

Dynamical description of heavy-ion collisions

Elena Bratkovskaya

(GSI, Darmstadt & Uni. Frankfurt) for the PHSD group

COST Workshop on Interplay of hard and soft QCD probes for collectivity in heavy-ion collisions 25 February - 1 March 2019, Lund university, Sweden

The ,holy grail' of heavy-ion physics:

2

Theory: Information from lattice QCD

□ Scalar quark condensate $\langle q \overline{q} \rangle$ is viewed as an order parameter for the restoration of chiral symmetry: $\langle \overline{q}q \rangle = \begin{cases} \neq 0 & \text{chiral non-symmetric phase;} \\ = 0 & \text{chiral symmetric phase.} \end{cases}$

 \rightarrow both transitions occur at about the same temperature T_c for low chemical potentials

Degrees-of-freedom of QGP

pQCD:

- weakly interacting system
- massless quarks and gluons

How to learn about degrees-offreedom of QGP?

- Thermal QCD = QCD at high parton densities:
- strongly interacting system
- massive quarks and gluons
- ➔ quasiparticles
- effective degrees-of-freedom

Theory ←→ HIC experiments

Statistical models:

basic assumption: system is described by a (grand) canonical ensemble of non-interacting fermions and bosons in thermal and chemical equilibrium = thermal hadron gas at freeze-out with common T and μ_B

[-: no dynamical information]

• <u>Hydrodynamical models:</u>

basic assumption: conservation laws + equation of state (EoS);

assumption of local thermal and chemical equilibrium

- Interactions are ,hidden' in properties of the fluid described by transport coefficients (shear and bulk viscosity η , ζ , ..), which is 'input' for the hydro models

[-: simplified dynamics]

• Microscopic transport models:

based on transport theory of relativistic quantum many-body systems

- Explicitly account for the interactions of all degrees of freedom (hadrons and partons) in terms of cross sections and potentials
- Provide a unique dynamical description of strongly interaction matter in- and out-off equilibrium:
- In-equilibrium: transport coefficients are calculated in a box controled by IQCD
- Nonequilibrium dynamics controled by HIC

Actual solutions: Monte Carlo simulations

History: Semi-classical BUU equation

Boltzmann-Uehling-Uhlenbeck equation (non-relativistic formulation) - propagation of particles in the self-generated Hartree-Fock mean-field potential U(r,t) with an on-shell collision term:

$$\frac{\partial}{\partial t}f(\vec{r},\vec{p},t) + \frac{\vec{p}}{m}\vec{\nabla}_{\vec{r}} f(\vec{r},\vec{p},t) - \vec{\nabla}_{\vec{r}}U(\vec{r},t)\vec{\nabla}_{\vec{p}}f(\vec{r},\vec{p},t) = \left(\frac{\partial f}{\partial t}\right)_{coll}$$

collision term: elastic and inelastic reactions

 $f(\vec{r}, \vec{p}, t)$ is the single particle phase-space distribution function - probability to find the particle at position *r* with momentum *p* at time *t*

□ self-generated Hartree-Fock mean-field potential:

$$U(\vec{r},t) = \frac{1}{(2\pi\hbar)^3} \sum_{\beta_{occ}} \int d^3r' \ d^3p \ V(\vec{r}-\vec{r}',t) \ f(\vec{r}',\vec{p},t) + (Fock \ term)$$

□ Collision term for 1+2→3+4 (let's consider fermions) :

$$I_{coll} = \frac{4}{(2\pi)^3} \int d^3 p_2 \, d^3 p_3 \, \int d\Omega \, |v_{12}| \, \delta^3 (\vec{p}_1 + \vec{p}_2 - \vec{p}_3 - \vec{p}_4) \cdot \frac{d\sigma}{d\Omega} (1 + 2 \to 3 + 4) \cdot P$$

Probability including Pauli blocking of fermions: $P = f_3 f_4 (1 - f_1)(1 - f_2) - f_1 f_2 (1 - f_3)(1 - f_4)$ Gain term: 3+4 \rightarrow 1+2
Loss term: 1+2 \rightarrow 3+4

Elementary hadronic interactions

Consider all possible interactions – eleastic and inelastic collisions - for the sytem of (*N*,*R*,*m*), where *N*-nucleons, *R*- resonances, *m*-mesons, and resonance decays

