Class 2: Interpreting RBMs

Plan for the lecturers

• Class 1: Introduction to Energy Based Models

• Class 2: Interpretability. How can we learn from trained networks?

• Class 3: Training optimization, the role of MCMC. How can we improve the training mechanisms by understanding their physics?

Summary $p_{\theta}(\boldsymbol{x}) = \frac{e^{-E_{\theta}(\boldsymbol{x})}}{Z_{\theta}}$

- **Application 1:** Interpretation of the energy function: $E_{\theta}(x)$
 - Intro: General applications of inverse statistical mechanics
 - Mapping the RBM to a multi-body interaction Ising model
 - Inference of interaction networks
- **Application 2:** Exploring the inferred probability distribution function: $p_{\theta}(x)$
 - Probe perturbately the free-enery landscape using statistical physics
 - Use the training dynamics to reveal relational trees between data:
 - Hierarchical clustering
 - Unsupervised classification

Interpreting the energy function

Nguyen, H. C., Zecchina, R., & Berg, J. (2017) Advances in Physics

 $E_{\text{Ising 2D}}(\boldsymbol{S}) = -\hat{J} \sum_{\langle i,j \rangle} S_i S_j$ $\hat{\beta} = 1/\hat{T}$

5/76

Nguyen, H. C., Zecchina, R., & Berg, J. (2017) Advances in Physics

 $E_{\text{Ising 2D}}(\boldsymbol{S}) = -\hat{J} \sum_{\langle i,j \rangle} S_i S_j$ $\hat{\beta} = 1/\hat{T}$

Am I able to infer which was the interaction model that generated it?

Nguyen, H. C., Zecchina, R., & Berg, J. (2017) Advances in Physics

Am I able to infer which was the interaction model that generated it?

$$E_{J,h}(\boldsymbol{S}) = -\sum J_{ij}S_iS_j - \sum h_iS_j$$

$$p_{\text{data}}(\boldsymbol{S}) = \frac{1}{Z} e^{\beta \hat{J} \sum_{\langle i,j \rangle} S_i S_j}$$

$$\beta \hat{J}_{ij} = J_{ij} \quad h_i = 0$$

Solution is unique !

$$p_{J,h}(\boldsymbol{S}) = \frac{1}{Z} e^{\sum_{ij} J_{ij} S_i + \sum_i h_i S_j}$$

Nguyen, H. C., Zecchina, R., & Berg, J. (2017) Advances in Physics

$$p_{\text{data}}(\boldsymbol{S}) = \frac{1}{Z} e^{\beta \hat{J} \sum_{\langle i,j \rangle} S_i S_j}$$

$$p_{\text{data}}(\boldsymbol{S}) = \frac{1}{Z} e^{\beta \hat{J} \sum_{\langle i,j \rangle} S_i S_j}$$

$$p_{J,h}(\boldsymbol{S}) = \frac{1}{Z} e^{\sum_{ij} J_{ij} S_i + \sum_i h_i S_j}$$

$$p_{J,h}(\boldsymbol{S}) = \frac{1}{Z} e^{\sum_{ij} J_{ij} S_i + \sum_i h_i S_j}$$

$$p_{J,h}(\boldsymbol{S}) = \frac{1}{Z} e^{\sum_{ij} J_{ij} S_i + \sum_i h_i S_j}$$

$$p_{J,h}(\boldsymbol{S}) = \frac{1}{Z} e^{\sum_{ij} J_{ij} S_i + \sum_i h_i S_j}$$

$$p_{J,h}(\boldsymbol{S}) = \frac{1}{Z} e^{\sum_{ij} J_{ij} S_i + \sum_i h_i S_j}$$

$$p_{J,h}(\boldsymbol{S}) = \frac{1}{Z} e^{\sum_{ij} J_{ij} S_i + \sum_i h_i S_j}$$

Nguyen, H. C., Zecchina, R., & Berg, J. (2017) Advances in Physics

Am I able to infer which was the interaction model that generated it?

$$p_{\text{data}}(\mathbf{S}) = \frac{1}{Z} e^{\beta \hat{J}} \sum_{\langle i,j \rangle} S_i S_j$$

$$p_{\text{data}}(\mathbf{S}) = \frac{1}{Z} e^{\beta \hat{J}} \sum_{\langle i,j \rangle} S_i S_j$$

$$\beta \hat{J}_{ij} \neq J_{ij} \quad h_i \neq 0$$
Solution is unique!

$$p_{J,h}(\mathbf{S}) = \frac{1}{Z} e^{\sum_{ij} J_{ij} S_i + \sum_i h_i S_j}$$

$$Fixed point$$

$$\langle S_i S_j \rangle_{p_{J,h}} = \langle S_i S_j \rangle_{p_{D}}$$

$$\langle S_i \rangle_{p_{J,h}} = \langle S_i \rangle_{p_{D}}$$

Applications I: reconstruction of neural connections

Tavoni, G., Cocco, S., & Monasson, R. (2016)

