Flow, SAMPA Chips and Other Stuff: One Year of Ph.D. Studies

Jonatan Adolfsson Supervisor: David Silvermyr

19 September 2017

・ロト ・御ト ・ヨト ・ヨト 三田

Who am I?

- Graduated from Engineering Physics in 2016
- Summer Student at CERN 2014
- Just completed first year of Ph.D. in ALICE

∃ → (∃ →

Outline of this talk

Testing of SAMPA chips (service task)

- Analysis: measuring flow
- Ourses & teaching

Future plans

Some advice

э

SAMPA Chips

- New chips for the TPC upgrade
- Faster than current version
- Divided into 32 channels
- Many tests required

(3)

< 行い

Cross-talk

- Several channels pulsed simultaneously: every second, third, all but one, only one...
- Cross-talk measured in non-pulsed channels, time-aligned with pulse
- Average taken over many events to suppress noise
- Result: cross-talk is acceptable

- A 🖓

Pulse shape

- Several different methods were tested
- Final approach: pulse train with slight phase shift between each pulse
- Reconstructed pulses look reasonable
- Gives measure of rise time and peak height, etc.

Issues

- Bit issues: in particular different counts in odd and even ADC bins (odd-even effect)
- Muon people want to use so low amplification that noise is below ADC resolution \implies correlation between μ and σ
- I looked into this using mathematical models (next slides)

lssues cont'd

Idea: f: (μ, σ) → (μ_D, σ_D) is invertible on D_f = [0, 1) × ℝ₊
Measured values can be inverted to obtain correct analogue values

Jonatan Adolfsson

Ph.D. presentation

lssues cont'd

Also possible to include simple model for odd-even effect (unequal ADC bin width for odd and even ADC bins)

Jonatan Adolfsson

Ph.D. presentation

lssues cont'd - Results

• Left: without bit issues. Right: including odd-even effect

- Noise satisfies specifications in muon case
- Model for odd-even effect perhaps too simple

Flow

http://www.quantumdiaries.org/wpcontent/uploads/2011/02/FlowPr.jpg

- System in thermal equilibrium, expanding with the pressure gradient (flow)
- Non-central collisions asymmetric flow
- Studying this reveals properties of the QGP
- Events are divided into centrality classes

Elliptic flow, v_2

- Fourier decomposition: $\frac{dN}{d\phi} \propto 1 + \sum_{n=1}^{\infty} 2v_n \cos(n(\phi - \Psi_R))$
- $v_1 = \text{direct flow (uninteresting)}$
- $v_2 = \text{elliptic flow (dominant)}$
- n > 2: require much data
- Problem: $(v_2^{meas})^2 = (v_2^{coll})^2 + \sigma^2 + \delta$, $\delta = \text{non-flow}$

Methods

$$rac{dN}{d\phi} \propto 1 + \sum_{n=1}^{\infty} 2v_n \cos\left(n\left(\phi - \Psi_R
ight)
ight)$$

- Two methods are used:
 - 1. Event plane method: Ψ_R is estimated from each event (introduces a bias)
 - 2. Scalar product method: v_2 is measured from two-particle correlations between two sub-events to eliminate Ψ_R
- A gap in detector acceptance is used to suppress non-flow separates sub-events

First results (using data from 2013, 2.76 TeV)

Courses

- Dark Matter: Distribution, Detection, Origin and Production, 3 ECTS - Special course offered at our division last year
- Introductory Course for Ph.D. Students, 0.5 ECTS Mandatory course at Science faculty
- Introduction to Quantum Field Theory, 7.5 ECTS Course for Master students given at Theoretical Physics during LP3; good theoretical background
- Computational Tools and Recipes, 7.5 ECTS Given by COMPUTE once every few years. Lots of computing-related exercises. I still haven't finished it!
- CERN School of Computing, 6 ECTS Computing-related summer school, given at a different place each year. **Strongly recommended!**

< □ > < □ > < □ > < □ > < □ > < □ >

Teaching

- Lab supervision in 1st year physics together with Martin
- K3 lab: Neutron activation and half-life determination (in Swedish)
- Who wants to take over next year?

Future plans

- Start an own analysis study, co-supervised by Alex Dobrin, details not clear yet Ideas: continue Rickard's work with Event-Shape Engineering, Chiral Magnetic Effect in p-Pb, or who knows?
- Chip testing for new SAMPA version (will arrive October/November)
- Next teaching session
- Courses: Learning and Teaching in High Education Theory and Practice, Particle Physics Phenomenology

Some advice

- Make a plan for your analysis as soon as possible
- Focus on a topic you find exciting
- Keep your eye open for interesting courses, summer schools and conferences
- Don't be afraid to ask more experienced colleagues for help and advice!

Summary

- I have mostly focused on chip testing (service task) and courses so far
- Resulted in study of how discretisation affects measurements of noise
- Analysis: Measured flow in Pb-Pb agrees reasonably well with published result
- Recommended summer school: CERN School of Computing
- Looking for lab partner in K3 lab next year
- Focus on analysis in future
- Advice: get started with your analysis early on

Thank you for your attention!

◆□▶ ◆御▶ ◆臣▶ ◆臣▶ 臣 の�?