Low energy collisions:

- binary 2←→2 and
 2←→3(4) reactions
- 1←→2 : formation and decay of baryonic and mesonic resonances

 $BB \leftarrow \rightarrow B'B'$ $BB \leftarrow \rightarrow B'B'm$ $mB \leftarrow \rightarrow m'B'$ $mB \leftarrow \rightarrow B'$ $mm \leftarrow \rightarrow m'm'$ $mm \leftarrow \rightarrow m'$

Baryons: $B = p, n, \Delta(1232),$ N(1440), N(1535), ...Mesons: $M = \pi, \eta, \rho, \omega, \phi, ...$

High energy collisions: (above $s^{1/2} \sim 2.5 \text{ GeV}$) Inclusive particle production: $BB \rightarrow X$, $mB \rightarrow X$, $mm \rightarrow X$ X = many particlesdescribed by string formation and decay (string = excited color singlet states q-qq, q-qbar) using LUND string model

From weakly to strongly interacting systems

In-medium effects (on hadronic or partonic levels!) = changes of particle properties in the hot and dense medium Example: hadronic medium - vector mesons, strange mesons QGP – dressing of partons

Many-body theory: Strong interaction → large width = short life-time

➔ broad spectral function ➔ quantum object

• How to describe the dynamics of broad strongly interacting quantum states in transport theory?

semi-classical BUU

first order gradient expansion of quantum Kadanoff-Baym equations

generalized transport equations based on Kadanoff-Baym dynamics

Dynamical description of strongly interacting systems

Semi-classical on-shell BUU: applies for small collisional width, i.e. for a weakly interacting systems of particles

How to describe strongly interacting systems?!

❑ Quantum field theory →

Kadanoff-Baym dynamics for resummed single-particle Green functions S[<]

$$\hat{S}_{0x}^{-1} S_{xy}^{<} = \Sigma_{xz}^{ret} \odot S_{zy}^{<} + \Sigma_{xz}^{<} \odot S_{zy}^{adv}$$

Green functions S[<] / self-energies Σ :

Integration over the intermediate spacetime

 $iS_{xy}^{<} = \eta \langle \{ \Phi^{+}(y)\Phi(x) \} \rangle$ $iS_{xy}^{>} = \langle \{ \Phi(y)\Phi^{+}(x) \} \rangle$ $iS_{xy}^{c} = \langle T^{c} \{ \Phi(x)\Phi^{+}(y) \} \rangle - causal$ $iS_{xy}^{a} = \langle T^{a} \{ \Phi(x)\Phi^{+}(y) \} \rangle - anticausal$

Leo Kadanoff

After the first order gradient expansion of the Wigner transformed Kadanoff-Baym equations and separation into the real and imaginary parts one gets:

 $\begin{array}{c|c} \hline \textbf{Generalized transport equations (GTE):} \\ \hline \textbf{drift term} & \textbf{Vlasov term} \\ \diamondsuit \{P^2 \ - \ M_0^2 \ - \ Re\Sigma_{XP}^{ret}\} \{S_{XP}^{<}\} \ - \ \diamondsuit \{\Sigma_{XP}^{<}\} \{ReS_{XP}^{ret}\} \\ \Leftrightarrow \{\Sigma_{XP}^{<}\} \{ReS_{XP}^{ret}\} \\ = \ \frac{i}{2} \left[\Sigma_{XP}^{>} S_{XP}^{<} \ - \ \Sigma_{XP}^{<} S_{XP}^{>}\right] \end{array}$

<u>Backflow term</u> incorporates the off-shell behavior in the particle propagation ! vanishes in the quasiparticle limit $A_{XP} \rightarrow \delta(p^2-M^2)$

□ GTE: Propagation of the Green's function $iS^{<}_{XP}=A_{XP}N_{XP}$, which carries information not only on the number of particles (N_{XP}) , but also on their properties, interactions and correlations (via A_{XP})

Spectral function:
$$A_{XP} = \frac{\Gamma_{XP}}{(P^2 - M_0^2 - Re\Sigma_{XP}^{ret})^2 + \Gamma_{XP}^2/4}$$

 $\Gamma_{XP} = -Im \Sigma_{XP}^{ret} = 2 p_{\theta} \Gamma$ – ,width' of spectral function = reaction rate of particle (at space-time position X) 4-dimentional generalizaton of the Poisson-bracket:

