theta}}$

- Application 1: Interpretation of the energy function: $E_{\theta}(x)$
- Intro: General applications of inverse statistical mechanics
- Mapping the RBM to a multi-body interaction Ising model
- Inference of interaction networks
- Application 2: Exploring the inferred probability distribution function: $p_{\theta}(x)$
- Probe perturbately the free-enery landscape using statistical physics
- Use the training dynamics to reveal relational trees between data:
- Hierarchical clustering
- Unsupervised classification

Interpreting the energy function

Inverse Ising problem

$$
\begin{gathered}
E_{\text {Ising 2D }}(\boldsymbol{S})=-\hat{J} \sum_{\langle, j} S_{i} S_{j} \\
\hat{\beta}=1 / \hat{T}
\end{gathered}
$$

Inverse Ising problem

$$
\begin{gathered}
E_{\text {Ising 2D }}(\boldsymbol{S})=-\hat{J} \sum_{\langle i, j\rangle} S_{i} S_{j} \\
\hat{\beta}=1 / \hat{T}
\end{gathered}
$$

Am I able to infer which was the interaction model that generated it?

$$
E_{J, h}(\boldsymbol{S})=-\sum_{i j} J_{i j} S_{i} S_{j}-\sum_{i} h_{i} S_{i}
$$

Inverse Ising problem

Am I able to infer which was the interaction model that generated it?

$$
E_{\text {Ihh }}(\boldsymbol{S})=-\sum J_{i i} S_{i} S_{i}-\sum h_{i} S_{i}
$$

$$
\begin{aligned}
p_{\text {data }}(\boldsymbol{S}) & =\frac{1}{Z} e^{\beta \hat{J} \sum_{\langle i, j\rangle} S_{i} S_{j}} \\
p_{J, h}(\boldsymbol{S}) & =\frac{1}{Z} e^{\sum_{i j} J_{i j} S_{i}+\sum_{i} h_{i} S_{j}}
\end{aligned}
$$

$$
\beta \hat{J}_{i j}=J_{i j} \quad h_{i}=0
$$

Solution
is unique!

Inverse Ising problem

Am I able to infer which was the interaction model that generated it?

$$
E_{\text {Ih. }}(\boldsymbol{S})=-\sum J_{i j} S_{i} S_{i}-\sum h_{i} S_{i}
$$

$$
\begin{aligned}
p_{\text {data }}(\boldsymbol{S}) & =\frac{1}{Z} e^{\beta \hat{J} \sum_{\langle i, j\rangle} S_{i} S_{j}} \\
p_{J, h}(\boldsymbol{S}) & =\frac{1}{Z} e^{\sum_{i j} J_{i j} S_{i}+\sum_{i} h_{i} S_{j}}
\end{aligned}
$$

$$
\beta \hat{J}_{i j}=J_{i j} \quad h_{i}=0
$$

Fixed point

$$
\begin{aligned}
\left\langle S_{i} S_{j}\right\rangle_{p_{J, h}} & =\left\langle S_{i} S_{j}\right\rangle_{p_{\text {data }}} \\
\left\langle S_{i}\right\rangle_{p_{J, h}} & =\left\langle S_{i}\right\rangle_{p_{\text {data }}}
\end{aligned}
$$

Inverse Ising problem

Am I able to infer which was the interaction model that generated it?

$$
E_{\text {Ihh }}(\boldsymbol{S})=-\sum J_{i i} S_{i} S_{i}-\sum h_{i} S_{i}
$$

$$
\beta \hat{J}_{i j} \neq J_{i j} \quad h_{i} \neq 0
$$

We only $\underset{p_{\mathcal{D}}(x)}{ }=\frac{1}{M} \sum_{m=1}^{M} \delta\left(x-x^{(m)}\right)$
Know the data

$$
p_{J, h}(\boldsymbol{S})=\frac{1}{Z} e^{\sum_{i j} J_{i j} S_{i}+\sum_{i} h_{i} S_{j}}
$$

Applications I: reconstruction of neural connections

Roudi, Y., Aurell, E., \& Hertz, J. A. (2009)
Schneidman, E., Berry, M. J., Segev, R., \& Bialek, W. (2006)

A

Applications II: Inverse Potts Direct coupling analysis (DCA)

$$
E_{J, h}(\boldsymbol{x})=-\sum_{i, j=1}^{N_{v}} \sum_{q_{1}, 2}^{N_{q}} J_{i j}^{q_{1}, q_{2}} \delta_{x_{i}, q_{1}} \delta_{S_{i}, q_{2}}-\sum_{i=1}^{N_{v}} \sum_{q=1}^{N_{q}} h_{i}^{q} \delta_{x_{i}, q} \quad x_{i}=\{1, \ldots, q\}
$$

Applications II: Inverse Potts Direct coupling analysis (DCA)

$$
E_{J, h}(\boldsymbol{x})=-\sum_{i, j=1}^{N_{v}} \sum_{q_{1}, 2}^{N_{q}} J_{i j}^{q_{1}, q_{2}} \delta_{x_{i}, q_{1}} \delta_{S_{i}, q_{2}}-\sum_{i=1}^{N_{v}} \sum_{q=1}^{N_{q}} h_{i}^{q} \delta_{x_{i}, q} \quad x_{i}=\{1, \ldots, q\}
$$

Cocco, Feinauer, Figliuzzi, Monasson. Weigt, Rep. Prog. Phys. 81 (2018) 032601

Ex. Inverse Potts Direct coupling analysis (DCA)

Cocco, Feinauer, Figliuzzi, Monasson. Weigt, Rep. Prog. Phys. 81 (2018) 032601
Rodriguez-Rivas, J., Croce, G., Muscat, M., \& Weigt, M.
Proceedings of the National Academy of Sciences, (2022).

