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DeepSPIN & DECOLLAGE

ERC starting grant (2018–23) and consolidator grant (2023–28)
Goal: put together deep learning and structured prediction for natural
language processing
More details: https://deep-spin.github.io
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From Sparse Modeling ...

Mostly used with linear models, lots of work in the 2000s
Main idea: embed a sparse regularizer (e.g. `1-norm) in the learning
objective
Irrelevant features get zero weight and can be discarded
Extensions to structured sparsity (group-lasso, fused-lasso, etc.)

... to Sparse Communication:

Mostly used with neural networks, most work after 2015
Main idea: sparse neuron activations (biological plausibility)
Predictions are triggered by a few neurons only (input-dependent)
Example: ReLUs, dropout, sparse attention mechanisms

André Martins (IST) Sparse Communication Erice, 27/4/2024 4 / 78



This Talk
An inventory of transformations that capture sparsity and structure:

All differentiable (efficient forward and backward propagation)
Can be used at hidden (attention) or output layers (loss)
Can make a bridge between the continuous and discrete worlds
Effective in several natural language processing tasks.

Building block:

z p

Sparse transformations from the Euclidean space to the simplex4.
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Machine-Human Communication
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∑
vs.
∫

Commonly we have to opt between discrete or continuous models:

Language is symbolic and discrete
Neural networks use (and learn) continuous representations

We should look at what happens in-between!

Sparsity might help with this, but...

... sparse probabilities are understudied and often excluded from theory:

Hammersley-Clifford theorem in graphical models
Pitman-Koopman-Darmois theorem (sufficient statistics and
exponential families)
Log-likelihood is −∞ if estimated probability is 0.
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Motivating Example: John’s Life

John splits his day as follows: he works 8h/day, and stays home 16h/day.

He is in transit 1h/day to commute to work and back.

Is John’s location a discrete or continuous random variable?
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Motivating Example: John’s Life

John splits his day as follows: he works 8h/day, and stays home 15h/day.

He is in transit 1h/day to commute to work and back.

Is John’s location a discrete or continuous random variable?
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Motivating Example: John’s Life

John splits his day as follows: he works 8h/day, and stays home 15h/day.

He is in transit 1h/day to commute to work and back.

Is John’s location a discrete or continuous random variable? It’s mixed.
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Outline

1 Sparse Transformations

2 Fenchel-Young Losses

3 Sparse Hopfield Networks

4 Mixed Distributions

5 Conclusions
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Recap: Softmax and Argmax

Softmax exponentiates and normalizes:

softmax(z) =
exp(z)∑K

k=1 exp(zk)

Fully dense: softmax(z) > 0, ∀z
Used both as a loss function (cross-entropy) and for attention.

Argmax can be written as:

argmax(z) := arg max
p∈4

z>p

= lim
τ→0+

softmax(z/τ) (temperature trick)

Retrieves a one-hot vector for the highest scored index.
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softmax(z)
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(Same z = [1.0716,−1.1221,−0.3288, 0.3368, 0.0425])

Argmax is an extreme case of sparsity, but it is discontinuous.
Is there a sparse and differentiable alternative?
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Sparsemax (Martins and Astudillo, 2016, ICML)

Euclidean projection of z onto the probability simplex4:

sparsemax(z) := arg min
p∈4
‖p − z‖2

= arg max
p∈4

z>p − 1
2
‖p‖2.

Likely to hit the boundary of the simplex, in which case sparsemax(z)
becomes sparse (hence the name)
End-to-end differentiable
Forward pass: O(K logK ) or O(K ), (almost) as fast as softmax
Backprop: sublinear, better than softmax!