Roudi, Y., Aurell, E., & Hertz, J. A. (2009) Schneidman, E., Berry, M. J., Segev, R., & Bialek, W. (2006)

Schneidman, 20 Berry Marre Š ഗ Tkačik, Bialek, V

effective network

Applications II: Inverse Potts Direct coupling analysis (DCA)

q=21

Model the "true" fitness landscape

Statistical sequence landscape

Applications II: Inverse Potts Direct coupling analysis (DCA)

Ex. Inverse Potts Direct coupling analysis (DCA)

residues

Rodriguez-Rivas, J., Croce, G., Muscat, M., & Weigt, M. Proceedings of the National Academy of Sciences, (2022). 13 / 76

Pairwise models : The Boltzmann machine

$$E_{J,h}(\boldsymbol{x}) = -\sum_{ij} J_{ij} x_i x_j - \sum_i h_i x_i$$

Simple and easy to interpret, but are strongly limited...

Pairwise models : The Boltzmann machine

learning

Hinton and Sejnowski (1983)

$$E_{J,h}(\boldsymbol{x}) = -\sum_{ij} J_{ij} x_i x_j - \sum_i h_i x_i$$

Simple and easy to interpret, but are strongly limited...

BM inferred pairwise coupling matrix

Pairwise models : The Bolt

We need to encode higher order correlations !

$$E_{\boldsymbol{J},\boldsymbol{h}}(\boldsymbol{x}) = -\sum_{ij} J_{ij} x_i x_j - \sum_i h_i x_i$$

Simple and easy to interpret, but are strongly limited...

Generation

Samples generated with the BM

Encoding high-order correlations

$$f_i = \langle x_i \rangle_{\text{data}}$$

 $f_{ij} = \langle x_i x_j \rangle_{\text{data}}$
 $f_{ijk} = \langle x_i x_j x_k \rangle_{\text{data}}$

$$f_{i_1\cdots i_n} = \langle x_{i_1}\cdots x_{i_n} \rangle_{\text{data}}$$

parameters diverge too fast...

$$E(\mathbf{x}) = -\sum_{i} h_{i} x_{i} - \sum_{ij} J_{ij}^{(2)} x_{i} x_{j} - \sum_{ijk} J_{ijk}^{(3)} x_{i} x_{j} x_{k} - \sum_{ijkl} J_{ijkl}^{(4)} x_{i} x_{j} x_{k} x_{l} + \cdots$$

Encoding high-order correlations

But in real data the interactions are sparse

Only some *n*-tuples of variables are correlated

$$f_{i} = \langle x_{i} \rangle_{\text{data}}$$
$$f_{ij} = \langle x_{i} x_{j} \rangle_{\text{data}}$$
$$f_{ijk} = \langle x_{i} x_{j} x_{k} \rangle_{\text{data}}$$

$$f_{i_1\cdots i_n} = \langle x_{i_1}\cdots x_{i_n} \rangle_{\text{data}}$$

parameters diverge too fast...

$$E(\boldsymbol{x}) = -\sum_{i} h_{i} x_{i} - \sum_{ij} J_{ij}^{(2)} x_{i} x_{j} - \sum_{ijk} J_{ijk}^{(3)} x_{i} x_{j} x_{k} - \sum_{ijkl} J_{ijkl}^{(4)} x_{i} x_{j} x_{k} x_{l} + \cdots$$

$$\begin{array}{ccc} & \boldsymbol{\tau} & \boldsymbol{\tau} = \pm 1 & \mathcal{H}(S_1, S_2, \boldsymbol{\tau}) = -\boldsymbol{\tau}(\boldsymbol{w}_1 S_1 + \boldsymbol{w}_2 S_2) \\ & \boldsymbol{w}_1 & \boldsymbol{w}_2 \\ & \boldsymbol{S}_1 & \boldsymbol{S}_2 & \boldsymbol{S}_i = \pm 1 & \text{Marginal} \\ & \boldsymbol{p}(S_1, S_2) = \frac{e^{-\mathcal{H}(S_1, S_2)}}{Z} \end{array}$$

$$\mathcal{H} = -\log \sum_{\tau=\pm 1} e^{\tau(w_1 S_1 + w_2 S_2)} = -\log 2 \cosh \left[\frac{w_1 S_1 + w_2 S_2}{w_2 S_2} \right]$$

The
encoding is
not unique !