Pairwise models : The Boltzmann machine

$$
E_{J, h}(\boldsymbol{x})=-\sum_{i j} J_{i j} x_{i} x_{j}-\sum_{i} h_{i} x_{i}
$$

Simple and easy to interpret, but are strongly limited...

Pairwise models : The Boltzmann machine

$$
E_{J, h}(\boldsymbol{x})=-\sum_{i j} J_{i j} x_{i} x_{j}-\sum_{i} h_{i} x_{i}
$$

Simple and easy to interpret, but are strongly limited...

3	8	6	9	6	4	5	3	8	4	5	2	3	8	4	8
1	5	0	5	9	7	4	1	0	3	0	6	2	9	9	4
1	3	6	8	0	7	7	6	8	9	0	3	8	3	7	7
8	4	4	1	2	9	8	1	1	0	6	6	5	0	1	1

BM inferred pairwise coupling matrix

Generation

Pairwise models : The Bolt

We need to encode higher order correlations !

$$
E_{J, h}(\boldsymbol{x})=-\sum_{i j} J_{i j} x_{i} x_{j}-\sum_{i} h_{i} x_{i}
$$

aoan
anaja a a a a a
ajajajazaja
aja a a dadadad
वavana anana
ajanajajajaja

Simple and easy to interpret, but are strongly limited...

| 3 | 8 | 6 | 9 | 6 | 4 | 5 | 3 | 8 | 4 | 5 | 2 | 3 | 8 | 4 | 8 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 1 | 5 | 0 | 5 | 9 | 7 | 4 | 1 | 0 | 3 | 0 | 6 | 2 | 9 | 9 | 4 |
| 1 | 3 | 6 | 8 | 0 | 7 | 1 | 6 | 8 | 9 | 0 | 3 | 8 | 3 | 7 | 7 |
| 8 | 4 | 4 | 1 | 2 | 9 | 8 | 1 | 1 | 0 | 6 | 6 | 5 | 0 | 1 | 1 |

learning

Encoding high-order correlations

$$
\begin{aligned}
& f_{i}=\left\langle x_{i}\right\rangle_{\text {data }} \\
& f_{i j}=\left\langle x_{i} x_{j}\right\rangle_{\text {data }} \\
& f_{i j k}=\left\langle x_{i} x_{j} x_{k}\right\rangle_{\text {data }} \\
& f_{i_{1} \cdots i_{n}}=\left\langle x_{i_{1}} \cdots x_{i_{n}}\right\rangle_{\text {data }}
\end{aligned}
$$

\# parameters diverge too fast...

$$
E(\boldsymbol{x})=-\sum_{i} h_{i} x_{i}-\sum_{i j} J_{i j}^{(2)} x_{i} x_{j}-\sum_{i j k} J_{i j k}^{(3)} x_{i} x_{j} x_{k}-\sum_{i j k l} J_{i j k l}^{(4)} x_{i} x_{j} x_{k} x_{l}+\cdots
$$

Encoding high-order correlations

But in real data the interactions are sparse

Only some n-tuples of variables are correlated

$$
\begin{aligned}
& f_{i}=\left\langle x_{i}\right\rangle_{\text {data }} \\
& f_{i j}=\left\langle x_{i} x_{j}\right\rangle_{\text {data }} \\
& f_{i j k}=\left\langle x_{i} x_{j} x_{k}\right\rangle_{\text {data }}
\end{aligned}
$$

$$
f_{i_{1} \cdots i_{n}}=\left\langle x_{i_{1}} \cdots x_{i_{n}}\right\rangle_{\text {data }}
$$

\# parameters diverge too fast...

$$
E(\boldsymbol{x})=-\sum_{i} h_{i} x_{i}-\sum_{i j} J_{i j}^{(2)} x_{i} x_{j}-\sum_{i j k} J_{i j k}^{(3)} x_{i} x_{j} x_{k}-\sum_{i j k l} J_{i j k l}^{(4)} x_{i} x_{j} x_{k} x_{l}+\cdots
$$

Alternative solution: add hidden variables

$$
\mathcal{H}\left(S_{1}, S_{2}, \tau\right)=-\tau\left(w_{1} S_{1}+w_{2} S_{2}\right)
$$

$S_{1} \quad S_{2} \quad S_{i}= \pm 1 \quad$ Marginal probability

$$
p\left(S_{1}, S_{2}\right)=\frac{e^{-\mathcal{H}\left(S_{1}, S_{2}\right)}}{Z}
$$

$$
\begin{aligned}
\mathcal{H}=-\log \sum_{\tau= \pm 1} e^{\tau\left(w_{1} S_{1}+w_{2} S_{2}\right)} & =-\log 2 \cosh \left[w_{1} S_{1}+w_{2} S_{2}\right] \\
& =-J S_{1} S_{2}-J
\end{aligned}
$$

encoding is not unique !

$$
\Rightarrow \frac{\cosh \left(w_{1}+w_{2}\right)}{\cosh \left(w_{1}-w_{2}\right)}=e^{2 J} J>0
$$

Alternative solution: add hidden variables

$$
\begin{array}{lr}
\tau=\begin{array}{l}
\tau= \pm 1
\end{array} & \mathcal{H}\left(S_{1}, S_{2}, \tau\right)=-w \tau\left(S_{1}+S_{2}\right) \\
w \\
S_{1} S_{2} S_{i}= \pm 1 & \begin{array}{c}
\text { Marginal } \\
\text { probability }
\end{array} \\
S_{1}\left(S_{1}, S_{2}\right)=\frac{e^{-\mathcal{H}\left(S_{1}, S_{2}\right)}}{Z}
\end{array}
$$

$$
\begin{aligned}
\mathcal{H}=-\log \sum_{\tau= \pm 1} e^{w \tau\left(S_{1}+S_{2}\right)} & =-\log 2 \cosh \left[w\left(S_{1}+S_{2}\right)\right] \\
& =-J S_{1} S_{2}-J
\end{aligned}
$$

$$
\Rightarrow \cosh 2 w=e^{2 J}
$$

$$
J>0
$$

$$
\begin{aligned}
S^{2 k} & =1 \\
S^{2 k+1} & =S
\end{aligned}
$$

Alternative solution: add hidden variables

$$
\mathcal{H}\left(S_{1}, S_{2}, \tau\right)=-\tau\left(w_{1} S_{1}+w_{2} S_{2}+\theta\right)+h_{1} S_{1}+h_{2} S_{2}
$$

There are even more ways to encode the same interaction if you consider biases...