André Martins (IST) Sparse Communication Erice, 27/4/2024 13 / 78



Sparsemax in 2D and 3D
(Martins and Astudillo, 2016, ICML)

− 3 − 2 − 1 0 1 2 3
t

0.0
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0.4
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0.8

1.0 softmax1([t,0])

sparsemax1([t,0])

Sparsemax is piecewise linear, but asymptotically similar to softmax.
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Ω-Regularized Argmax (Niculae and Blondel, 2017, NeurIPS)

For convex Ω, define the Ω-regularized argmax transformation:

argmax Ω(z) := arg max
p∈4

z>p − Ω(p)

Argmax corresponds to no regularization, Ω ≡ 0
Softmax amounts to entropic regularization, Ω(p) =

∑K
i=1 pi logpi

Sparsemax amounts to `2-regularization, Ω(p) = 1
2‖p‖

2

Is there something in-between?
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Entmax (Peters et al., 2019a, ACL)

Parametrized by α ≥ 0:

Ωα(p) :=

{
1

α(α−1)

(∑K
i=1 p

α
i − 1

)
if α 6= 1∑K

i=1 pi logpi if α = 1.

Related to Tsallis generalized entropies (Tsallis, 1988).
Argmax corresponds to α→∞
Softmax amounts to α→ 1
Sparsemax amounts to α = 2.

Key result: always sparse for α > 1, sparsity increases with α

Forward pass for general α can be done with a bissection algorithm
Backward pass runs in sublinear time.

André Martins (IST) Sparse Communication Erice, 27/4/2024 16 / 78



Entmax in 2D (Peters et al., 2019a, ACL)

α = 1.5 is a sweet spot!

Efficient exact algorithm (nearly as fast as softmax), smooth, and good
empirical performance.

Pytorch code: https://github.com/deep-spin/entmax
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Sparse Transformations (Peters et al., 2019a, ACL)
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Example: Sparse Attention for Machine Translation

Selects source words when
generating a target word
(sparse alignments)
Better interpretability
Can also model fertility:
constrained sparsemax
(Malaviya et al., 2018, ACL)

Can also learn α (adaptively
sparse transformers):
(Correia et al., 2019, EMNLP)
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Example: Sparse Attention for Explainability
(Treviso and Martins, 2020, BlackboxNLP)

Explainer Layperson

ŷ m
ỹ 

Classifier

A classifier makes a prediction
An “explainer” (embedded or not in the classifier) generates a sparse
message that explains the classifier’s decision
The layperson receives the message and tries to guess the classifier’s
prediction (also called simulatability, forward simulation/prediction)
Communication success rate: how often the two predictions match?
Follow-up: Scaffold Maximizing Training (Fernandes et al., 2022, NeurIPS)
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LP-SparseMAP (Niculae et al., 2018, ICML) (Niculae and Martins, 2020, ICML)

Generalizes sparsemax to structures.

Works both as output and hidden
layer.

Can handle logic variables and
constraints through a factor graph.

Returns sparse and differentiable
combination of structures.

Efficient forward/backprop (requires
only a MAP oracle).
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Example: Latent Structured Alignments in SNLI
(Niculae et al., 2018)
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Sparse and Continuous Attention
(Martins et al., 2020a, 2022a, NeurIPS, JMLR)

So far: attention over a finite set
(words, pixel regions, etc.)
We generalize attention to
arbitrary sets, possibly continuous.
Applications: VQA; long-range
∞-former (Martins et al., 2022b, ACL)

=⇒

André Martins (IST) Sparse Communication Erice, 27/4/2024 23 / 78



From Discrete to Continuous Attention
(Martins et al., 2020a, NeurIPS)

(Bahdanau et al., 2015, ICLR)

Finite set S = {1, . . . ,K}

Three ingredients:

Score vector z ∈ RK

Transformation from z to
probability vector p ∈ 4K

Value matrix V ∈ RD×K

Output:

Weighted average Vp ∈ RD
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From Discrete to Continuous Attention
(Martins et al., 2020a, NeurIPS)

Our work:

Measure space S (e.g. continuous)