$$\frac{\cosh(w_1 + w_2)}{\cosh(w_1 - w_2)} = e^{2J} \quad J > 0$$
19/76

$$\begin{array}{ccc} \tau & \tau = \pm 1 & \mathcal{H}(S_1, S_2, \tau) = -w\tau(S_1 + S_2) \\ w & w \\ S_1 & S_2 & S_i = \pm 1 & \text{Marginal} \\ \text{probability} & p(S_1, S_2) = \frac{e^{-\mathcal{H}(S_1, S_2)}}{Z} \end{array}$$

$$\mathcal{H} = -\log \sum_{\tau=\pm 1} e^{w\tau(S_1+S_2)} = -\log 2 \cosh \left[w(S_1+S_2)\right]$$
$$= -JS_1S_2 - J$$
$$S^{2k} = 1$$
$$\Rightarrow \boxed{\cosh 2w = e^{2J}} \qquad J > 0 \qquad S^{2k+1} = S$$

 $\mathcal{H}(S_1, S_2, \tau) = -\tau(\mathbf{w_1}S_1 + \mathbf{w_2}S_2 + \theta) + h_1S_1 + h_2S_2$

There are even more ways to encode the same interaction if you consider biases...

$$\begin{matrix} \tau \\ w_1 \\ S_1 \\ S_2 \\ S_3 \\ S_3 \\ S_4 \end{matrix}$$

$$\mathcal{H}(S_1, S_2, \tau) = -\tau(w_1 S_1 + w_2 S_2 + w_3 S_3 + w_4 S_4)$$

 $= -J_{1234}^{(4)}S_1S_2S_3S_4 - J_{12}^{(2)}S_1S_2 - J_{13}^{(2)}S_1S_3 - J_{14}^{(2)}S_1S_4 - J_{23}^{(2)}S_2S_3 - J_{24}^{(2)}S_2S_4 - J_{34}^{(2)}S_3S_4 + C$

In order to encode an interaction model with at most *k*-body interactions we need $O(N_k)$ hidden nodes, with N_k the number of non-zero $J^{(k)}$ couplings (# parameters $O(N_k)N$) << $O(N^k)$

The Restricted Boltzmann Machine

-Smolensky, P. (1986)

 $(\frown \frown \frown \frown \frown$

$$\mathcal{E}_{\theta}(\boldsymbol{x},\boldsymbol{\tau}) = -\sum_{ia} x_{i} w_{ia} \tau_{a} - \sum_{i} \eta_{i} x_{i} - \sum_{a} \zeta_{a} \tau_{a}$$

$$(\tau_{1}, \tau_{2}, \tau_{3}, \tau_{4})$$

$$(\tau_{1}, \tau_{2}, \tau_{3}, \tau_{4}, \tau_{5})$$

Hidden : "Neurons" → **features extracted**

Universal approximator ! Le Roux and Bengio. Neural computation (2008)

The Restricted Boltzmann Machine

-Smolensky, P. (1986)

$$\mathcal{E}_{\boldsymbol{\theta}}(\boldsymbol{x},\boldsymbol{\tau}) = -\sum_{ia} \boldsymbol{x}_{i} \boldsymbol{w}_{ia} \boldsymbol{\tau}_{a} - \sum_{i} \eta_{i} \boldsymbol{x}_{i} - \sum_{a} \zeta_{a} \boldsymbol{\tau}_{a}$$

B3 Samples generated with the RBM

Universal approximator !

Le Roux and Bengio. Neural computation (2008)

The Restricted Boltzmann Machine

-Smolensky, P. (1986)

 (τ_2) (τ_2)

 τ_1

$$\mathcal{E}_{\boldsymbol{\theta}}(\boldsymbol{\sigma},\boldsymbol{\tau}) = -\sum_{ia} \boldsymbol{\sigma}_{i} w_{ia} \tau_{a} - \sum_{i} \eta_{i} \boldsymbol{\sigma}_{i} - \sum_{a} \theta_{a} \tau_{a}$$

$$\sigma_j, \tau_i \in \{\pm 1\}$$

Both Ising variables

$$\mathcal{H}_{RBM}(\boldsymbol{\sigma}) = -\log \sum_{\boldsymbol{\tau}} e^{-\mathcal{E}_{\boldsymbol{\theta}}(\boldsymbol{\sigma},\boldsymbol{\tau})} = -\sum_{i} \eta_{i} \sigma_{i} - \sum_{a} \log \cosh \left(\theta_{a} + \sum_{i} W_{ia} \sigma_{i} \right) + C$$

The RBM as a model for interacting spins

$$\mathcal{E}_{\boldsymbol{\theta}}(\boldsymbol{\sigma},\boldsymbol{\tau}) = -\sum_{ia} \boldsymbol{\sigma}_{i} w_{ia} \tau_{a} - \sum_{i} \eta_{i} \boldsymbol{\sigma}_{i} - \sum_{a} \theta_{a} \tau_{a}$$

$$\sigma_j, \tau_i \in \{\pm 1\}$$

Both Ising variables

$$\mathcal{H}_{RBM}(\boldsymbol{\sigma}) = -\log \sum_{\boldsymbol{\tau}} e^{-\mathcal{E}_{\boldsymbol{\theta}}(\boldsymbol{\sigma},\boldsymbol{\tau})} = -\sum_{i} \eta_{i} \sigma_{i} - \sum_{a} \log \cosh \left(\theta_{a} + \sum_{i} W_{ia} \sigma_{i} \right) + C$$
$$= -\sum_{j} H_{j} \sigma_{j} - \sum_{j_{1} > j_{2}} J_{j_{1} j_{2}}^{(2)} \sigma_{j_{1}} \sigma_{j_{2}} - \sum_{j_{1} > j_{2} > j_{3}} J_{j_{1} j_{2} j_{3}}^{(3)} \sigma_{j_{1}} \sigma_{j_{2}} \sigma_{j_{3}} + \dots$$