 $\diamond \{ F_1 \} \{ F_2 \} := \frac{1}{2} \left(\frac{\partial F_1}{\partial X_{\mu}} \frac{\partial F_2}{\partial P^{\mu}} - \frac{\partial F_1}{\partial P_{\mu}} \frac{\partial F_2}{\partial X^{\mu}} \right)$

Life time $\tau = \frac{hc}{\Gamma}$

W. Cassing , S. Juchem, NPA 665 (2000) 377; 672 (2000) 417; 677 (2000) 445

General testparticle off-shell equations of motion

W. Cassing , S. Juchem, NPA 665 (2000) 377; 672 (2000) 417; 677 (2000) 445

□ Employ testparticle Ansatz for the real valued quantity *i* S[<]_{XP}

$$F_{XP} = A_{XP}N_{XP} = i S_{XP}^{<} \sim \sum_{i=1}^{N} \delta^{(3)}(\vec{X} - \vec{X}_{i}(t)) \ \delta^{(3)}(\vec{P} - \vec{P}_{i}(t)) \ \delta(P_{0} - \epsilon_{i}(t))$$

insert in generalized transport equations and determine equations of motion !

General testparticle Cassing's off-shell equations of motion for the time-like particles:

$$\begin{split} \frac{d\vec{X}_{i}}{dt} &= \frac{1}{1-C_{(i)}} \frac{1}{2\epsilon_{i}} \left[2\vec{P}_{i} + \vec{\nabla}_{P_{i}} Re\Sigma_{(i)}^{ret} + \underbrace{\frac{\epsilon_{i}^{2} - \vec{P}_{i}^{2} - M_{0}^{2} - Re\Sigma_{(i)}^{ret}}{\Gamma_{(i)}} \vec{\nabla}_{P_{i}} \Gamma_{(i)} \right], \\ \frac{d\vec{P}_{i}}{dt} &= -\frac{1}{1-C_{(i)}} \frac{1}{2\epsilon_{i}} \left[\vec{\nabla}_{X_{i}} Re\Sigma_{i}^{ret} + \underbrace{\frac{\epsilon_{i}^{2} - \vec{P}_{i}^{2} - M_{0}^{2} - Re\Sigma_{(i)}^{ret}}{\Gamma_{(i)}} \vec{\nabla}_{X_{i}} \Gamma_{(i)} \right], \\ \frac{d\epsilon_{i}}{dt} &= \frac{1}{1-C_{(i)}} \frac{1}{2\epsilon_{i}} \left[\frac{\partial Re\Sigma_{(i)}^{ret}}{\partial t} + \underbrace{\frac{\epsilon_{i}^{2} - \vec{P}_{i}^{2} - M_{0}^{2} - Re\Sigma_{(i)}^{ret}}{\Gamma_{(i)}} \frac{\partial \Gamma_{(i)}}{\partial t} \right], \\ \\ \text{with} \quad F_{(i)} &\equiv F(t, \vec{X}_{i}(t), \vec{P}_{i}(t), \epsilon_{i}(t)) \\ C_{(i)} &= \frac{1}{2\epsilon_{i}} \left[\frac{\partial}{\partial\epsilon_{i}} Re\Sigma_{(i)}^{ret} + \underbrace{\frac{\epsilon_{i}^{2} - \vec{P}_{i}^{2} - M_{0}^{2} - Re\Sigma_{(i)}^{ret}}{\Gamma_{(i)}} \frac{\partial \Gamma_{(i)}}{\partial\epsilon} \right], \end{split}$$

Collision term for reaction 1+2->3+4:

$$\begin{split} \underline{I_{coll}(X,\vec{P},M^2)} &= Tr_2 Tr_3 Tr_4 \underline{A(X,\vec{P},M^2)} A(X,\vec{P}_2,M_2^2) A(X,\vec{P}_3,M_3^2) A(X,\vec{P}_4,M_4^2) \\ & |\underline{G((\vec{P},M^2) + (\vec{P}_2,M_2^2) \rightarrow (\vec{P}_3,M_3^2) + (\vec{P}_4,M_4^2))|_{\mathcal{A},\mathcal{S}}^2} \delta^{(4)}(P + P_2 - P_3 - P_4) \\ & [N_{X\vec{P}_3M_3^2} N_{X\vec{P}_4M_4^2} \bar{f}_{X\vec{P}M^2} \bar{f}_{X\vec{P}_2M_2^2} - N_{X\vec{P}M^2} N_{X\vec{P}_2M_2^2} \bar{f}_{X\vec{P}_3M_3^2} \bar{f}_{X\vec{P}_4M_4^2}] \\ & \text{,gain' term} \\ \end{split}$$

with $\bar{f}_{X\vec{P}M^2} = 1 + \eta N_{X\vec{P}M^2}$ and $\eta = \pm 1$ for bosons/fermions, respectively.