Three ingredients:
Score vector z ∈ RK

Transformation from z to
probability vector p ∈ 4K

Value matrix V ∈ RD×K

Output:
Weighted average Vp ∈ RD
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From Discrete to Continuous Attention
(Martins et al., 2020a, NeurIPS)

Our work:

Measure space S (e.g. continuous)

Three ingredients:
Score function f : S → R
Transformation from z to
probability vector p ∈ 4K

Value matrix V ∈ RD×K

Output:
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From Discrete to Continuous Attention
(Martins et al., 2020a, NeurIPS)

Our work:
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∫
S p = 1

Value matrix V ∈ RD×K
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From Discrete to Continuous Attention
(Martins et al., 2020a, NeurIPS)

Our work:

Measure space S (e.g. continuous)

Three ingredients:
Score function f : S → R
Transformation from f to
density p : S → R+,

∫
S p = 1

Value function V : S → RD

Output:
Ep[V (t)] =

∫
S p(t)V (t) ∈ RD
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From Discrete to Continuous Attention

=⇒
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From Discrete to Continuous Attention

=⇒
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Sparse and Continuous

How to generalize the concept of sparsity to non-finite (e.g. continuous)
domains S?

A density with base measure µ is sparse iff µ(S \ supp(p)) > 0.

Examples with S = R: q-Gaussians for α = 2− q > 1

3 2 1 0 1 2 3
0.0
0.1
0.2
0.3
0.4
0.5
0.6 = 2.00

= 1.50
= 1.33
= 1.00
= 0.00

q α

0 2 Epanechnikov
2/3 4/3 triweight
1/2 3/2 biweight
1 1 Gaussian
2 0 Cauchy

These can be generalized to S = RK (later)
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Ω-Regularized Prediction Map (Ω-RPM)

Transforms score function f into probability density p ≡ p̂Ω[f ]:

p̂Ω[f ] = argmax
p

Ep[f (t)]− Ω(p), Ω convex regularizer.

−Ωα Tsallis α-entropy =⇒ α-entmax (deformed exponential family):

p̂Ωα [f ](t) =

{
exp(f (t)− τ) if α = 1

(1 + (α− 1)(f (t)− τ))
1

α−1
+ if α 6= 1

This is the q-exponential function, with q = 2− α.
Particular cases: (continuous) softmax (α = 1) and sparsemax (α = 2).

Blondel et al. (2020a, JMLR), Martins and Astudillo (2016, ICML), Peters et al. (2019b, ACL)
Tsallis (1988, “Possible Generalization of Boltzmann-Gibbs Statistics”, J. of Stat. Phys.)
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Example: Multivariate q-Gaussians
Quadratic score function: f (t) = −1

2(t − µ)>Σ−1(t − µ)

Nice properties:
They’re instances of
elliptical distributions
Efficient to sample from
(Beta + sphere trick)
FY loss (Bregman) and
Wasserstein distances
computable in closed form
For α = 2− q = k

k−1 with
k ∈ Z, attention and its
gradient have closed form
for the 1D case.

t1

3 2 1 0 1 2 3

t 2

3
2

1
0

1
2

3
0.0
0.1
0.2
0.3
0.4

Gaussian ( = 1)

t1

3 2 1 0 1 2 3

t 2

3
2

1
0

1
2

3
0.0
0.1
0.2
0.3
0.4
0.5
0.6

Triweight ( = 4/3)

t1

3 2 1 0 1 2 3
t 2

3
2

1
0

1
2

3
0.0

0.2

0.4

0.6

Biweight ( = 3/2)

t1

3 2 1 0 1 2 3

t 2

3
2

1
0

1
2

3
0.0
0.2
0.4
0.6
0.8

Truncated Paraboloid ( = 2)
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Example: Visual Question Answering

What is the woman looking at? tv

1E-19

1E-08

1E-01

1E+01

computer

057

9

computer

Is the man wearing a hat? yes

1E-06

1E-01

3E+00

no

0
4

56

no

(original image) (discrete attention) (continuous softmax) (continuous sparsemax)
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Outline

1 Sparse Transformations

2 Fenchel-Young Losses

3 Sparse Hopfield Networks

4 Mixed Distributions

5 Conclusions
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Loss Functions
Define the training objective to fit the model to the data.
Assess compatibility between:

groundtruth y (e.g. response variable)
model output z (e.g. last layer of a neural network).