The RBM as a model for interacting spins

The RBM as a model for interacting spins

From the RBM to a generalized Ising model

$$\begin{aligned} \mathcal{H}(\boldsymbol{\sigma}) &= -\sum_{j} \eta_{j} \sigma_{i} - \sum_{a} \log \cosh \left(\sum_{j} w_{ja} \sigma_{j} + \zeta_{a} \right). \\ &= -\sum_{j} \eta_{j} \sigma_{j} - \sum_{\boldsymbol{\sigma'}} \prod_{j} \delta_{\boldsymbol{\sigma}_{j} \boldsymbol{\sigma}_{j}'} \sum_{a} \ln \cosh \left(\sum_{j} w_{ja} \boldsymbol{\sigma}_{j}' + \zeta_{a} \right). \\ &= -\sum_{j} \eta_{j} \sigma_{j} - \frac{1}{2^{N_{v}}} \sum_{\boldsymbol{\sigma'}} \prod_{j} \left(1 + \sigma_{j} \boldsymbol{\sigma}_{j}' \right) \sum_{a} \ln \cosh \left(\sum_{j} w_{ja} \boldsymbol{\sigma}_{j}' + \zeta_{a} \right). \end{aligned}$$

From the RBM to a generalized Ising model

$$\mathcal{H}(\boldsymbol{\sigma}) = -\sum_{j} \eta_{j} \sigma_{i} - \sum_{a} \log \cosh \left(\sum_{j} w_{ja} \sigma_{j} + \zeta_{a} \right).$$

$$= -\sum_{j} \eta_{j} \sigma_{j} - \sum_{\boldsymbol{\sigma}'} \prod_{j} \delta_{\sigma_{j} \sigma_{j}'} \sum_{a} \ln \cosh \left(\sum_{j} w_{ja} \sigma_{j}' + \zeta_{a} \right).$$

$$= -\sum_{j} \eta_{j} \sigma_{j} - \frac{1}{2^{N_{v}}} \sum_{\boldsymbol{\sigma}'} \prod_{j} \left(1 + \sigma_{j} \sigma_{j}' \right) \sum_{a} \ln \cosh \left(\sum_{j} w_{ja} \sigma_{j}' + \zeta_{a} \right).$$

$$(1 + \sigma_{1} \sigma_{1}')(1 + \sigma_{2} \sigma_{2}') \cdots (1 + \sigma_{N_{v}} \sigma_{N_{v}}') = 1 + \sum_{j} \sigma_{j} \sigma_{j}' + \sigma_{1} \sigma_{2} \sigma_{1}' \sigma_{2}' + \cdots + \sigma_{1} \sigma_{2} \sigma_{3} \sigma_{1}' \sigma_{2}' \sigma_{3}' + \cdots$$

$$= -\sum_{j} H_{j} \sigma_{j} - \sum_{j} J_{j_{1} j_{2}}^{(2)} \sigma_{j_{1}} \sigma_{j_{2}} - \sum_{j} J_{j_{1} j_{2} j_{3}}^{(3)} \sigma_{j_{1}} \sigma_{j_{2}} \sigma_{j_{3}} - \cdots$$

From the RBM to a generalized Ising model Given an

RBM, we which effe Ising Mod correspor

en an
M, we know
ch effective
g Model it
responds to

$$H_{j} = \eta_{j} + \frac{1}{2^{N_{v}}} \sum_{\sigma'} \sum_{i} \sigma'_{j} \ln \cosh\left(\sum_{k} w_{ik}\sigma'_{k} + \zeta_{i}\right)$$

$$J_{j_{1}...j_{n}}^{(n)} = \frac{1}{2^{N_{v}}} \sum_{\sigma'} \sum_{i} \sigma'_{j_{1}} \dots \sigma'_{j_{n}} \ln \cosh\left(\sum_{k} w_{ik}\sigma'_{k} + \zeta_{i}\right)$$

$$= -\sum_{j} \eta_{j}\sigma_{j} - \frac{1}{2^{N_{v}}} \sum_{\sigma'} \prod_{j} \left(1 + \sigma_{j}\sigma'_{j}\right) \sum_{a} \ln \cosh\left(\sum_{j} w_{ja}\sigma'_{j} + \zeta_{a}\right).$$

