Jets, Jets, DM, and Jets

Eva Brottmann Hansen

Doktoranddag 19. September 2017

Run: 282712 Event: 474587238 2015-10-21 06:26:57 CEST

So far, so good

- Supervisor: Caterina the First
- \cdot One year and one week in to my PhD
- \cdot Dark matter searches with jet final states in ATLAS
- \cdot Until ~now: Mostly authorship qualification task
- From ~now: Mostly new analysis and upgrade work

So far: Qualification task

- Constrain large-R jet response (JES,JER,JMS,JMR) with in-situ measurements
- Example: Balance jet against a well calibrated object in data and MC
- Last step of the calibration chain
- Done for the first time in 2016 data for large-R jets
- My job: Combine the measurements to cover more phase space

In-situ Combination

- Measurements interpolated with cubic splines
- Weighted average based on χ²-minimization
- Weights account for systematics, correlations and different bin sizes
- Uncertainties scaled by the sqrt(χ^2/N_{dof})
- Response ratio and uncertainties smoothed with a Gaussian kernel

So far: 4-jet analysis

- Search for pair produced, massive resonances decaying to two jets each No missing E_T
- Interpreted in a SUSY simplified model where lightest particle is a Stop decaying to jets through R-Parity violating coupling
- My contribution: Fit background in 'validation region' to provide systematic uncertainty on background estimate

Next 6 months: Nixon Analysis

- Paired dijet final states
- Will cover a wide range of masses for pair produced resonances associated to Dark Matter or SUSY
- Near future:
 - Show that (or whether) a different technique than 'normal dijets' is necessary for this signature
 - Test/develop generic, scale invariant anti-QCD tagger

Next 6 months: Global Feature Extractor (gFex)

[3]

- Module for Phase-1 upgrade of L1Calo
- Entire η range of calorimeter available in one module
- Enables identification of large radius jets and substructure in real time
 - \rightarrow Capture Lorentz boosted W/Z/Higgs/top
- Other global event variables:
 - Missing transverse energy
 - Centrality in heavy ion collision
 - Event-by-event pile-up energy density
 → Local pileup suppression using baseline subtraction techniques
- My task: Software that controls connections and communication with databases

Useful Course

- CERN School of Computing (link) •
 - Base technologies —
 - Performance tuning •
 - Parallelization •
 - Security •
 - Networking •
 - Data technologies
 - Storage
 - Visualization •
 - Physics computing —
 - Multivariate classification •
 - Data analysis •

Useful Course

• CERN School of Computing (link)

References

- [1] ATLAS Collaboration: "In-situ measurements of the ATLAS large-radius jet response in 13 TeV pp collisions"
- [2] ATLAS Collaboration: "A search for pair-produced resonances in four-jet final states at $s\sqrt{}$ = 13 TeV with the ATLAS detector"
- [3] ATLAS Collaboration: "gFex Phase-1 TDAQ Upgrade: Final Design Report"