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Class 2: Interpreting RBMs
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Plan for the lecturers

● Class 1: Introduction to Energy Based Models

● Class 2: Interpretability. How can we learn from trained networks? 

● Class 3: Training optimization, the role of MCMC. How can we improve 
the training mechanisms by understanding their physics? 
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Summary 
● Application 1: Interpretation of the energy function: E

θ
(x)

– Intro: General applications of inverse statistical mechanics
– Mapping the RBM to a multi-body interaction Ising model
– Inference of interaction networks

● Application 2: Exploring the inferred probability distribution function: p
θ
(x)

– Probe perturbately the free-enery landscape using statistical physics
– Use the training dynamics to reveal relational trees between data:

● Hierarchical clustering 
● Unsupervised classification
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Interpreting the energy function



  5 / 76

Inverse Ising problem
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Nguyen, H. C., Zecchina, R., & Berg, J. 
(2017)  Advances in Physics
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Am I able to infer which was the 
interaction model that generated it?
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(2017)  Advances in Physics
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Inverse Ising problem
Am I able to infer which was the 
interaction model that generated it?

D
at

as
et

Nguyen, H. C., Zecchina, R., & Berg, J. 
(2017)  Advances in Physics

Solution 
is unique !

Fixed pointWe only 
Know the data
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Applications I:  reconstruction of neural 
connections
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Applications II: Inverse Potts
Direct coupling analysis (DCA)

q=21

MSA

Model the “true”
fitness landscape

Statistical sequence 
landscape
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q=21
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Applications II: Inverse Potts
Direct coupling analysis (DCA)

Cocco, Feinauer, Figliuzzi, Monasson. Weigt, Rep. Prog. Phys. 81 (2018) 032601

Structure prediction

Model the “true”
fitness landscape

Statistical sequence 
landscape
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q=21

MSA

Model the “true”
fitness landscape

Ex. Inverse Potts
Direct coupling analysis (DCA)

q=21

MSA

Cocco, Feinauer, Figliuzzi, Monasson. Weigt, Rep. Prog. Phys. 81 (2018) 032601

Structure prediction

Rodriguez-Rivas, J., Croce, G., Muscat, M., & Weigt, M. 
Proceedings of the National Academy of Sciences, (2022).

Mutation prediction
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Pairwise models : The Boltzmann machine

Simple and easy to interpret, but are strongly limited...
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learning
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Pairwise models : The Boltzmann machine

Simple and easy to interpret, but are strongly limited...

 Hinton and Sejnowski (1983) 

learning

Generation

We need to encode higher order correlations !
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Encoding high-order correlations

# parameters diverge too fast...
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Encoding high-order correlations

# parameters diverge too fast...

But in real data the 
interactions are sparse

Only some n-tuples of 
variables are correlated
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Alternative solution: add hidden variables

Marginal 
probability

The 
encoding is 
not unique !



  20 / 76

Alternative solution: add hidden variables

Marginal 
probability
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Alternative solution: add hidden variables

There are even more ways to encode the same 
interaction if you consider biases…
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Alternative solution: add hidden variables

In order to encode an interaction model with at most k-body interactions we need O(N
k
) hidden 

nodes, with N
k
 the number of non-zero J(k) couplings (# parameters  O(N

k
)N) << O(Nk)
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The Restricted Boltzmann Machine
-Smolensky, P. (1986)

Visible  : data

Hidden : “Neurons”  → features extracted

Universal approximator ! Le Roux and Bengio. Neural computation (2008)
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The Restricted Boltzmann Machine
-Smolensky, P. (1986)

Universal approximator !

Le Roux and Bengio. Neural computation (2008)

The RBM is much more expressive than

 the BM, but can we 

make it just as interpretable?
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The RBM as a model for interacting spins

Both Ising variables
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The RBM as a model for interacting spins

Both Ising variables
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From the RBM to a generalized Ising model
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From the RBM to a generalized Ising model
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From the RBM to a generalized Ising model
Given an 
RBM, we know 
which effective 
Ising Model it 
corresponds to
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From the RBM to a generalized Ising model
Introduce the random variable

Central limit theorem

N
v
 large
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Numerical controlled experiments

Generate equilibrium samples
With a known model
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Decelle,  Furtlehner,  Navas 
Gómez,  Seoane, SciPost 2024
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1D Ising model β=0.2
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1D Ising + 3-body interactions
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Previous attempts
G. Cossu, L. Del Debbio, T. Giani, A. 
Khamseh and M. Wilson, Phys. Rev. B (2019)



  38 / 76

Previous attempts N. Bulso and Y. Roudi, 
Neural Computation (2021)

Equivalence between 
the RBM and a lattice 
gas model v

i
={0,1} 
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Beyond Ising spins

One can generalize to Potts variables
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From Ising to Potts

We can use it to infer 
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Main difficulty: gauge symmetry

Invariant
under the 
transformation

The gauge transformation changes all orders of interaction !