$$(1 + \sigma_{1}\sigma'_{1})(1 + \sigma_{2}\sigma'_{2}) \dots (1 + \sigma_{N_{v}}\sigma'_{N_{v}}) = 1 + \sum_{j} \sigma_{j}\sigma'_{j} + \sigma_{1}\sigma_{2}\sigma'_{1}\sigma'_{2} + \dots + \sigma_{1}\sigma_{2}\sigma_{3}\sigma'_{1}\sigma'_{2}\sigma'_{3} + \dots$$

$$= -\sum_{j} H_{j}\sigma_{j} - \sum_{j} J_{i}^{(2)}\sigma_{j}\sigma_{j}\sigma_{j} - \sum_{j} J_{i}^{(3)}\sigma_{j}\sigma_{j}\sigma_{j}\sigma_{j}\sigma_{j} - \dots$$

 $J_1 J_2 \stackrel{\sim}{} J_1 \stackrel{\sim}{} J_2$ $\mathcal{J}1\mathcal{J}2\mathcal{J}3$ - J1 - J2 - J3 31/76 $j_1 > j_2$ $j_1 > j_2 > j_3$

From the RBM to a generalized Ising model

Introduce the random variable

$$X_a^{(j_1\dots j_n)} \equiv \sum_{\mu=n+1}^{N_{\rm v}} w_{j_{\mu}a} \sigma'_{j_{\mu}}$$

 N_v large

Central limit theorem

$$H_{j} = \eta_{j} + \frac{1}{2} \sum_{a} \mathbb{E}_{X_{a}^{(j)}} \left[\ln \frac{\cosh\left(\zeta_{a} + w_{ja} + X_{a}^{(j)}\right)}{\cosh\left(\zeta_{a} - w_{ja} + X_{a}^{(j)}\right)} \right]$$
$$J_{j_{1}j_{2}}^{(2)} = \frac{1}{4} \sum_{a} \mathbb{E}_{X_{a}^{(j_{1}j_{2})}} \left[\ln \frac{\cosh\left(\zeta_{a} + w_{j_{1}a} + w_{j_{2}a} + X_{i}^{(j_{1}j_{2})}\right) \times \cosh\left(\zeta_{a} - (w_{j_{1}a} + w_{j_{2}a}) + X_{a}^{(j_{1}j_{2})}\right)}{\cosh\left(\zeta_{a} + (w_{j_{1}a} - w_{j_{2}a}) + X_{a}^{(j_{1}j_{2})}\right) \times \cosh\left(\zeta_{a} - (w_{aj_{1}} - w_{aj_{2}}) + X_{a}^{(j_{1}j_{2})}\right)} \right]$$

Numerical controlled experiments

$$H_{\text{original}}(\boldsymbol{\sigma}) = -\sum_{i} h_{i}^{*} \sigma_{i} - \sum_{ij} J_{ij}^{*(2)} \sigma_{i} \sigma_{j} - \left(-\sum_{ijk} J_{ijk}^{*(3)} \sigma_{i} \sigma_{j} \sigma_{k}\right)$$

$$\beta = \frac{1}{T}$$

1

Generate equilibrium samples With a known model

1D Ising model β=0.2

1D Ising + 3-body interactions

36 / 76
Previous attempts

G. Cossu, L. Del Debbio, T. Giani, A. Khamseh and M. Wilson, Phys. Rev. B (2019)

Previous attempts

N. Bulso and Y. Roudi, Neural Computation (2021)

(a1)(b1)Lattice Gas Model (c1)Fields 2-Body Couplings 3-Body Couplings uncoupled sites 10^{1} 10^{3} coupled sites 10^{2} 10^{2} Frequency 10^{1} 10^{1} 10^{0} 10^{0} 10^{0} $\beta J^{*(2)} = 0.8$ $J^{(2)}$ $\beta H^{*} = 0.0$ $\beta J^{*(2)} = 0.0$ -0.1 $-0.05 \quad \beta J^{*(3)} = 0.0 \quad 0.05$ 1.0-0.50.51.00.51.50.1Η $J^{(3)}$ Ising Model (a2)(b2)(c2)Fields 2-Body Couplings 3-Body Couplings uncoupled sites 10^{3} coupled sites 10^{2} 6×10^{0} $\label{eq:constraint} \begin{array}{l} \mbox{ Variable of } \lambda \mbox{ Variable$ 10^{2} 10^{1} 10^{1} 3×10^{0} 2×10^{0} 10^{0} 10^{0} 1.0-0.5 $\beta H^{*} = 0.0$ 0.5 $\beta J^{*(2)} = 0.0$ $\beta J^{*(2)}=0.8$ 1.5-0.1 $-0.05 \quad \beta J^{*(3)} = 0.0 \quad 0.05$ 0.11.00.5 $4.J^{(2)}$ $2H - 4\beta J^{*(2)}$ $J^{(3)}$