Alternative solution: add hidden variables

$$
\mathcal{H}\left(S_{1}, S_{2}, S_{3}, S_{4}\right)=-\log 2 \cosh \left[w_{1} S_{1}+w_{2} S_{2}+w_{3} S_{3}+w_{4} S_{4}\right]
$$

$$
=-J_{1234}^{(4)} S_{1} S_{2} S_{3} S_{4}-J_{12}^{(2)} S_{1} S_{2}-J_{13}^{(2)} S_{1} S_{3}-J_{14}^{(2)} S_{1} S_{4}-J_{23}^{(2)} S_{2} S_{3}-J_{24}^{(2)} S_{2} S_{4}-J_{34}^{(2)} S_{3} S_{4}+C
$$

In order to encode an interaction model with at most k-body interactions we need $\mathrm{O}\left(N_{k}\right)$ hidden nodes, with N_{k} the number of non-zero $J^{(k)}$ couplings (\# parameters $\mathrm{O}\left(N_{k}\right) N$) << $\mathrm{O}\left(N^{k}\right)$

The Restricted Boltzmann Machine

-Smolensky, P. (1986)

$$
\mathcal{E}_{\theta}(x, \tau)=-\sum_{i a} x_{i} w_{i a} \tau_{a}-\sum_{i} \eta_{i} x_{i}-\sum_{a} \zeta_{a} \tau_{a}
$$

$$
\begin{array}{llllll}
x_{1} & x_{2} & x_{3} & x_{4} & x_{5}
\end{array}
$$

Visible : data

Hidden : "Neurons" \rightarrow features extracted

Universal approximator! Le Roux and Bengio. Neural computation (2008)

The Restricted Boltzmann Machine

-Smolensky, P. (1986)

$$
\mathcal{E}_{\theta}(x, \tau)=-\sum_{i a} x_{i} w_{i a} \tau_{a}-\sum_{i} \eta_{i} x_{i}-\sum_{a} \zeta_{a} \tau_{a}
$$

$\begin{array}{llll}5 & 7 & 6 & = \\ 1 & 9 & 8 \\ 1 & 3 & 0 \\ 6 & 1 & 5 & 3\end{array}$

Universal approximator!

Le Roux and Bengio. Neural computation (2008)

The Restricted Boltzmann Machine

-Smolensky, P. (1986)

$$
\mathcal{E}_{\theta}(x, \tau)=-\sum_{i a} x_{i} w_{i a} \tau_{a}-\sum_{i} \eta_{i} x_{i}-\sum_{a} \zeta_{a} \tau_{a}
$$

B3
Samples generated with the RBM

$\Leftrightarrow 06534661291$ $576 \pm 176 \pm 7507$
$19 \dot{\text { c }}$ 14 623818
$1430830462 / 4$
615.390785355
47954099331
59272697676

The RBM is much more expressive than
the BM, but can we
make it just as interpretable?

$$
\mathcal{E}_{\theta}(\sigma, \tau)=-\sum_{i a} \sigma_{i} w_{i a} \tau_{a}-\sum_{i} \eta_{i} \sigma_{i}-\sum_{a} \theta_{a} \tau_{a} \quad \begin{aligned}
& \sigma_{j}, \tau_{i} \in\{ \pm 1\} \\
& \text { Both Ising variables }
\end{aligned}
$$

$$
\mathcal{H}_{R B M}(\boldsymbol{\sigma})=-\log \sum_{\tau} e^{-\mathcal{E}_{\boldsymbol{\theta}}(\boldsymbol{\sigma}, \boldsymbol{\tau})}=-\sum_{i} \eta_{i} \sigma_{i}-\sum_{a} \log \cosh \left(\theta_{a}+\sum_{i} W_{i a} \sigma_{i}\right)+C
$$

$$
\mathcal{E}_{\theta}(\sigma, \tau)=-\sum_{i a} \sigma_{i} w_{i a} \tau_{a}-\sum_{i} \eta_{i} \sigma_{i}-\sum_{a} \theta_{a} \tau_{a}
$$

$$
\begin{aligned}
\mathcal{H}_{R B M}(\boldsymbol{\sigma}) & =-\log \sum_{\tau} e^{-\mathcal{E}_{\theta}(\boldsymbol{\sigma}, \tau)}=-\sum_{i} \eta_{i} \sigma_{i}-\sum_{a} \log \cosh \left(\theta_{a}+\sum_{i} W_{i a} \sigma_{i}\right)+C \\
& =-\sum_{j} H_{j} \sigma_{j}-\sum_{j_{1}>j_{2}} J_{j_{1} j_{2}}^{(2)} \sigma_{j_{1}} \sigma_{j_{2}}-\sum_{j_{1}>j_{2}>j_{3}} J_{j_{1} j_{2} j_{3}}^{(3)} \sigma_{j_{1}} \sigma_{j_{2}} \sigma_{j_{3}}+\ldots
\end{aligned}
$$

The RBM as a model for interacting spins

$$
\mathcal{E}_{\theta}(\sigma, \tau)=-\sum_{i a} \sigma_{i} w_{i a} \tau_{a}-\sum_{i} \eta_{i} \sigma_{i}-\sum_{a} \theta_{a} \tau_{a}
$$

