Multiplicity dependence of particle production at the LHC in (canonical) statistical model

Volodymyr Vovchenko

Goethe University Frankfurt & Frankfurt Institute for Advanced Studies

In collaboration with B. Doenigus and H. Stoecker, paper in preparation

COST Workshop on Interplay of hard and soft QCD probes for collectivity in heavy-ion collisions Lund, Sweden, October 25 – March 1, 2019

Particle production at LHC and statistical model

Hadron resonance gas (HRG) at the chemical freeze-out:

$$N_i^{\text{hrg}} = V \frac{d_i m_i^2 T}{2\pi^2} K_2\left(\frac{m_i}{T}\right) e^{\frac{\mu_i}{T}}, \qquad N_i^{\text{tot}} = N_i^{\text{hrg}} + \sum_j BR(j \to i) N_j^{\text{hrg}}$$

Fair description of central Pb-Pb collisions \rightarrow equilibrated matter formed? 2/19

Particle production at the LHC

- Hadron yield ratios exhibit multiplicity dependence
- Grand-canonical picture predicts no multiplicity dependence
- Ratios appear to approach a plateau at high-multiplicities
 → grand-canonical plateau?
- Can multiplicity-dependence be considered in a macroscopic model?

Canonical statistical model (CSM)

Grand-canonical approach: yield ratios N_i/N_j volume-independent, but conserved charges not conserved exactly. Canonical treatment of conservation laws important for small reaction volumes

Canonical partition function:

$$\mathcal{Z}(B,Q,S) = \int_{-\pi}^{\pi} \frac{d\phi_B}{2\pi} \int_{-\pi}^{\pi} \frac{d\phi_Q}{2\pi} \int_{-\pi}^{\pi} \frac{d\phi_S}{2\pi} e^{-i(B\phi_B + Q\phi_Q + S\phi_S)} \exp\left[\sum_j z_j^1 e^{i(B_j\phi_B + Q_j\phi_Q + S_j\phi_S)}\right]$$

$$z_j^1 = V_c \int dm \,
ho_j(m) \, d_j rac{m^2 T}{2\pi^2} \, K_2(m/T)$$

[Becattini et al., ZPC '95, ZPC '97]

$$\langle N_j^{\text{prim}} \rangle^{\text{ce}} = \frac{Z(B - B_j, Q - Q_j, S - S_j)}{Z(B, Q, S)} \langle N_j^{\text{prim}} \rangle^{\text{gce}}$$

[Rafelski, Danos, et al., PLB '80; Hagedorn, Redlich, ZPC '85]

 \approx 1 at large volume (GCE), <1 for smaller volumes; stronger effect for multi-charged particles; neutral particles unaffected

Can multiplicity dependence be understood as a canonical suppression?

CSM at LHC: strangeness-canonical ensemble

- Strangeness-canonical picture: S is canonical,
 B & Q grand-canonical [Vislavicius, Kalweit, 1610.03001]
- Describes trend for most yield ratios, but not ϕ
- What is the role of baryon and electric charge conservation?

When is the canonical treatment necessary?

Normally, when the total number of particles carrying a conserved charge is smaller or of the order of unity

The canonical treatment is often restricted to strangeness only (SCE) [STAR collaboration, 1701.07065; ALICE collaboration, 1807.11321]

- Strangeness conservation is most important at low energies (HADES, CBM)
- Small systems at RHIC and LHC: exact baryon conservation at least as important as strangeness

The **Thermal-FIST** package is employed in the present analysis

V.V., H. Stoecker, arXiv:1902.05249

open source: https://github.com/vlvovch/Thermal-FIST

Canonical Statistical Model implementation in Thermal-FIST:

- Quantum statistics
- Supports $|B_i| > 1$ (light nuclei)
- Particle number fluctuations and correlations

see also talk of A. Motornenko, Thursday 17:05

Selective canonical treatment of charges Ouantum statistics model.ConserveBaryonCharge(true); model.ConserveElectricCharge(false); model.ConserveStrangeness(true);

CSM at LHC: correlation volume dependence

Canonical statistical model: T = 155 MeV, V_c – canonical volume, selective (grand-)canonical treatment of B, Q, S

CSM at LHC: yield ratios to pions

$V_{\rm C}$ dependence of yield ratios to pions

• SCE appropriate for K, Ω, Ξ , less so for Λ , totally off for p and ϕ

- Baryon-strangeness-CE appropriate for most observables, except ϕ/π and π
- In general, full canonical treatment of B,Q,S required

Enforce *local* exact conservation of charges, B = Q = S = 0, in a *correlation volume* V_c around midrapidity

