
  

Modeling complex systems as 
interacting agents

Chris Fields

Machine Learning Approaches for 
Complexity

Erice, 27 April 2024



  

Why “agents”?

● Agent language is convenient, e.g. in agent-based 
programming, particles “feeling” forces, etc.

● Systems (particularly complex systems) behave in
ways that we don’t expect.  Our knowledge is
limited.

● Conway-Kochen theorem: if any system is free from 
local determinism, all systems are.

● Free Energy Principle, Bayesian mechanics: least-
action principles          approximate Bayesian inference.



  

Session 1: Basic ideas

● Desiderata

● Unitary evolution of isolated systems

● Decompositions and separable systems

● Holographic principle, basis choice, local QRFs

● Computation with QRFs, CCCDs

● CCCDs to TQFTs

● Boundary evolution dual to bulk evolution



  

Desiderata:

● Minimal, simple, deep assumptions

● Universal applicability

● Scale free representation

● Straightforward translation to multiple domain-
specific languages



  

Consider an isolated finite system U:

                                    U

We can write PU(t) = exp[-(i/ħ)HU(t)].

We can only stipulate HU.

t is some external, “objective” time parameter.



  

We are interested in finite decomposable systems, i.e.

U = SE such that |U> = |S>|E>.

                                                   B       
                                                                 

                            S                    E

The interaction HSE = HU – (HS + HE) is defined
at the boundary B.  It has finite dimension and
finite eigenvalues.



  

The Holographic Principle tells us that the flux of 
information through B is finite, S(B) ≥ AB /4 lP2 

Let S(B) = N.  Then we can define a Hilbert space
HB with dim(HB) = 2N.  This is ancillary, HU ∩ HB = ∅.

N bits



  

These N bits obviously encode the effect of S on E
and vice-versa.  They define an information channel.



  

We can now write the Hamiltonian, for k = S or E:

HSE = βk kB Tk Σi αi Mki

The Mki are single-qubit operators with eigenvalues
±1 (i.e. copies of σz).

Σi αi = 1.

βk ≥ ln2 (Landauer’s Principle) for irreversible “reads”
and “writes” on B.



  

Now we have:

● B is an ancillary N-qubit array.

● “Measuring” B yields an N-bit string.

● “Preparing” B encodes a N-bit string.

● These N-bit strings encode eigenvalues of HSE.

● Interaction is symmetric information exchange.

● Informational equilibrium is not thermal equilibrium.

These are universal for decomposable (separable)
isolated, finite systems U.



  

B is too small             B is just right            B is too big
(too few bits                                              (separability
transferred)                Goldilocks!             breaks down)

“Bag of Gold”                 Agents                  Boltzmann
  Black Hole                                                     Brain

We’re interested in systems with lots of “internal”
states and large enough boundaries for significant
information flow.  More like organisms than rocks.   



  

We have HSE.  What about HS (HE)?

Interesting systems are doing something with the 
data they get from B.  They’re computing.

                               fi→j
          ψi(|S(ti)>)                       ψj(|S(tj)>)

            ψi                                          ψj  

            |S(ti)>                             |S(tj)>
                                         PS(t)

ψ is a functional interpretation (semantics) of S.



  

Measurements get their semantics from reference
frames (RFs).

For σz, we have to say what “up” or “↑” means.

A physically implemented RF is a quantum RF (QRF).

MSi could use

                   or         or        on     qi

to get an outcome value.

This QRF is implemented by HS.



  

S must choose (HS must implement) an “↑” QRF 
for each of the N qi on B.

Choice of the N “↑” QRFs is:

● choice of a basis for HSE.

● choice of a zero point for energy.

● choice of efficiency β and/or temperature T.

This choice is “free” provided |SE> is separable.

       Separability           free choice of QRFs.



  

Questions?



  

Consider a set X of perfectly correlated qubits on B.   
The correlation may be imposed by either S or E.

Reading X yields, and writing X encodes, a bit string.

We can think of this bit string as a correlated set of 
single-qubit QRFs – this becomes a QRF for X.

The correlation becomes a set of functions:

                                   QX
                     f1        fi                 fn

               Q1      …      Qi        …        Qn

               q1       …      qi         …        qn



  

Category theory lets us define an optimal set of maps
via universality. 

                Y                            A                  B

   ζ                       ξ               ζ                        ξ
                X                                      X

    A                    B                            Y

Diagram commutes             Diagram commutes
for all ζ, ξ, X is the                for all ζ, ξ, X is the
colimit for such maps.          limit for such maps.



  

A cocone diagram (CCD) depicts a hierarchy of maps
from a “base” of 1-bit classifiers to the colimit C of all
maps from those classifiers.

Each classifier Ai represents a single-qubit QRF.



  

Combining a cocone diagram with its dual cone diagram,
mapping to the Ai from their limit, gives a CCCD: 



  

CCCDs over single-qubit QRFs represent multi-
qubit QRFs.

● This representation is optimal via the universality of
limits/colimits.

● It represents both measurement (upward CCD maps)
and preparation (downward CD maps).

● CCCDs can map any set of bit strings to a probability
distribution.

● Commutativity enforces Kolmogorov probability.



  

We can “attach” a CCCD to B with maps.



  

We can now say what’s needed to observe a “system”
X in a “pointer state” |p>.

● We need a QRF R that identifies X by detecting an 
invariant “reference state” |r>.

● We need a QRF P that detects |p>.

● P and R must commute.

Observer-relative states         observer-relative systems.

P

R
“X is in |p>”



  

Note that this breaks the qubit-exchange symmetry on B.