Sci|Post

Inferring effective couplings with restricted Boltzmann machines
Aurćlien Decelle ${ }^{1,2}$, Cyril Furtlehner ${ }^{2}$,
Alfonso De Jesús Navas Gómez ${ }^{1 *}$ and Beatriz Seoane ${ }^{2}$

The RBM as a model for interacting spins

From the RBM to a generalized Ising model

$$
\begin{aligned}
\mathcal{H}(\boldsymbol{\sigma}) & =-\sum_{j} \eta_{j} \sigma_{i}-\sum_{a} \log \cosh \left(\sum_{j} w_{j a} \sigma_{j}+\zeta_{a}\right) . \\
& =-\sum_{j} \eta_{j} \sigma_{j}-\sum_{\sigma^{\prime}} \prod_{j} \delta_{\sigma_{j} \sigma_{j}} \sum_{a}^{\ln \operatorname{losh}}\left(\sum_{j} w_{j a} \sigma_{j}^{\prime}+\zeta_{a}\right) . \\
& =-\sum_{j} \eta_{j} \sigma_{j}-\frac{1}{2^{N_{v}}} \sum_{\sigma^{\prime}} \prod_{j}\left(1+\sigma_{j \sigma_{j}^{\prime}}\right) \sum_{a}^{\ln \cosh }\left(\sum_{j} w_{j a} \sigma_{j}^{\prime}+\zeta_{a}\right) .
\end{aligned}
$$

From the RBM to a generalized Ising model

$$
\begin{aligned}
\mathcal{H}(\boldsymbol{\sigma}) & =-\sum_{j} \eta_{j} \sigma_{i}-\sum_{a} \log \cosh \left(\sum_{j} w_{j a} \sigma_{j}+\zeta_{a}\right) . \\
& =-\sum_{j} \eta_{j} \sigma_{j}-\sum_{\sigma^{\prime}} \prod_{j} \delta_{\sigma_{j} \sigma_{j}^{\prime}} \sum_{a} \ln \cosh \left(\sum_{j} w_{j a} \sigma_{j}^{\prime}+\zeta_{a}\right) . \\
& =-\sum_{j} \eta_{j} \sigma_{j}-\frac{1}{2^{N_{\mathrm{v}}}} \sum_{\sigma^{\prime}} \prod_{j}\left(1+\sigma_{j} \sigma_{j}^{\prime}\right) \sum_{a} \ln \cosh \left(\sum_{j} w_{j a} \sigma_{j}^{\prime}+\zeta_{a}\right) .
\end{aligned}
$$

$$
\left(1+\sigma_{1} \sigma_{1}^{\prime}\right)\left(1+\sigma_{2} \sigma_{2}^{\prime}\right) \cdots\left(1+\sigma_{N_{v}} \sigma_{N_{v}}^{\prime}\right)=1+\sum_{j} \sigma_{j} \sigma_{j}^{\prime}+\sigma_{1} \sigma_{2} \sigma_{1}^{\prime} \sigma_{2}^{\prime}+\cdots+\sigma_{1} \sigma_{2} \sigma_{3} \sigma_{1}^{\prime} \sigma_{2}^{\prime} \sigma_{3}^{\prime}+\cdots
$$

$$
=-\sum_{j} H_{j} \sigma_{j}-\sum_{j_{1}>j_{2}} J_{j_{1} j_{2}}^{(2)} \sigma_{j_{1}} \sigma_{j_{2}}-\sum_{j_{1}>j_{2}>j_{3}} J_{j_{1} j_{2} j_{3}}^{(3)} \sigma_{j_{1}} \sigma_{j_{2}} \sigma_{j_{3}}-\cdots{ }_{30 / 76}
$$

From the RBM to a qeneralized Isina model

Given an RBM, we know which effective Ising Model it corresponds to

$$
\begin{gathered}
H_{j}=\eta_{j}+\frac{1}{2^{N_{\mathrm{v}}}} \sum_{\sigma^{\prime}} \sum_{i} \sigma_{j}^{\prime} \ln \cosh \left(\sum_{k} w_{i k} \sigma_{k}^{\prime}+\zeta_{i}\right) \\
J_{j_{1} \ldots j_{n}}^{(n)}=\frac{1}{2^{N_{\mathrm{v}}}} \sum_{\sigma^{\prime}} \sum_{i} \sigma_{j_{1}}^{\prime} \ldots \sigma_{j_{n}}^{\prime} \ln \cosh \left(\sum_{k} w_{i k} \sigma_{k}^{\prime}+\zeta_{i}\right) \\
=-\sum_{j} \eta_{j} \sigma_{j}-\frac{1}{2^{N_{\mathrm{v}}}} \sum_{\sigma^{\prime}} \prod_{j}\left(1+\sigma_{j} \sigma_{j}^{\prime}\right) \sum_{a} \ln \cosh \left(\sum_{j} w_{j a} \sigma_{j}^{\prime}+\zeta_{a}\right) .
\end{gathered}
$$

$$
\left(1+\sigma_{1} \sigma_{1}^{\prime}\right)\left(1+\sigma_{2} \sigma_{2}^{\prime}\right) \cdots\left(1+\sigma_{N_{v}} \sigma_{N_{v}}^{\prime}\right)=1+\sum_{j} \sigma_{j} \sigma_{j}^{\prime}+\sigma_{1} \sigma_{2} \sigma_{1}^{\prime} \sigma_{2}^{\prime}+\cdots+\sigma_{1} \sigma_{2} \sigma_{3} \sigma_{1}^{\prime} \sigma_{2}^{\prime} \sigma_{3}^{\prime}+\cdots
$$

$$
=-\sum_{j} H_{j} \sigma_{j}-\sum_{j_{1}>j_{2}} J_{j_{1} j_{2}}^{(2)} \sigma_{j_{1}} \sigma_{j_{2}}-\sum_{j_{1}>j_{2}>j_{3}} J_{j_{1} j_{2} j_{3}}^{(3)} \sigma_{j_{1}} \sigma_{j_{2}} \sigma_{j_{3}}-\cdots{ }_{31 / 76}
$$