Equivalence between the RBM and a lattice gas model $v_i = \{0,1\}$

Beyond Ising spins

One can generalize to Potts variables

$$\mathcal{H}_{RBM}(\boldsymbol{v},\boldsymbol{h}) = -\sum_{i=1}^{N_h} \sum_{j=1}^{N_v} \sum_{a=1}^{q} h_i W_{ij}^a \delta_{av_j} - \sum_{j=1}^{N_v} \sum_{a=1}^{q} b_j^a \delta_{av_j} - \sum_{i=1}^{N_h} c_i h_i.$$

$$\mathcal{H}_{RBM}(\boldsymbol{v}) = -\sum_{j} \sum_{a} b_j^a \delta_{av_j} - \sum_{i} \ln \sum_{h_i} \exp\left(c_i h_i + h_i \sum_{j} \sum_{a} W_{ij}^a \delta_{av_j}\right)$$

$$= -\sum_{i} \kappa_i^{(0)} - \sum_{j} \sum_{a} \left(b_j^a + \sum_{i} \kappa_i^{(1)} W_{ij}^a\right) \delta_{av_j} - \sum_{k>1} \frac{1}{k!} \sum_{j_1, \dots, j_k} \sum_{a_1, \dots, a_k} \left(\sum_{i} \kappa_i^{(k)} W_{ij_1}^{a_1} \cdots W_{ij_k}^{a_k}\right) \delta_{a_i v_{j_1}} \cdots \delta_{a_k v_{j_k}}$$

$$39/76$$

h

 $(w_{i\mu}^{v_i})^{(k)}$

 $v^{(k)}$

Hidden Layer

Visible Layer

 N_a

$$\mathcal{H}_{\text{RBM}}(\boldsymbol{v}) = -\sum_{j} \sum_{a} b_{j}^{a} \delta_{av_{j}} - \sum_{i} \ln \sum_{h_{i}} \exp\left(c_{i}h_{i} + h_{i} \sum_{j} \sum_{a} W_{ij}^{a} \delta_{av_{j}}\right)$$
$$= -\sum_{i} \kappa_{i}^{(0)} - \sum_{j} \sum_{a} \left(b_{j}^{a} + \sum_{i} \kappa_{i}^{(1)} W_{ij}^{a}\right) \delta_{av_{j}} - \sum_{k>1} \frac{1}{k!} \sum_{j_{1}, \dots, j_{k}} \sum_{a_{1}, \dots, a_{k}} \left(\sum_{i} \kappa_{i}^{(k)} W_{ij_{1}}^{a_{1}} \cdots W_{ij_{k}}^{a_{k}}\right) \delta_{a_{1}v_{j_{1}}} \cdots \delta_{a_{k}v_{j_{k}}}$$
40 / 76

Main difficulty: gauge symmetry

$$\mathcal{H}_{RBM}(\boldsymbol{v},\boldsymbol{h}) = -\sum_{i=1}^{N_h} \sum_{j=1}^{N_v} \sum_{a=1}^q h_i W_{ij}^a \delta_{av_j} - \sum_{j=1}^{N_v} \sum_{a=1}^q b_j^a \delta_{av_j} - \sum_{i=1}^{N_h} c_i h_i.$$

Invariant under the transformation

$$W_{ij}^{a} \to W_{ij}^{a} + A_{ij}$$
$$b_{j}^{a} \to b_{j}^{a} + B_{j}$$
$$c_{i} \to c_{i} - \sum_{j} A_{ij}$$

The gauge transformation changes all orders of interaction !

And the zero sum gauge in the RBM is not equivalent to the zero sum gauge in the effective Potts model

PHYSICAL REVIEW E 108, 014110 (2023)

Unsupervised hierarchical clustering using the learning dynamics of restricted Boltzmann machines

Aurélien Decelle o and Beatriz Seoane Departamento de Física Teórica, Universidad Complutense de Madrid, 28040 Madrid, Spain and Université Paris-Saclay, CNRS, INRIA Tau team, LISN, 91190 Gif-sur-Yvette, France

Lorenzo Rosset^{®*} Departamento de Física Teórica, Universidad Complutense de Madrid, 28040 Madrid, Spain

Analyzing the free energy landscape

Motivation

Number of entries in UniProtKB/TrEMBL

Motivation

We need tools to automatically tag data

MNIST

We need tools to automatically tag data

MNIST

2960611-3

• Many labels → *supervised* learning

• None or so few labels → unsupervised or (semi supervised) learning

UNUN

frican

Evolutionary process

• <u>None or so few labels</u> → *unsupervised* or (*semi supervised*) learning

UNUN

Detect families and subfamilies in the data \rightarrow **hierarchical** clustering

<u>Curse of dimensionality</u>

Afric

ican

African Ancestry in Southwest USA

African Ancestry in Southwest USA

• <u>None or so few labels</u> → *unsupervised* or (*semi supervised*) learning

UNUIN

Detect families and subfamilies in the data \rightarrow **hierarchical** clustering

rican

<u>Curse of dimensionality</u>

Human Genome dataset \rightarrow mutations genome A global reference for human genetic variation, Nature 526(7571),68 (2015), Population origin