● Particular qubits encode information processed by 
particular QRFs.

● Some qubits must be devoted solely to thermodynamic
exchange – different parts of B have different β and/or T.

          Symmetry breaking          semantics



  

Now let’s add time to this picture.

Sequential operations with a QRF Q write a sequence
of states |q> of dom(Q) on B.

So we can write Q: |q(ti)>         |q(tf)>.

This lets us identify Q with a TQFT T : dom(Q)         dom(Q).
(Technically, we have a functor CCCD           TQFT).

Transporting the data on B forward in time is equivalent
to transporting the computation Q forward in time.



  

QRFs to TQFTs



  

Summary:

● Physical interaction          information exchange.

● Separability           free choice of QRFs.

● Internal propagator exp[-(i/ħ)HS(t)]          computation.

● Computation           data is a bulk-boundary duality.

● Agents are bundles of QRFs.

● Classical information is encoded on boundaries.



  

Questions?



  

Session 2: LOCC, QECCs, Spacetimes

● Time and memory

● LOCC protocols – meaning of “classical” communication

● Commutativity and compartmentalization

● Examples: Quantum Darwinism, Bell/EPR

● QECCs

● Redundancy, spacetime

 



  

Two usually-implicit assumptions:

● Observers have access to arbitrary read/write classical
memory.

● Observers can exchange classical information.

We need these assumptions to do science!

How do we model these assumed capabilities explicitly, 
and what happens when we do?



  

Classical memory and time are coupled.

Counter

B

Memory sector

Pointer sector

Reference sector

The memory sector must be slowly-varying.



  

Write this as a TQFT Q:

Data read here

is written here

and vice-versa.

Q is a quantum channel between the green I/O sectors.



  

Let the “system” (Alice) and its “environment” (Bob) 
        both do this kind of computation.



  

If the sectors align, each reads from and writes to the
        other’s memory.



  

Let’s impose Q = Q’ as a super-selection rule.

No more free choice of QRF               Entanglement.



  

Consider two QRFs Q1 and Q2 that commute 

Commuting CCCDs have a common limit and colimit 
                 (CCCDs form a category).



  

If two QRFs Q1 and Q2 do not commute 

 then they are not connected by a quantum channel.
So they can only be connected by a classical channel.

X X



  

The classical channel can traverse the environment.

We’ve effectively split Alice into two agents.



  

We can also draw it this way

“Internal” boundary

This picture helps for thinking about organisms, 
              or about quantum computers.

Q1

Q2



  

We’ll use this to indicate a classical message passed
         through the environment, e.g. an email.



  

Now we add a quantum channel, e.g. an “object”

This is a “local operations, classical communication”
                           (LOCC) protocol.



  

Example: Quantum Darwinism

Multiple observers of the same system X must agree
about what counts as X, i.e. what QRF RX to deploy,
and about what pointer state PX to measure.



  

Example: Bell/EPR

Alice and Bob “observe
entanglement” only
when they compare
their classical records.



  

Questions?



  

Claim: LOCC protocols are made possible by QECCs

Main idea: Bulk entanglement generates classical
redundancy on the boundary.

We can turn this around: Using a QECC requires
agreement about basis choices via a LOCC protocol.

In AdS/CFT, QECCs are built from the outside in, using
classical redundancy on the boundary.  Here we’ll work
from the inside out.



  

Example: Quantum Darwinism

EX is a channel that measures |X> and encodes the
result on Alice’s observable sector of the boundary.
It does this for every observer Alicei, who must employ
LOCC to coordinate basis choices.



  

How can this work?  Doesn’t it violate no-cloning?

|X> “|X>”

“|X>”

Unknown (to Ei) state

Ei

Ej

This only works if Ei’s measurement resolution is much
better than Alicei’s, for all i.  This is where Bohr’s
“amplification” requirement comes from.



  

|X>
Alicei’s QRFφX

Each environmental sector implements a TQFT

φX = (1/√N)ΣkN |X>k with N        ∞

        Alicei is measuring a “large” projection of a much 
larger entangled state.  She’s averaging many components.



  

Knill and Laflamme formulate this in terms of “noise”
operators Bα, with ΣBαB†α = Id.

These Bα: sampled components of φX       
                                  unsampled components of φX

The code (the TQFT) “protects against Bα” if there are
enough entangled degrees of freedom to “wash out”
the exchange of components.

This is recoherence – decoherence in reverse.



  

|X>
Alicei’s
 QRF

φX

X is just a quantum system, so we also have:

        Alicei and Alicej can communicate via some channel.

φ’X
Alicej’s
 QRF

Alicej’s
 QRF

Alicei’s
 QRF

Some quantum channel

=



  

We can represent all this in terms of operators:

It works as long as Q1 and Q2 are “close enough”



  

How do we represent classical redundancy?

● Space-translation symmetry (spatial redundancy)

● Time-translation symmetry (temporal redundancy)

The Poincaré group represents redundancy!

Claim: Spacetime is a redundancy resource for
communicating agents.

cf. tensor-network construction, but top-down.



  

Summary:

● Communication requires memory plus an internal
time QRF.

● “Classical” communication (or coordinated manipulation)
requires almost-shared bases/QRFs.

● Sampling and coarse-graining create/enable classical 
redundancy.

● Quantum Darwinism is a “universal” LOCC protocol.

● LOCC requires a QECC.



  

So what’s an agent?

Any bounded quantum system looks and acts like
an agent. 

Any such system can engage in LOCC protocols.

But …

No such system can determine by observation that 
it is bounded.  Agency is an assumption!



  

Thank you.

Questions?
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