From the RBM to a generalized Ising model

Introduce the random variable

$$
X_{a}^{\left(j_{1} \ldots j_{n}\right)} \equiv \sum_{\mu=n+1}^{N_{\mathrm{v}}} w_{j_{\mu} a} \sigma_{j_{\mu}}^{\prime}
$$

$$
N_{v} \text { large }
$$

Central limit theorem

$$
\begin{gathered}
H_{j}=\eta_{j}+\frac{1}{2} \sum_{a} \mathbb{E}_{X_{a}^{(j)}}\left[\ln \frac{\cosh \left(\zeta_{a}+w_{j a}+X_{a}^{(j)}\right)}{\cosh \left(\zeta_{a}-w_{j a}+X_{a}^{(j)}\right)}\right] \\
J_{j_{1} j_{2}}^{(2)}=\frac{1}{4} \sum_{a} \mathbb{E}_{X_{a}^{\left(j_{1} j_{2}\right)}}\left[\ln \frac{\cosh \left(\zeta_{a}+w_{j_{1} a}+w_{j_{2} a}+X_{i}^{\left(j_{1} j_{2}\right)}\right) \times \cosh \left(\zeta_{a}-\left(w_{j_{1} a}+w_{j_{2} a}\right)+X_{a}^{\left(j_{1} j_{2}\right)}\right)}{\cosh \left(\zeta_{a}+\left(w_{j_{1} a}-w_{j_{2} a}\right)+X_{a}^{\left(j_{1} j_{2}\right)}\right) \times \cosh \left(\zeta_{a}-\left(w_{a j_{1}}-w_{a j_{2}}\right)+X_{a}^{\left(j_{1} j_{2}\right)}\right)}\right)
\end{gathered}
$$

Numerical controlled experiments

$$
n_{m}
$$

$$
\beta=\frac{1}{T}
$$

Generate equilibrium samples With a known model

1
Generate a dataset of generalized Ising model (GIM) equilibrium samples
$H_{j}^{*}, J_{j_{1} \cdots j_{n}}^{*,(n)}$
Pipeline of the numerical test

Decelle, Furtlehner, Navas Gómez, Seoane, SciPost 2024

W. b. h

Infer the effective couplings out of the trained RBM models
$H_{j}(\boldsymbol{W}, \boldsymbol{b}, \boldsymbol{h}), J_{j_{1} \cdots j_{n}}^{(n)}(\boldsymbol{W}, \boldsymbol{b}, \boldsymbol{h})$

Disordered 2D Ising Model

-0.3	$-\beta=-0.2$	-0.1	0	0.1	$\beta=0.2$	0.3

1D Ising model $\beta=0.2$

M				
$\square 10^{3} \quad \square 10^{4} \quad \square 10^{5} \quad \square$				

1D Ising + 3-body interactions

(b)

(d)

Previous attempts

G. Cossu, L. Del Debbio, T. Giani, A. Khamseh and M. Wilson, Phys. Rev. B (2019)

Previous attempts

N. Bulso and Y. Roudi, Neural Computation (2021)

Equivalence between the RBM and a lattice gas model $v_{i}=\{0,1\}$

(c1)
3-Body Couplings

(c2)

Beyond Ising spins

One can generalize to Potts variables

$$
\begin{aligned}
& =-\sum_{i} \kappa_{i}^{(0)}-\sum_{j} \sum_{a}\left(b_{j}^{a}+\sum_{i} \kappa_{i}^{(1)} W_{i j}^{a}\right) \delta_{a v_{j}}-\sum_{k>1} \frac{1}{k!} \sum_{j_{1}, \ldots, j_{k}} \sum_{a_{1}, \ldots, a_{k}}\left(\sum_{i} \kappa_{i}^{(k)} W_{i j_{1}}^{a_{1}} \cdots W_{i j_{k}}^{a_{k}}\right) \delta_{a_{1} v_{j_{1}}} \cdots \delta_{a_{k} v_{j_{k}}}
\end{aligned}
$$

From Ising to Potts

We can use it to infer

$$
J_{i_{1} \cdots i_{n}}^{q_{1}, \cdots q_{n}}(\boldsymbol{\omega}, \boldsymbol{\eta}, \boldsymbol{\theta})
$$

$$
\begin{aligned}
\mathcal{H}_{\mathrm{RBM}}(v) & =-\sum_{j} \sum_{a} b_{j}^{a} \delta_{a v_{j}}-\sum_{i} \ln \sum_{h_{i}} \exp \left(c_{i} h_{i}+h_{i} \sum_{j} \sum_{a} W_{i j}^{a} \delta_{a v_{j}}\right) \\
& =-\sum_{i} \kappa_{i}^{(0)}-\sum_{j} \sum_{a}\left(b_{j}^{a}+\sum_{i} \kappa_{i}^{(1)} W_{i j}^{a}\right) \delta_{a v_{j}}-\sum_{k>1} \frac{1}{k!} \sum_{j_{1}, \ldots, j_{k}} \sum_{a_{1}, \ldots, a_{k}}\left(\sum_{i} \kappa_{i}^{(k)} W_{i j_{1}}^{a_{1}} \cdots W_{i j_{k}}^{a_{k}}\right) \delta_{a_{1} v_{j_{1}}} \cdots \delta_{a_{k} v_{j_{k}}}
\end{aligned}
$$