In general, $V_C \neq dV/dy$ Causality argument: exact conservation across a few units of rapidity? [Castorina, Satz, 1310.6932]

"Vanilla" CSM:

- **T = 155 MeV** for all multiplicities
- Multiplicity dependence of yield ratios driven by canonical suppression only
- $V_C = k dV/dy$, where k varied to establish systematics

11/19

"Vanilla" CSM at LHC: light nuclei

- [V.V., B. Doenigus, H. Stoecker, 1808.05245]
- **CSM** qualitatively captures the behavior seen in the data
- Data prefers $V_C > dV/dy$ and/or $T_{p+p} > T_{Pb+Pb}$

 The CSM captures fairly well multiplicity dependence of hyperonto-pion and nuclei-to-proton ratios

• Trend in K/π captured, but the data are significantly overshooted

• Some tension with the p/π data, which shows no clear evidence for canonical suppression

• Behavior of ϕ/π in the model is opposite to the behavior in the data. Unless production mechanism of ϕ is separate from the rest of hadrons, this invalidates "Vanilla" CSM for p-p and p-Pb

Full CSM

- Allow variation of *T* with multiplicity
- Allow incomplete chemical equilibration of strangeness (as suggested by the behavior of ϕ): $N_i^{hrg} \rightarrow (\gamma_S)^{|s_i|} N_i^{hrg}$

 $|s_i|$ - strange quark content

- $V_C = 3dV/dy$ + deviations
- *T*, γ_S , dV/dy fitted to data at each centrality
- Data: π , K, K_0^S , ϕ , p, Λ , Ξ , Ω in p-p 7 TeV, p-Pb 5.02 TeV, Pb-Pb 2.76 TeV

Full CSM

- Allow variation of *T* with multiplicity
- Allow incomplete chemical equilibration of strangeness (as suggested by the behavior of ϕ): $N_i^{hrg} \rightarrow (\gamma_S)^{|s_i|} N_i^{hrg}$

 $|s_i|$ - strange quark content

- $V_C = 3dV/dy$ + deviations
- *T*, γ_S , dV/dy fitted to data at each centrality
- Data: π , K, K_0^S , ϕ , p, Λ , Ξ , Ω in p-p 7 TeV, p-Pb 5.02 TeV, Pb-Pb 2.76 TeV

A similar analysis recently presented in [Sharma et al., 1811.00399], with two important differences:

- There ϕ excluded from analysis, here it is included
- There $V_C = dV/dy$ strictly enforced, here not

Full CSM: Extracted parameters

CSM at LHC: data description

16/19

Remarks:

- Canonical model preferred over GCE in p-p, not in p-Pb and Pb-Pb. Apparent reasons are Ω 's, which are measured with better precision in p-p, and the fact that canonical suppression is partially manifest in the GCE through smaller values of γ_S . New/better measurements of Ω 's will be very useful.
- $V_C = 3dV/dy$ found to be optimal. For $V_C = dV/dy$ CE effects are too strong and in bad agreement with p-p and p-Pb data
- *T* decreases with multiplicity in CSM, from ~175 MeV for the lowest multiplicities in p-p to ~155 MeV for the highest multiplicities in Pb-Pb. γ_S increases with multiplicity, saturates at $\gamma_S \approx 1$ at $dN_{ch}/d\eta \approx 100$
- Canonical effects negligible above $dN_{ch}/d\eta \simeq 50$ effective thermodynamic limit
- Energy-dependent Breit-Wigner widths used. If zero widths used instead, p/π pushed up by ~15%, further away from the data at all multiplicities. 17/19

Relative accuracy of CSM with γ_S is ~15% for all multiplicity bins $^{18/19}$

Summary

- Exact conservation of baryon number at least as important as strangeness in the canonical picture at the LHC. Strangeness-canonical ensemble only appropriate for multistrange hyperons.
- The "vanilla" CSM captures multiplicity dependence of hyperons and light nuclei, but goes the opposite way when applied to ϕ/π .
- CSM with $\gamma_S \leq 1$ and multiplicity-dependent *T* describes hadron yield data on a 15% level across all multiplicities considered
- Canonical effects irrelevant above $dN_{ch}/d\eta \simeq 50$

Summary

- Exact conservation of baryon number at least as important as strangeness in the canonical picture at the LHC. Strangeness-canonical ensemble only appropriate for multistrange hyperons.
- The "vanilla" CSM captures multiplicity dependence of hyperons and light nuclei, but goes the opposite way when applied to ϕ/π .
- CSM with $\gamma_S \leq 1$ and multiplicity-dependent *T* describes hadron yield data on a 15% level across all multiplicities considered
- Canonical effects irrelevant above $dN_{ch}/d\eta \simeq 50$

Thanks for your attention!