
ARC 6
the source in GitLab

ARC 6 Retreat Umeå 07.11-09.11 2018

ARC source code and packages
ARC 6 on GitLab hosted by Coderefinery:

• https://source.coderefinery.org/nordugrid/arc

Some documentation available

• http://www.nordugrid.org/documents/arc6/index.html

How to contribute to ARC

• https://source.coderefinery.org/nordugrid/arc/wikis/Contributing/Cheat-Sheet

Versions

• For a surely stable versions, get a release tag – first will be v6.0.0a1 – an alpha
release

• master branch also expected to be (more or less) stable, but not guaranteed at all
times

1

https://source.coderefinery.org/nordugrid/arc
http://www.nordugrid.org/documents/arc6/index.html
https://source.coderefinery.org/nordugrid/arc/wikis/Contributing/Cheat-Sheet

ARC from nightly rpm’s or GitLab’s CI

• For latest automatic build (Centos 6/7 or Debian 9)
• wget 'https://source.coderefinery.org/nordugrid/arc/-

/jobs/artifacts/master/download?job=<job-os-type>' -O artifacts.zip
• <job-os-type>: make_rpms_el6 or make_rpms_el7 or make_debs_deb9
• Unzip artifacts.zip
• Install the rpm’s some localinstall (e.g. yum localinstall)

• For nightlies w/all supported platforms:
• http://download.nordugrid.org/builds/index.php?pkgname=nordugrid-

arc&type=master
• Suggested procedure:

http://www.nordugrid.org/documents/arc6/developer/nightlies-
repo.html#nightlies-repo

2

http://download.nordugrid.org/builds/index.php?pkgname=nordugrid-arc&type=master
http://www.nordugrid.org/documents/arc6/developer/nightlies-repo.html

ARC 6 from repo

3

ARC build from source

Install some necessary/useful packages for building from source (you probably have these installed
already)
yum install –y epel-release gettext-devel cppunit
yum install -y yum-utils --enablerepo=extras
yum groupinstall -y 'Development tools’

Might not be necessary:
yum-builddep nordugrid-arc -y

Since ARC 6 is not yet available, the spec-file is not in epel, therefore to install build-dependencies for
ARC 6 you will need to configure first, then run yum-builddep on the produced nordugrid-arc.spec file
./autogen.sh
./configure
yum-builddep nordugrid-arc.spec –y

4

Our Git Branch model
• master – branch for releases of current release series (currently

6.x.y)
• A release is a tag on the master branch
• Everything currently on master will be released

• next – branch for releases of next major release series (currently
7.x.y)
• All commits to master also to next-major
• Holds also non-backward compatible commits with current release

series
• «next» branch will be merged into master at the time of new major

release
• When needed, more semi-stable development branches will be

created
• When there is a longer term ongoing specific development effort

involving several people 5

Releases

• Earlier an ARC release would be called e.g. 15.03u18 and contain
• ARC version e.g. 5.4.2

• Gangliarc version 1.0.2

• Nagios probe version 1.9.0

• Metapackages (client tools, computing element and information index,) 1.0.7

• Docs 2.0.15

• Now ARC is not released as a bundle with nagios probes and gangliarc

• ARC version 6.0.0

• Metapackages 2.0.0

• gangliarc and nagios probes have their own repo and own release cycle

• Docs for ARC 6 will be available on the web in its latest version

• No distinction between bugfix and minor release anymore – last digit in ARC version will
always be 0 until we have migrated to a two-digit release number

• Everything on master at time of released will be release.

• Master will not contain backward incompatible changes which would trigger a new major release

6

Contributing
https://source.coderefinery.org/nordugrid/arc/wikis/contributing/cheat-sheet

1. Update your main
branches on your fork

2. Decide parent branch
3. Create dev-branch
4. Develop
5. Update dev-branch to

parent branch
6. Repeat
7. When done submit merge

request(s)

7

Merge request

8

Example of tree with this workflow

9

Extras

10

Comparison old (svn) and new (git) branch model
and workflow I
Goal with new branching model and workflow

• improve release procedure quality and efficiency
• make it as simple as possible for developers

Old branching model in svn
• All developments go to trunk (also backward incompatible)
• Commits in trunk are ported to release branch – one branch per major cycle

• Release manager ports all commits in preparation of release
• Tedious sorting out of merge conflicts since they happen when release manager ports commits

from trunk to release branch (and not as an action initiated by developer)
• Tag branch created from release branch for each release

Problems with old model
• No clear way to mark backward incompabitle changes
• For each release – list of all commits to trunk not already in release – developers asked to say

yay or nay for adding into upcoming release
• Tedious, easy to forget that one commit should wait for next release or next major etc etc
• Same commit comes back in the discussion since we forget from last time
• Workload rather large and manual just before release 11

Comparison old (svn) and new (git) branch model
and workflow II

Improvements from old model
• Simplified branch model – all commits on master go into release – minor or

bugfix release depending on content of commits since last release
• Release tags directly on master - commits for release continously added

instead of right before release
• Merge conflicts and other problems sorted out by developer at time of

creating/handling merge request (not just right before release)
• Issues and merge request can be labelled for sorting of types – e.g.

«backward incompatible» label
• Gitlabs CI gives developer automatic check of whether code builds

12

Merges to several branches – evolution of
nordugrid-arc-bot
• Each merge request to master à also to «next» branch
• Each merge request to «next» only to «next» (otherwise use master as parent)
• First attempt of working model: developer creates two merge requests

• Complaints
• Second attempt introduced arcbot

• Webhook set up triggered by merges.
• Webservice that duplicates the merge request – merges same development branch into other target branch
• Unwanted result – contains more commits than original merge request since the diff is different between master and next-

major

• Third attempts – cherrypicking instead
• Cherrypick commits of the original merge request
• Create branch with these cherrypicked commits
• Create merge request of this cherrypick branch
• Not perfect solution:

• Commits get different commit has – more of a hassle to compare branches

• Fourth attempt – revert back to Second attempt

13

Basic use – merge conflict

• Developer should solve the merge conflicts in most cases (unless it is related to the git-files gitlab-
ci.yml or template files)

• If a merge request triggers a merge conflict, update your fork with master and solve the conflict
• git status to see what files are the problem
• Edit file to fix merge conflict
• Add, commit, push
• Commits to the source branch (your fork branch) as a result of solving the merge conflicts are

recorded automatically to the merge request
• If you want their version of the file:

• https://git-scm.com/docs/git-checkout/2.5.1

14

https://git-scm.com/docs/git-checkout/2.5.1

To-do list

• Make small scripts for everyday contribution
• Create-new-dev-branch
• Update
• Push
• ...

• Extend testing
• Find testing strategy and implement

• Do more real release-test with creation of release notes based on our
labelling and merge requests and issues

15