Examples:

squared loss in regression (y ∈ RK , z ∈ RK ):

L(z , y) =
1
2
‖z − y‖2

cross-entropy loss in logistic regression (y ∈ 4, z ∈ RK ):

L(z , y) = −
∑
i

yi log[softmax(z)]i

= −
∑
i

yizi + log
∑
i

exp(zi ).
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Entmax Losses

Entmax can also be used as a loss in the output layer (to replace
logistic/cross-entropy loss)
However, not expressed as a log-likelihood (which could lead to log(0)
problems due to sparsity)
Instead, we build a entmax loss inspired by Fenchel-Young losses.
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Recap: Ω-Regularized Argmax (Niculae and Blondel, 2017, NeurIPS)

For convex Ω, define the Ω-regularized argmax transformation:

argmax Ω(z) := arg max
p∈4

z>p − Ω(p)

Argmax corresponds to no regularization, Ω ≡ 0
Softmax amounts to entropic regularization, Ω(p) =

∑K
i=1 pi logpi

Sparsemax amounts to `2-regularization, Ω(p) = 1
2‖p‖

2

All these are particular cases of α-entmax (Peters et al., 2019a, ACL).
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Fenchel-Young Losses (Blondel et al., 2020b, JMLR)

Assess compatibility between groundtruth y ∈ 4 and scores z ∈ RK

Convex conjugate Ω∗(z) := max
p∈4

z>p − Ω(p)

LΩ(z , y) := Ω∗(z) + Ω(y)− z>y

Recover cross-entropy loss: Ω(p) =
∑

i pi logpi ⇒ Ω∗(z) = log
∑

i exp(zi ).

Properties:

LΩ(z , y) ≥ 0 (automatic from Fenchel-Young inequality)
LΩ(z , y) = 0 iff y = argmax Ω(z)

LΩ is convex and differentiable with∇LΩ(z , y) = argmax Ω(z)− y

Also called “mixed-type Bregman divergences” (Amari, 2016).
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Definition: Loss Margin

Some loss functions (e.g. the hinge loss in SVMs) are associated to the
concept of margin.

A loss function L(z , y) has a margin if there is finite m ≥ 0 such that

∀i ∈ [K ], L(z , e i ) = 0⇔ zi −max
j 6=i

zj ≥ m.

The smallest such m is called the margin of L.

If LΩ is a Fenchel-Young loss, this condition is equivalent to

argmax Ω(z) = e i .

Corollary: cross-entropy loss does not have a margin.
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Entmax Transformations and Losses
(Blondel et al., 2020b, JMLR)

Key result: for all α > 1, α-entmax transformations are sparse and lead
to losses with margins!
The margin m is related to the slope of the entropy in the simplex
corners! (m = 1

α−1 for entmax losses.)
See paper for details!

Pytorch code: https://github.com/deep-spin/entmax
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Example: Machine Translation
(Peters et al., 2019a, ACL) (Peters and Martins, 2021, NAACL)

(Source: “Dies ist ein weiterer Blick auf den Baum des Lebens.”)

Only a few words get non-zero probability at each time step
Auto-completion when several words in a row have probability 1
Useful for predictive translation.
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Entmax Sampling (Martins et al., 2020b, EMNLP)

Use the entmax loss for training language models.

At test time, sample from this sparse distribution.

Better quality with less repetitions than other methods:
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What are Hopfield Networks? (Amari, 1972; Hopfield, 1982)

A model of recurrent neural network:

Named after John Hopfield, an American physicist and neuroscientist.
Designed for associative memory and associative recall.
Stores and recalls patterns, making it useful for pattern recognition.
Inspired by the human brain’s associative memory.