-6 -4 -2

Human Genome dataset \rightarrow mutations genome A global reference for human genetic variation, Nature 526(7571),68 (2015), Population origin

$$m_{\alpha}^{(i)} = \boldsymbol{v}_{\alpha} \cdot \boldsymbol{X}^{(i)}$$

PCA Human Genome

0.4

 $^{-3}$ Probability Density 0.2

We need :

- Better decomposition (features) of the dataset
- Finer probe of the probability distribution function

Are a model for the probability, $p_{\mathcal{D}}(\boldsymbol{x}) \sim p_{\theta}(\boldsymbol{x}) = \frac{e^{-E_{\theta}(\boldsymbol{x})}}{Z_{\theta}}$ '`` maxima? We need : -100Better decomposition (features) of the dataset • -80-60 Finer probe of the probability distribution function -40_{m0} 20 -2040 0

Free energy landscape

$$p(\boldsymbol{S}) = \frac{e^{-E_{RBM}(\boldsymbol{S})}}{Z}$$

 \boldsymbol{q}^N Number of states but so few contribute

$$Z = \sum_{\{S\}} e^{-E_{RBM}(S)} = \sum_{U} g(U)e^{-U} = \sum_{U} e^{S(U)-U} = \sum_{U} e^{-F(U)} = \sum_{U} e^{-Nf(U)}$$
$$F = U - TS \quad \text{"Free energy"}$$

The states with lower f(U) are those that dominate the measure

Free energy landscape

- We want to use this landscape to get a notion also to identify groups of similar sequences
- We want to obtain f(M) as a function of the probability of having variables **v** and **h** activated $M = \{\{f_i^q\}, \{m_q\}\}\}$

•
$$\log Z = \log \sum_{M} e^{-Nf(M)} \Rightarrow$$
 Find the *M*s with lower *f*(*M*)

We can use **basins of attraction** to cluster data points

[T. Plefka, J. Phys. A 15, 1971 (1982), A. Georges and J. S. Yedidia, J. Phys. A 24, 2173 (1991)]

Approximate the free energy

• We use the Plefka expansion to approximate *f*(*M*)

•
$$f_{\beta}^{(2)}(\boldsymbol{M}) = f_{0}(\boldsymbol{M}) + \beta \left. \frac{\partial f_{\beta}(\boldsymbol{M})}{\partial \beta} \right|_{\beta=0} + \frac{\beta^{2}}{2} \left. \frac{\partial^{2} f_{\beta}(\boldsymbol{M})}{\partial \beta^{2}} \right|_{\beta=0}$$

= $\sum_{iq} f_{i}^{q} a_{i}^{q} + \sum_{\mu} m_{\mu} b_{\mu} - \sum_{iq} f_{i}^{q} \log f_{i}^{q} - \sum_{\mu} m_{\mu} \log m_{\mu} + (1 - m_{\mu}) \log(1 - m_{\mu}) + \beta \sum_{iq\mu} f_{i}^{q} w_{i\mu}^{q} m_{\mu} + \frac{\beta^{2}}{2} \sum_{\mu} (m_{\mu} - m_{\mu}^{2}) \sum_{iq} (w_{i\mu}^{q})^{2} f_{i}^{q} - \sum_{i} \sum_{q} w_{i\mu}^{q} f_{i}^{q^{2}}$

[T. Plefka, J. Phys. A 15, 1971 (1982), A. Georges and J. S. Yedidia, J. Phys. A 24, 2173 (1991)]

Approximate the free energy

• We use the Plefka expansion to approximate *f*(*M*)

•
$$f_{\beta}^{(2)}(\boldsymbol{M}) = f_{0}(\boldsymbol{M}) + \beta \left. \frac{\partial f_{\beta}(\boldsymbol{M})}{\partial \beta} \right|_{\beta=0} + \frac{\beta^{2}}{2} \left. \frac{\partial^{2} f_{\beta}(\boldsymbol{M})}{\partial \beta^{2}} \right|_{\beta=0}$$

= $\sum_{iq} f_{i}^{q} a_{i}^{q} + \sum_{\mu} m_{\mu} b_{\mu} - \sum_{iq} f_{i}^{q} \log f_{i}^{q} - \sum_{\mu} m_{\mu} \log m_{\mu} + (1 - m_{\mu}) \log(1 - m_{\mu}) + \beta \sum_{iq\mu} f_{i}^{q} w_{i\mu}^{q} m_{\mu} + \frac{\beta^{2}}{2} \sum_{\mu} (m_{\mu} - m_{\mu}^{2}) \sum_{iq} (w_{i\mu}^{q})^{2} f_{i}^{q} - \sum_{i} \sum_{q} w_{i\mu}^{q} f_{i}^{q^{2}}$