And the zero sum gauge in the RBM is not equivalent to the zero sum gauge in the 
effective Potts model
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Analyzing the free energy landscape
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Motivation
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high quality 
manually 
annotated

Motivation
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We need tools to automatically tag data

3, 8, 6, 9, 6, 4, 5, 3,
1, 5, 0, 5, 9, 7, 4, 1

MNIST

digit

Biological 
function

Human Genome dataset → mutations genome
A global reference for human genetic variation, Nature 526(7571),68 (2015),

 

Population 
origin
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Population 
origin

● Many labels → supervised learning

● None or so few labels  → unsupervised or (semi supervised) learning
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3, 8, 6, 9, 6, 4, 5, 3,
1, 5, 0, 5, 9, 7, 4, 1

MNIST

digit

Biological 
function

Human Genome dataset → mutations genome
A global reference for human genetic variation, Nature 526(7571),68 (2015),

 

Population 
origin

● Many labels → supervised learning

● None or so few labels  → unsupervised or (semi supervised) learning

● Curse of dimensionality 

●

Detect families and subfamilies in the data → hierarchical clustering 

Evolutionary process
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3, 8, 6, 9, 6, 4, 5, 3,
1, 5, 0, 5, 9, 7, 4, 1

MNIST

digit

Biological 
function

Human Genome dataset → mutations genome
A global reference for human genetic variation, Nature 526(7571),68 (2015),

 

Population 
origin

● Many labels → supervised learning

● None or so few labels  → unsupervised or (semi supervised) learning

● Curse of dimensionality 

●

Detect families and subfamilies in the data → hierarchical clustering 
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Step 0 : Principal Component Analysis
Human Genome dataset → mutations genome
A global reference for human genetic variation, Nature 526(7571),68 (2015),

 

Population 
origin ?

Mutation sites

H
um

an
 in

di
vi

du
al

s

Eigenvectors :

Directions of maximal variation
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Step 0 : Principal Component Analysis
Human Genome dataset → mutations genome
A global reference for human genetic variation, Nature 526(7571),68 (2015),

 

Population 
origin ?

African

East Asian

South Asian

European

populations
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Step 0 : Principal Component Analysis
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Step 0 : Principal Component Analysis

We need :

● Better decomposition (features) of the dataset

● Finer probe of the probability distribution function
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Step 0 : Principal Component Analysis

We need :

● Better decomposition (features) of the dataset

● Finer probe of the probability distribution function

We have a model for the probability 

Can we probe the maxima?
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Free energy landscape

Number of states but so few contribute

“Free energy”

The states with lower f(U) are those that dominate the measure
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Free energy landscape
● We want to use this landscape to get a notion also to identify 

groups of similar sequences

● We want to obtain f(M) as a function of the probability of having 
variables v and h activated                    M={{fiq}, {ma}}

●                                                ⇒ Find the Ms with lower f(M)

We can use 
basins of 

attraction to 
cluster data points
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● We use the Plefka expansion to approximate f(M) 

●

Approximate the free energy
[ T. Plefka, J. Phys. A 15, 1971 (1982),
A. Georges and J. S. Yedidia, J. Phys. A 24, 2173 (1991)]
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● We use the Plefka expansion to approximate f(M) 

●

● Minima                             set of self-consistent equations (TAP eqs.) ⇒

Approximate the free energy

Solve iteratively

[ T. Plefka, J. Phys. A 15, 1971 (1982),
A. Georges and J. S. Yedidia, J. Phys. A 24, 2173 (1991)]

[ Thouless, Anderson, Palmer, Philos. Mag. 35, 593 (1977) ]



  60 / 76

●

●

● Minima                             set of self-consistent equations (TAP eqs.) ⇒

Approximate the free energy

Solve iteratively
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●

●

● Minima                             set of self-consistent equations (TAP eqs.) ⇒

Solve iteratively

Basin of attraction: class
Fixed point: “representative” 

features 
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Data has a hierarchical organization
In order to be expressive enough, the RBM must
describe all possible levels of similarity

The closest fixed point might be too detailed to 
be useful for a general classification
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Data has a hierarchical organization
In order to be expressive enough, the RBM must
describe all possible levels of similarity

The closest fixed point might be too detailed to 
be useful for a general classification

How do we detect larger basins?



  64 / 76

Save machines

More are more structure 
added to the model

The RBM learns in an hierarchical way
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Save machines

More are more structure 
added to the model

The RBM learns in an hierarchical way
The W encode the PCA 
of the dataset: Pairwise correlations

* Decelle, Fissore and Furtlehner, Spectral dynamics of learning in restricted boltzmann machines (2017)
* Decelle, & Furtlehner, Restricted Boltzmann machine: Recent advances and mean-field theory (2021)

Higher order correlations
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Hierarchical 
Clustering
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Hierarchical 
Clustering
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Example: synthetic evolutionary data
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Example: synthetic evolutionary data

Train a RBM 

Build a tree
Using machines saved during
the training
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Synthetic data
Real tree

Reconstruction 
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Synthetic data
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Hierarchical 
Clustering

MNIST data
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Hierarchical 
Clustering

MNIST data
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Protein function classification
 CPF protein family
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Hierarchical 
Clustering Automatically label 

sequences based on a few 
examples
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Conclusions
● RBMs are both expressive and simple
● The are as interpretable as the Boltzmann Machines
● They can be used to infer multi-body interactions without 

blowing the number of parameters
● We have mappings between the:

● Bernouilli-Bernoulli RBM  Generalized Ising model→
● Bernouilli-Potts RBM   Generalized Potts model (still →

testing)
● We can use the RBM for hierarchical clustering
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