Our brain stores and retrieves information not through explicit memory
addresses but by associating content with memories.
Content-based recall: in the brain, seeing or hearing a partial cue can
trigger the recall of associated memories.
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Hopfield Networks (Amari, 1972; Hopfield, 1982)

A model of associative memory:

Memory patterns X = [x1, ..., xN ] ∈ {±1}N×D , query q ∈ {±1}D

Energy E (q) = −1
2‖Xq‖2

Hopfield dynamics qt+1 = sign(X>Xqt)

Memory patterns are attractors (but many spurious attractors)
Memory capacity is only N . 0.138D = O(D).
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Hopfield Networks

https://ml-jku.github.io/hopfield-layers/

What if we store more than one pattern?

https://ml-jku.github.io/hopfield-layers/

André Martins (IST) Sparse Communication Erice, 27/4/2024 42 / 78

https://ml-jku.github.io/hopfield-layers/
https://ml-jku.github.io/hopfield-layers/


Hopfield Networks

What if we try with even more?

https://ml-jku.github.io/hopfield-layers/

There are alternative energies with much better capacity
(Krotov and Hopfield, 2016; Demircigil et al., 2017; Ramsauer et al., 2020).

Caveat: needs to store patterns explicitly.
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Dense Associative Memories
(Krotov and Hopfield, 2016; Demircigil et al., 2017)

Krotov et al. proposed a new energy function:

E (q) = −F (Xq) F (x) =

{
xn if x ≥ 0
0 if x < 0

Hopfield dynamics qt+1 = sign(X>spow(Xqt , n − 1))

Demircigil et al. further expanded the energy function:

E (q) = −exp(Xq)

Hopfield dynamics qt+1 = sign(X>exp(Xqt))

Memory capacity is now O(exp(D))
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Example
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Modern Hopfield Networks (Ramsauer et al., 2020)

Operates on continuous space, X ∈ RN×D , q ∈ RD

Energy:

E (q) = −β−1log
N∑
i=1

exp(βx>i q) +
1
2
‖q‖2.

Hopfield dynamics qt+1 = X>softmax(βXqt)

Similar to self-attention in transformers!
Memory patterns are close to attractors (but there can be some
spurious attractors)
Memory capacity is O(exp(D)) (but retrieval is only approximate)
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Modern Hopfield Networks

If some stored patterns are similar to each other, then a metastable state
near the similar patterns appears.

André Martins (IST) Sparse Communication Erice, 27/4/2024 47 / 78



Sensitivity to Temperature
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Research Questions

Can we design high capacity, continuous-space Hopfield networks
with exact retrieval?

Can we make them less sensitive to temperature?

Can we extend them to handle structure?

Yes, if we use sparse transformations and Fenchel-Young losses!
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Sparse and Structured Transformations

Regularization path of sparse and structured transformations.
Shown is argmax Ω(βz) as a function of the temperature β−1 where

z = [1.0716,−1.1221,−0.3288, 0.3368, 0.0425]>.
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Sparse Modern Hopfield Networks (Hu et al., 2023; Santos et al., 2024)

Hopfield-Fenchel-Young energy, induced by convex Ω:

E (q) = −β−1Ω∗(βXq) +
1
2
‖q‖2

= −Lβ−1Ω(Xq; u) +
1
2
‖q − X>u‖2 + const.

Includes MHNs as a particular case
Hopfield dynamics qt+1 = X> argmax Ω(βXq)

If argmax Ω is a sparse transformation, memory patterns are exactly
attractors (but there can be some spurious attractors)
Memory capacity is still O(exp(D)) (but retrieval can be exact)
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Exact Convergence to Single Pattern

Define separation of pattern x i from data (Ramsauer et al., 2020):

∆i = x>i x i −max
j 6=i

x>i x j .