Main difficulty: gauge symmetry

$$
\begin{array}{cl}
\mathcal{H}_{R B M}(\boldsymbol{v}, \boldsymbol{h})=-\sum_{i=1}^{N_{h}} \sum_{j=1}^{N_{v}} \sum_{a=1}^{q} h_{i} W_{i j}^{a} \delta_{a v_{j}}-\sum_{j=1}^{N_{v}} \sum_{a=1}^{q} b_{j}^{a} \delta_{a v_{j}}-\sum_{i=1}^{N_{h}} c_{i} h_{i} . \\
\begin{array}{cl}
\text { Invariant } \\
\text { under the } \\
\text { transformation }
\end{array} & W_{i j}^{a} \rightarrow W_{i j}^{a}+A_{i j} \rightarrow b_{j}^{a}+B_{j} \\
& c_{i} \rightarrow c_{i}-\sum_{j} A_{i j}
\end{array}
$$

The gauge transformation changes all orders of interaction!
And the zero sum gauge in the RBM is not equivalent to the zero sum gauge in the effective Potts model

Unsupervised hierarchical clustering using the learning dynamics of restricted Boltzmann machines

Aurélien Decelle © and Beatriz Seoane
Departamento de Física Teórica, Universidad Complutense de Madrid, 28040 Madrid, Spain and Université Paris-Saclay, CNRS, INRIA Tau team, LISN, 91190 Gif-sur-Yvette, France

Analyzing the free energy landscape

Motivation

Number of entries in UniProtKB/TrEMBL

CCTAREMRATTTTGAREITTAGRATTGTTATTTCTTARAGCCTACACT: GGEITTATERERACTTTARATCTTAACARTARAGRATTTCGGATGTGA
 IPRTTATAGTCRENTATRARGTGCTTRTGATATRARATTTATRGGGGT aGCAGTCABTACTATGGAATGGAABTCATAACTITTGCCTGGTGCAC mCGTCAGTIATGATACCTITACCTITAGTATIGRAACGGACCACGTG TAMETGCETTTAMATAGAMCATCTGTTCGGTCCACACTCGGCTARAT ATTMCACGCAATMTATCTIGTAGACRAGCCAGGTGTGAGCCGATTTA CGGATCGGRGTCGGRATGRGTATCGITGGRCTGGGRACTGGGRARAG GCCTRAGCCICAGCCITACTCATAGCRACCTGACCCTTGACCCTTTAC
GGITTGCAGCAGGGGGCRRARGGGGTARTGGTACACATAGCTCACTC
CCIRACGICGICCCCICGTITTCCCCATTACCATGIGTATCGAGTGAG
... GTGCATCTGACTCCTGAGGAGAAG ...
... CACGTAGACTGAGGACTCCTCTTC ...
DNA
(transcriptio
... GUGCAUCUGACUCCUGAGGAGAAG ... RNA (translation protein

Motivation

Number of entries in UniProtKB/Swiss-Prot

Number of entries in UniProtKB/TrEMBL

 ICGTCRGTTRIGAMRCCTTTACCTTTAGTRTTGAR2ACGGRCCRCGTG

CGGEITCGGRGICGGRETGGGTATCGITGGACTGGGRACTGGGRARIG
GCCTARGCCICRGCCITACTCATRGCRACCTGRCCCTTGACCCTTTAC
GGETTGCAGCAGGGGRGCARARGGGGTARTGGTACACAT AGCTCACTC
CCI ARCGTCGTCCCCTCGTTTTCCCCATTRCCATGTGTRTCGAGTGAG(
... GTGCATCTGACTCCTGAGGAGAAG•••
... CACGTAGACTGAGGACTCCTCTTC...
DNA
(transcriptio
\cdots GUGCAUCUGACUCCUGAGGAGAAG ... RNA

$\cdots-\vee \quad$ L T P E E K ...
(translation
protein

We need tools to automatically tag data

MNIST

Pfam FAD binding domain of DNA photolyase

Human Genome dataset \rightarrow mutations genome A global reference for human genetic variation, Nature 526(7571),68 (2015),

PopulationPeruvian in Lima, PeruMexican Ancestry in Los Angeles, California, USAColombian in Medellin, ColombiaPuerto Rican in Puerto RicoAfrican Ancestry in Southwest USA

We need tools to automatically tag data

 MNIST

- Many labels \rightarrow supervised learning
- None or so few labels \rightarrow unsupervised or (semi supervised) learning

- None or so few labels \rightarrow unsupervised or (semi supervised) learning

Detect families and subfamilies in the data \rightarrow hierarchical clustering

- Curse of dimensionality

- None or so few labels \rightarrow unsupervised or (semi supervised) learning

Detect families and subfamilies in the data \rightarrow hierarchical clustering

- Curse of dimensionality

Step 0 : Principal Component Analysis

Human Genome dataset \rightarrow mutations genome
A global reference for human genetic variation, Nature 526(7571),68 (2015),

Population
origin
$?$

Mutation sites
N_{v}
Human individuals

$$
\sum=\operatorname{Cov}\left[X_{i}, X_{j}\right]
$$

Eigenvectors : \boldsymbol{v}_{α}
Directions of maximal variation

Step 0 : Principal Component Analysis

Human Genome dataset \rightarrow mutations genome A global reference for human genetic variation, Nature 526(7571),68 (2015),

Population origin

$$
m_{\alpha}^{(i)}=\boldsymbol{v}_{\alpha} \cdot \boldsymbol{X}^{(i)} \quad \text { PCA Human Genome }
$$