The trace over particles 2,3,4 reads explicitly

for fermions $Tr_{2} = \sum_{\sigma_{2},\tau_{2}} \frac{1}{(2\pi)^{4}} \int d^{3}P_{2} \underbrace{\frac{dM_{2}^{2}}{\sqrt{\vec{P}_{2}^{2} + M_{2}^{2}}}}_{\text{additional integration}} Tr_{2} = \sum_{\sigma_{2},\tau_{2}} \frac{1}{(2\pi)^{4}} \int d^{3}P_{2} \underbrace{\frac{dP_{0,2}^{2}}{2}}_{2}$

The transport approach and the particle spectral functions are fully determined once the in-medium transition amplitudes G are known in their off-shell dependence!

Goal: microscopic transport description of the partonic and hadronic phase

□ How to model a QGP phase in line with IQCD data?

How to solve the hadronization problem?

<u>Ways to go:</u>

pQCD based models:

Problems:

QGP phase: pQCD cascade

hadronization: quark coalescence

→ AMPT, HIJING, BAMPS

,Hybrid' models:

QGP phase: hydro with QGP EoS

hadronic freeze-out: after burner hadron-string transport model

→ Hybrid-UrQMD

microscopic transport description of the partonic and hadronic phase in terms of strongly interacting dynamical quasi-particles and off-shell hadrons

→ PHSD

From SIS to LHC: from hadrons to partons

The goal: to study of the phase transition from hadronic to partonic matter and properties of the Quark-Gluon-Plasma from a microscopic origin

need a consistent non-equilibrium transport model

with explicit parton-parton interactions (i.e. between quarks and gluons)
 explicit phase transition from hadronic to partonic degrees of freedom
 IQCD EoS for partonic phase (,crossover' at small μ_q)

□ Transport theory: off-shell Kadanoff-Baym equations for the Green-functions S[<]_h(x,p) in phase-space representation for the partonic and hadronic phase

QGP phase described by Dynamical QuasiParticle Model (DQPM)

W. Cassing, E. Bratkovskaya, PRC 78 (2008) 034919; NPA831 (2009) 215; W. Cassing, EPJ ST 168 (2009) 3

> A. Peshier, W. Cassing, PRL 94 (2005) 172301; Cassing, NPA 791 (2007) 365: NPA 793 (2007)

DQPM describes **QCD** properties in terms of ,resummed' single-particle Green's functions (propagators) – in the sense of a two-particle irreducible (2PI) approach:

gluon propagator: $\Delta^{-1} = P^2 - \Pi$ & quark propagator $S_a^{-1} = P^2 - \Sigma_a$

gluon self-energy: $\Pi = M_g^2 - i2\gamma_g \omega$ & quark self-energy: $\Sigma_q = M_q^2 - i2\gamma_q \omega$

(scalar approximation)

- the resummed properties are specified by complex (retarded) self-energies:
- the real part of self-energies (Σ_{α} , Π) describes a dynamically generated mass (M_{α} , M_{α});
- the imaginary part describes the interaction width of partons (γ_q , γ_q)
- Spectral functions : $A_a \sim ImS_a^{ret}$, $A_{o} \sim Im\Delta^{ret}$
- **Entropy density of interacting bosons and fermions in the quasiparticle limit (2PI)** (G. Baym 1998):