Assume LΩ is a FY loss with margin m, and let x i be a memory pattern
outside the convex hull of the other memory patterns. Then,

x i is a stationary point of the energy iff ∆i ≥ 1
mβ .

if the initial query satisfies q>0 (x i − x j) ≥ 1
mβ for all j 6= i , then the

update rule converges to x i exactly in one iteration.
if the patterns are normalized and ∆i ≥ 1

mβ + 2Mε, then any q0
ε-close to x i (‖q0 − x i‖ ≤ ε) will converge to x i in one iteration.

Margins: m = 1 for normmax and m = 1
α−1 for α-entmax.
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Storage Capacity with Exact Retrieval

Assume patterns are randomly placed on the sphere with uniform
distribution. Then, with probability 1− p, the HFY network can store and
exactly retrieve N = O(

√
pζ

D−1
2 ) patterns in one iteration under a

ε-perturbation if

ε ≤ M

2

(
1− cos

1
ζ

)
− m

2βM
.
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Example: Hopfield Dynamics and Basis of Attraction

1-entmax
q0
qt

xi

1.5-entmax 2-entmax 2-normmax 5-normmax

As α increases:

α-entmax converges more often to a single pattern.
α-normmax tends to converge towards an attractor which is a uniform
average of some patterns.
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Structured Hopfield Networks

Similar guarantees for structured sparse transformations:

Hopfield dynamics qt+1 = X>SparseMAP(βXqt)

Examples of structural constraints:

k-subsets:
Retrieve subsets of k patterns, e.g., to take into account a k-ary relation
among patterns or to perform top-k retrieval.

sequential k-subsets:
Promote consecutive memory items to be both (or none) retrieved.

Other structures (trees, graphs, matchings, ...) are possible.
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Example: Multiple Instance Learning
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Example: Multiple Instance Learning

Normmax consistently performs well across datasets, likely because of
its adaptability to near-uniform metastable states of varying sizes.
When K > 1, the k-subsets method works best with k = K .

See Santos et al. (2024) for more experiments (e.g. text rationalization).
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Mixed Distributions (Farinhas et al., 2022, ICLR)

We saw how to obtain sparse probability distributions.
How can we use them to bridge the gap between discrete and
continuous domains?
We’ll see how next.
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Back to John’s Life

John splits his day as follows: he works 8h/day, and stays home 15h/day.

He is in transit 1h/day to commute to work and back.

That’s a sad life!
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After work, John spends 2h in the pub with friends.

We need a way to represent this probability mass in vertices, edges, face.
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Densities over the simplex4

We denote by ri(4) the relative interior of4.

Common densities on the simplex:

Dirichlet distribution
Logistic-Normal (a.k.a. Gaussian-Softmax)
Concrete (a.k.a. Gumbel-Softmax)

None of these place any probability mass on the boundary4 \ ri(4).
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Truncated Densities in the Binary Case (K = 2)

When K = 2, the simplex is isomorphic to unit interval,41 ' [0, 1].

A point in41 can be represented as y = [y , 1− y ].

Truncated densities have been proposed for K = 2:

Binary Hard Concrete (Louizos et al., 2018)

Rectified Gaussian (Hinton and Ghahramani, 1997; Palmer et al., 2017)

We generalize them for K > 2.
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Our Approach: Face Stratification

How to extend these “truncated densities” to K > 2?

Our solution relies on the face lattice of the simplex:

0-faces are vertices, 1-faces are edges, ..., the (K − 1)-face is4 itself.

We define a direct sum measure on the stratified4 and define probability
densities w.r.t. this base measure.
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Mixed Random Variables (Farinhas et al., 2022, ICLR)

Discrete RVs assign probability only to 0-faces (vertices of4).

Continuous RVs assign probability only to the maximal face (ri(4)).

Mixed RVs generalize both: can assign probability to all faces of4.