European

- South Asian
- East Asian

American
African
$50 / 76$

Step 0 : Principal Component Analysis

Human Genome dataset \rightarrow mutations A global reference for human genetic variation, Nature 5\%

$$
m_{\alpha}^{(i)}=U_{\alpha} \cdot \underset{ }{(i)}
$$

East Asian

Step 0 : Principal Component Analysis

Human Genome dataset \rightarrow mutations
East Asian
A global reference for human genetic variation, Nature 5\%

$$
m_{\alpha}^{(i)}=\boldsymbol{v}_{\alpha} \cdot \boldsymbol{X}^{(i)}
$$

Step 0 : Principal Component Analysis

\section*{| 3 | 8 | 6 | 9 | 6 | 4 | 5 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 1 | | | | | | |
| 1 | 5 | 0 | 5 | 9 | 7 | 4 |}

Step 0 : Principal Component Analysis

\section*{| 3 | 8 | 6 | 9 | 6 | 4 | 5 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 1 | | | | | | |
| 1 | 5 | 0 | 5 | 9 | 7 | 4 |}

We need :

- Better decomposition (features) of the dataset
- Finer probe of the probability distribution function

Step 0 : Principal Component Analysis

We have a model for the probability

$$
p_{\mathcal{D}}(x) \sim p_{\theta}(x)=\frac{e^{-E_{\theta}(x)}}{Z_{\theta}}
$$

Can we probe the maxima?

Compone

Free energy landscape

$$
p(\boldsymbol{S})=\frac{e^{-E_{R B M}(\boldsymbol{S})}}{Z}
$$

q^{N} Number of states but so few contribute

$$
Z=\sum_{\{\boldsymbol{S}\}} e^{-E_{R B M}(\boldsymbol{S})}=\sum_{U} g(U) e^{-U}=\sum_{U} e^{S(U)-U}=\sum_{U} e^{-F(U)}=\sum_{U} e^{-N f(U)}
$$

$$
F=U-T S \quad \text { "Free energy" }
$$

The states with lower $f(U)$ are those that dominate the measure

Free energy landscape

- We want to use this landscape to get a notion also to identify groups of similar sequences
- We want to obtain $f(\boldsymbol{M})$ as a function of the probability of having variables \boldsymbol{v} and \boldsymbol{h} activated

$$
M=\left\{\left\{\boldsymbol{f}_{i}^{q}\right\},\left\{\boldsymbol{m}_{a}\right\}\right\}
$$

- $\log Z=\log \sum_{\boldsymbol{M}} e^{-N f(\boldsymbol{M})} \Rightarrow$ Find the \boldsymbol{M} s with lower $f(\boldsymbol{M})$

Approximate the free energy

- We use the Plefka expansion to approximate $f(M)$

$$
\begin{aligned}
& \cdot \quad f_{\beta}^{(2)}(\boldsymbol{M})=f_{0}(\boldsymbol{M})+\left.\beta \frac{\partial f_{\beta}(\boldsymbol{M})}{\partial \beta}\right|_{\beta=0}+\left.\frac{\beta^{2}}{2} \frac{\partial^{2} f_{\beta}(\boldsymbol{M})}{\partial \beta^{2}}\right|_{\beta=0} \\
& =\sum_{i q} f_{i}^{q} a_{i}^{q}+\sum_{\mu}^{m_{\mu} b_{\mu}}-\sum_{i q} f_{i}^{q} \log f_{i}^{f_{i}}-\sum_{\mu} m_{\mu} \log m_{\mu}+\left(1-m_{\mu}\right) \log \left(1-m_{\mu}\right)+\beta \sum_{i \mu \mu} f_{i}^{q} u_{\mu \mu}^{q} m_{\mu}+\frac{\beta^{2}}{2} \sum_{\mu}\left(m_{\mu}-m_{\mu}^{2}\right) \sum_{i q}\left(w_{\psi \mu}^{q}\right) f_{i}^{q}-\sum_{i} \sum_{q} w_{\psi \mu}^{q} f_{i}^{2} .
\end{aligned}
$$

Approximate the free energy

- We use the Plefka expansion to approximate $f(M)$

$$
\begin{aligned}
& \quad f_{\beta}^{(2)}(\boldsymbol{M})=f_{0}(\boldsymbol{M})+\left.\beta \frac{\partial f_{\beta}(\boldsymbol{M})}{\partial \beta}\right|_{\beta=0}+\left.\frac{\beta^{2}}{2} \frac{\partial^{2} f_{\beta}(\boldsymbol{M})}{\partial \beta^{2}}\right|_{\beta=0} \\
& =\sum_{i q} f_{i}^{q} a_{i}^{q}+\sum_{\mu}^{m_{\mu} b_{\mu}-\sum_{i q} f_{i}^{q} \log f_{i}^{q}-\sum_{\mu} m_{\mu} \log m_{\mu}+\left(1-m_{\mu}\right) \log \left(1-m_{\mu}\right)+\beta \sum_{i \psi \mu} f_{i} f_{i \mu}^{q} m_{\mu}^{q} m_{\mu}+\frac{\beta^{2}}{2} \sum_{\mu}\left(m_{\mu}-m_{\mu}^{2}\right) \sum_{i q}\left(w_{\mu \mu}^{q}\right) f_{i}^{q}-\sum_{i} \sum_{q} w_{i \mu}^{q} f_{i}^{2} .} .
\end{aligned}
$$

- Minima $\boldsymbol{\nabla} f(\boldsymbol{M})=\mathbf{0} \quad \Rightarrow$ set of self-consistent equations (TAP eqs.)