• Minima $\nabla f(M) = 0 \Rightarrow$ set of self-consistent equations (TAP eqs.)

$$m_{\mu}[t+1] \leftarrow \text{sigmoid} \left[b_{\mu} + \sum_{iq} f_{i}^{q}[t] w_{i\mu}^{q} + \left(m_{\mu}[t] - \frac{1}{2} \right) \left(\sum_{i} \left(\sum_{q} f_{i}^{q}[t] w_{i\mu}^{q} \right)^{2} - \sum_{iq} (w_{i\mu}^{q})^{2} f_{i}^{q}[t] \right) \right]$$

$$f_{i}^{q}[t+1] \leftarrow \text{softmax}_{q} \left[a_{i}^{q} + \sum_{iq} m_{\mu}[t+1] w_{i\mu}^{q} + \sum_{iq} (m_{\mu}[t+1] - m_{\mu}^{2}[t+1]) \left(\frac{1}{2} (w_{i\mu}^{q})^{2} - w_{i\mu}^{q} \sum_{p} f_{i}^{p}[t] w_{i\mu}^{p} \right) \right]$$
Solve iteratively

59 / 76 [Thouless, Anderson, Palmer, Philos. Mag. 35, 593 (1977)]

Approximate the free energy

• Minima $\nabla f(M) = 0 \Rightarrow$ set of self-consistent equations (TAP eqs.)

$$m_{\mu}[t+1] \leftarrow \text{sigmoid} \left[b_{\mu} + \sum_{iq} f_{i}^{q}[t] w_{i\mu}^{q} + \left(m_{\mu}[t] - \frac{1}{2} \right) \left(\sum_{i} \left(\sum_{q} f_{i}^{q}[t] w_{i\mu}^{q} \right)^{2} - \sum_{iq} (w_{i\mu}^{q})^{2} f_{i}^{q}[t] \right) \right]$$

$$f_{i}^{q}[t+1] \leftarrow \text{softmax}_{q} \left[a_{i}^{q} + \sum_{\mu} m_{\mu}[t+1] w_{i\mu}^{q} + \sum_{\mu} (m_{\mu}[t+1] - m_{\mu}^{2}[t+1]) \left(\frac{1}{2} (w_{i\mu}^{q})^{2} - w_{i\mu}^{q} \sum_{p} f_{i}^{p}[t] w_{i\mu}^{p} \right) \right]$$
Solve iteratively

• Minima $\nabla f(M) = 0 \Rightarrow$ set of self-consistent equations (TAP eqs.)

$$m_{\mu}[t+1] \leftarrow \text{sigmoid} \left[b_{\mu} + \sum_{iq} f_{i}^{q}[t] w_{i\mu}^{q} + \left(m_{\mu}[t] - \frac{1}{2} \right) \left(\sum_{i} \left(\sum_{q} f_{i}^{q}[t] w_{i\mu}^{q} \right)^{2} - \sum_{iq} (w_{i\mu}^{q})^{2} f_{i}^{q}[t] \right) \right]$$

$$f_{i}^{q}[t+1] \leftarrow \text{softmax}_{q} \left[a_{i}^{q} + \sum_{\mu} m_{\mu}[t+1] w_{i\mu}^{q} + \sum_{\mu} (m_{\mu}[t+1] - m_{\mu}^{2}[t+1]) \left(\frac{1}{2} (w_{i\mu}^{q})^{2} - w_{i\mu}^{q} \sum_{p} f_{i}^{p}[t] w_{i\mu}^{p} \right) \right]$$
Solve iteratively

Data has a hierarchical organization

In order to be expressive enough, the RBM must describe all possible levels of similarity

The closest fixed point might be too detailed to be useful for a general classification

Data has a hierarchical organization

In order to be expressive enough, the RBM must describe all possible levels of similarity

The closest fixed point might be too detailed to be useful for a general classification

How do we detect larger basins?

The RBM learns in an hierarchical way

The RBM learns in an hierarchical way

* Decelle, Fissore and Furtlehner, Spectral dynamics of learning in restricted boltzmann machines (2017) * Decelle, & Furtlehner, Restricted Boltzmann machine: Recent advances and mean-field theory (2021)

Hierarchical Clustering

66 / 76

Hierarchical Clustering

Example: synthetic evolutionary data

1 principal component

Example: synthetic evolutionary data

Synthetic data

Hierarchical Clustering

73 / 76

Protein function classification

CPF protein family

Conclusions

- RBMs are both expressive and simple
- The are as interpretable as the Boltzmann Machines
- They can be used to infer multi-body interactions without blowing the number of parameters
- We have mappings between the:
 - Bernouilli-Bernoulli RBM → Generalized Ising model
 - Bernouilli-Potts RBM → Generalized Potts model (still testing)
- We can use the RBM for hierarchical clustering