They can be defined via:

Their face probability mass function PF (f ) = Pr{y ∈ ri(f )}, f ∈ F.
Their face-conditional densities pY |F (y | f ), for f ∈ F, y ∈ ri(f ).

The probability of a set A ⊆ 4 is given by:

Pr{y ∈ A} =
∑
f ∈F

PF (f )

∫
A∩ri(f )

pY |F (y | f ).
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Extrinsic vs Intrinsic (Farinhas et al., 2022, ICLR)

Two ways of characterizing mixed RVs:

Extrinsic characterizaton: start with a distribution over RK and then
apply a deterministic transformation to project it to4
Intrinsic characterizaton: specify a mixture of distributions directly
over the faces of4, by specifying PF and pY |F for each f ∈ F
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K -D Hard Concrete (Farinhas et al., 2022, ICLR)

Uses an extrinsic characterization, via “stretch-and-project.”

Generative story:

Y ∼ HardConcrete(z , λ, τ) ⇔ Y ′ ∼ Concrete(z , λ)
Y = sparsemax(τY ′), with τ ≥ 1.

Recovers the binary Hard Concrete for K = 2
The larger τ , the higher the tendency to hit a non-maximal face of the
simplex and induce sparsity.
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Gaussian-Sparsemax (Farinhas et al., 2022, ICLR)

Uses an extrinsic characterization, by sampling from a Gaussian and
projecting.

Generative story:

Y ∼ GaussianSparsemax(z ,Σ) ⇔ N ∼ N(0, I)
Y = sparsemax(z + Σ1/2N).

Sparsemax counterpart of the Logistic-Normal.
Can assign nonzero probability mass to the boundary of the simplex.
When K = 2, we recover the double-sided rectified Gaussian.
For K > 2, an intrinsic representation can be expressed via the orthant
probability of multivariate Gaussians.
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Logistic-Normal vs Gaussian-Sparsemax (Farinhas et al., 2022, ICLR)
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Logistic-Normal (left) assigns zero probability to all faces but ri(4)

Gaussian-Sparsemax (right) is a mixed distribution: it assigns probability to
the full simplex, including its boundary.
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Information Theory of Mixed Random Variables
(Farinhas et al., 2022, ICLR)

“Direct sum” entropy using µ⊕ as the base measure:

H⊕(Y ) := H(F ) + H(Y | F )

= −
∑
f∈F

PF (f )logPF (f )︸ ︷︷ ︸
discrete entropy

+
∑
f∈F

PF (f )

(
−
∫
f

pY |F (y | f )logpY |F (y | f )

)
︸ ︷︷ ︸

differential entropy

.

Average length of the optimal code where f must be encoded
losslessly and where y |f has a predefined bit precision N

Max-ent is written as a generalized Laguerre polynomial (see paper)
e.g. log2(2 + 2N) for K = 2 (vs. log2(2) = 1 in the purely discrete case)

KL divergence and mutual information defined similarly.
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Experiment: Emergent Communication

The first agent needs to communicate a code to the second agent that
represents a given image.

Given the code, the second agent needs to identify the correct image
among 16 possibilities. (Random guess is 1/16 = 6.25%.)

Success average and standard error over 10 runs:

Method Success (%) Nonzeros ↓

Gumbel-Softmax 78.84 ±8.07 256
Gumbel-Softmax ST 49.96 ±9.51 1

K -D Hard Concrete 76.07 ±7.76 21.43 ±17.56
Gaussian-Sparsemax 80.88 ±0.50 1.57 ±0.02

(See paper for more experiments with VAEs on FashionMNIST and MNIST.)
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Conclusions

Transformations from real numbers to distributions are ubiquitous
We introduced new transformations that handle sparsity, constraints,
and structure
All are differentiable and their gradients are efficient to compute
Can be used as hidden layers or as output layers (Fenchel-Young losses)
Mixed distributions are in-between the discrete and continuous worlds
Sparse communication potentially useful as a path for explainability.
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Thank you!
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