$$s^{dqp} = -d_g \int \frac{d\omega}{2\pi} \frac{d^3p}{(2\pi)^3} \frac{\partial n_B}{\partial T} (\operatorname{Im}\ln(-\Delta^{-1}) + \operatorname{Im}\Pi\operatorname{Re}\Delta) \qquad \text{gluons}$$
$$-d_q \int \frac{d\omega}{2\pi} \frac{d^3p}{(2\pi)^3} \frac{\partial n_F((\omega - \mu_q)/T)}{\partial T} (\operatorname{Im}\ln(-S_q^{-1}) + \operatorname{Im}\Sigma_q\operatorname{Re}S_q) \quad \text{quarks}$$
$$-d_{\bar{q}} \int \frac{d\omega}{2\pi} \frac{d^3p}{(2\pi)^3} \frac{\partial n_F((\omega + \mu_q)/T)}{\partial T} (\operatorname{Im}\ln(-S_{\bar{q}}^{-1}) + \operatorname{Im}\Sigma_{\bar{q}}\operatorname{Re}S_{\bar{q}}) \quad \text{antiquarks}$$

A. Peshier, W. Cassing, PRL 94 (2005) 172301; Cassing, NPA 791 (2007) 365: NPA 793 (2007)

<u>Properties</u> of interacting quasi-particles: massive quarks and gluons (g, q, q_{bar}) with Lorentzian spectral functions :

$$egin{aligned} A(\omega,oldsymbol{p}) &= rac{\gamma}{E} \left(rac{1}{(\omega-E)^2+\gamma^2} - rac{1}{(\omega+E)^2+\gamma^2}
ight) \ E^2 &= p^2 + M^2 - \gamma^2 \end{aligned}$$

Modeling of the quark/gluon masses and widths \rightarrow HTL limit at high T

Cassing, NPA 791 (2007) 365: NPA 793 (2007)

DQPM at finite T and μ_{α}

Peshier, Cassing, PRL 94 (2005) 172301; Cassing, NPA 791 (2007) 365: NPA 793 (2007)

Parton-Hadron-String-Dynamics (PHSD)

□ Initial A+A collisions : N+N → string formation → decay to pre-hadrons

 □ Formation of QGP stage if ε > ε_{critical} : dissolution of pre-hadrons → (DQPM) →
 → massive quarks/gluons + mean-field potential U_q

Partonic stage – QGP : based on the Dynamical Quasi-Particle Model (DQPM)

• (quasi-) elastic collisions: $q+q \rightarrow q+q$ $g+q \rightarrow g+q$ q $q+\overline{q} \rightarrow q+\overline{q}$ $g+\overline{q} \rightarrow g+\overline{q}$ q $\overline{q}+\overline{q} \rightarrow \overline{q}+\overline{q}$ $g+g \rightarrow g+g$

• inelastic collisions: $q + \overline{q} \rightarrow g$ $q + \overline{q} \rightarrow g + g$ $g \rightarrow q + \overline{q}$ $g \rightarrow g + g$

LUND string mod

■ Hadronization (based on DQPM): $g \rightarrow q + \overline{q}, \quad q + \overline{q} \leftrightarrow meson \ (or 'string')$

 $q + q + q \leftrightarrow baryon \ (or 'string ')$

□ Hadronic phase: hadron-hadron interactions – off-shell HSD

W. Cassing, E. Bratkovskaya, PRC 78 (2008) 034919; NPA831 (2009) 215; W. Cassing, EPJ ST 168 (2009) 3 18

QGP in equilibrium: Transport properties at finite (T, μ_q): η/s

Shear viscosity η /s at finite T

PHSD: V. Ozvenchuk et al., PRC 87 (2013) 064903

Hydro: Bayesian analysis, S. Bass et al. ,1704.07671

QGP in PHSD = stronglyinteracting liquid-like system

η/s: $μ_q$ =0 → finite $μ_q$: smooth increase as a function of (T, $μ_q$)

Review: H. Berrehrah et al. Int.J.Mod.Phys. E25 (2016) 1642003 19

Traces of the QGP in observables in high energy heavy-ion collisions

http://theory.gsi.de/~ebratkov/phsd-project/PHSD/index1.html

t = 3.91921 fm/c

Au + Au $\sqrt{s_{NN}} = 200 \text{ GeV}$ b = 2.2 fm - Section view

Time evolution of the partonic energy fraction vs energy

□ Strong increase of partonic phase with energy from AGS to RHIC

SPS: Pb+Pb, 160 A GeV: only about 40% of the converted energy goes to partons; the rest is contained in the large hadronic corona and leading partons
 RHIC: Au+Au, 21.3 A TeV: up to 90% - QGP