$$
\begin{aligned}
& m_{\mu}[t+1] \leftarrow \operatorname{sigmoid}\left[b_{\mu}+\sum_{i q} f_{i}^{q}[t] w_{i \mu}^{q}+\left(m_{\mu}[t]-\frac{1}{2}\right)\left(\sum_{i}\left(\sum_{q} f_{i}^{q}[t] w_{i \mu}^{q}\right)^{2}-\sum_{i q}\left(w_{i \mu}^{q}\right)^{2} f_{i}^{q}[t]\right)\right] \\
& f_{i}^{q}[t+1] \leftarrow \operatorname{softmax}_{q}\left[a_{i}^{q}+\sum m_{\mu}[t+1] w_{i \mu}^{q}+\sum\left(m_{\mu}[t+1]-m_{\mu}^{2}[t+1]\right)\left(\frac{1}{2}\left(w_{i \mu}^{q}\right)^{2}-w_{i \mu}^{q} \sum_{p} f_{i}^{p}[t] w_{i \mu}^{p}\right)\right]
\end{aligned}
$$

Approximate the free energy

1 principal component

- Minima $\boldsymbol{\nabla} f(\boldsymbol{M})=\mathbf{0} \quad \Rightarrow$ set of self-consistent equations (TAP eqs.)
$m_{\mu}[t+1] \leftarrow \operatorname{sigmoid}\left[b_{\mu}+\sum_{i q} f_{i}^{q}[t] w_{i \mu}^{q}+\left(m_{\mu}[t]-\frac{1}{2}\right)\left(\sum_{i}\left(\sum_{q} f_{i}^{q}[t] w_{i \mu}^{q}\right)^{2}-\sum_{i q}\left(w_{i \mu}^{q}\right)^{2} f_{i}^{q}[t]\right)\right]$
$f_{i}^{q}[t+1] \leftarrow \operatorname{softmax}_{q}\left[a_{i}^{q}+\sum m_{\mu}[t+1] w_{i \mu}^{q}+\sum\left(m_{\mu}[t+1]-m_{\mu}^{2}[t+1]\right)\left(\frac{1}{2}\left(w_{i \mu}^{q}\right)^{2}-w_{i \mu}^{q} \sum_{p} f_{i}^{p}[t] w_{i \mu}^{p}\right)\right]$

Basin of attraction: class Fixed point: "representative" features

- Minima $\boldsymbol{\nabla} f(\boldsymbol{M})=\mathbf{0} \quad \Rightarrow$ set of self-consistent equations (TAP eqs.)

$$
\begin{aligned}
& m_{\mu}[t+1] \leftarrow \operatorname{sigmoid}\left[b_{\mu}+\sum_{i q} f_{i}^{q}[t] w_{i \mu}^{q}+\left(m_{\mu}[t]-\frac{1}{2}\right)\left(\sum_{i}\left(\sum_{q} f_{i}^{q}[t] w_{i \mu}^{q}\right)^{2}-\sum_{i q}\left(w_{i \mu}^{q}\right)^{2} f_{i}^{q}[t]\right)\right] \\
& f_{i}^{q}[t+1] \leftarrow \operatorname{softmax}_{q}\left[a_{i}^{q}+\sum m_{\mu}[t+1] w_{i \mu}^{q}+\sum\left(m_{\mu}[t+1]-m_{\mu}^{2}[t+1]\right)\left(\frac{1}{2}\left(w_{i \mu}^{q}\right)^{2}-w_{i \mu}^{q} \sum_{p} f_{i}^{p}[t] w_{i \mu}^{p}\right)\right]
\end{aligned}
$$

Data has a hierarchical organization

In order to be expressive enough, the RBM must describe all possible levels of similarity

The closest fixed point might be too detailed to be useful for a general classification

Data has a hierarchical organization

In order to be expressive enough, the RBM must describe all possible levels of similarity

The closest fixed point might be too detailed to be useful for a general classification

How do we detect larger basins?

The RBM learns in an hierarchical way

The RBM learns in an hierarchical way

Hierarchical

Clustering

Hierarchical
 Clustering

A)

B)

67 / 76

Example: synthetic evolutionary data

A)
N_{v}

$$
\mathbf{M} \left\lvert\, \begin{array}{ccccccccc}
0 & 1 & 0 & 0 & \ldots & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 1 & \ldots & 0 & 1 & 0 & 0 \\
\vdots & \vdots & \vdots & \vdots & & \vdots & \vdots & \vdots & \vdots \\
1 & 1 & 0 & 0 & \ldots & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & \ldots & 0 & 1 & 0 & 1
\end{array}\right.
$$

B)

C)

Example: synthetic evolutionary data

A)
$\mathbf{M} \left\lvert\, \begin{array}{ccccccccc}0 & 1 & 0 & 0 & \ldots & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 1 & \ldots & 0 & 1 & 0 & 0 \\ \vdots & \vdots & \vdots & \vdots & & \vdots & \vdots & \vdots & \vdots \\ 1 & 1 & 0 & 0 & \ldots & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & \ldots & 0 & 1 & 0 & 1\end{array}\right.$
B)

N

C)

Synthetic data

Real tree

1 principal component

Synthetic data

Hierarchical Clustering

MNIST data

3	8	6	9	6	4	5	3
1	5	0	5	9	7	4	1
1	3	6	8	0	7	7	6
8	4	4	1	2	9	8	1

Digit

Hierarchical
 Clustering

Protein function classification

ProfileView classification
\square CRY Pro
\square NCRY
\square Class III CPD photolyase
\square Class II CPD photolyase
\square Plant-like photoreceptor CRY
\square Animal photoreceptor CRY
\square CRY DASH
\square (6-4) photolyase
\square Trans. regulators
\square N/A
\square Plant photoreceptor CRY
\square Class I CPD photolyase

Experimental classification

Hierarchical

Clustering

Conclusions

- RBMs are both expressive and simple
- The are as interpretable as the Boltzmann Machines
- They can be used to infer multi-body interactions without blowing the number of parameters
- We have mappings between the:
- Bernouilli-Bernoulli RBM \rightarrow Generalized Ising model
- Bernouilli-Potts RBM \rightarrow Generalized Potts model (still testing)
- We can use the RBM for hierarchical clustering