W. Cassing & E. Bratkovskaya, NPA 831 (2009) 215 V. Konchakovski et al., Phys. Rev. C 85 (2012) 011902

Central Pb + Pb at SPS energies

Central Au+Au at RHIC

■ PHSD gives harder m_T spectra and works better than HSD (wo QGP) at high energies

– RHIC, SPS (and top FAIR, NICA)

□ however, at low SPS (and low FAIR, NICA) energies the effect of the partonic phase decreases due to the decrease of the partonic fraction

W. Cassing & E. Bratkovskaya, NPA 831 (2009) 215 E. Bratkovskaya, W. Cassing, V. Konchakovski, O. Linnyk, NPA856 (2011) 162

Elliptic flow v₂ vs. collision energy for Au+Au

PIS

$$\frac{dN}{d\varphi} \propto \left(1 + 2\sum_{n=1}^{+\infty} v_n \cos\left[n(\varphi - \psi_n)\right]\right)$$
$$v_n = \left\langle\cos n(\varphi - \psi_n)\right\rangle, \quad n = 1, 2, 3...,$$

• v_2 in PHSD is larger than in HSD due to the repulsive scalar mean-field potential $U_s(\rho)$ for partons

v₂ grows with bombarding energy due to the increase of the parton fraction

V. Konchakovski, E. Bratkovskaya, W. Cassing, V. Toneev, V. Voronyuk, Phys. Rev. C 85 (2012) 011902

X

V_n (n=2,3,4,5) of charged particles from PHSD at LHC

v₂ increases with decreasing centrality

PRL 107 (2011) 032301 lines – PHSD (e-by-e)

v_n (n=3,4,5) show weak centrality dependence

 v_n (n=3,4,5) develops by interaction in the QGP and in the final hadronic phase

V. Konchakovski, W. Cassing, V. Toneev, J. Phys. G: Nucl. Part. Phys 42 (2015) 055106

PHSD: even when considering the creation of a QGP phase, the K⁺/ π ⁺ ,horn⁺ seen experimentally by NA49 and STAR at a bombarding energy ~30 A GeV (FAIR/NICA energies!) remains unexplained !

➔ The origin of 'horn' is not traced back to deconfinement ?!

Can it be related to chiral symmetry restoration in the hadronic phase?!

Chiral symmetry restoration vs. deconfinement

□ Chiral symmetry restoration via Schwinger mechanism (and non-linear $\sigma - \omega$ model) changes the "flavour chemistry" in string fragmentation (1PI): $\langle q \overline{q} \rangle / \langle q \overline{q} \rangle_V \rightarrow 0 \rightarrow m_s^* \rightarrow m_s^0 \rightarrow s/u \text{ grows}$

→ the strangeness production probability increases with the local energy density ε (up to ε_c) due to the partial chiral symmetry restoration!

Excitation function of hadron ratios and yields

20 A+A 0-5% central |y|<0.5 $\Lambda + \Sigma^0$ yield ($\Lambda + \Sigma^0$) a) w/o CSR ····· NL3 5 NL1 AGS (E895-E896) SPS (NA49) A+A 0-5% central |v|<0.5 b) yield (Ξ) 1.5 0.5 SPS (NA49) 8 10 12 14 16 18 20 2 √S_{NN} [GeV]

- □ Influence of EoS: NL1 vs NL3 → low sensitivity to the nuclear EoS
- □ Excitation function of the hyperons $\Lambda + \Sigma^0$ and Ξ^- show analogous peaks as K⁺/ π^+ , ($\Lambda + \Sigma^0$)/ π ratios due to CSR

Chiral symmetry restoration leads to the **enhancement of strangeness production** in string fragmentation in the beginning of HIC in the hadronic phase

A. Palmese et al., PRC94 (2016) 044912 , arXiv:1607.04073

Microscopic transport approach PHSD versus experimental observables:

evidence for strong partonic interactions in the early phase of relativistic heavy-ion reactions

□ indication for a partial chiral symmetry restoration

http://theory.gsi.de/~ebratkov/phsd-project/PHSD/index1.html

Thanks to:

UNIVERSITÄT FRANKFURT AM MAIN

HGS-HIRe for FAIR Helmholtz Graduate School for Hadron and Ion Research

EUROPEAN COOPERATION

Bundesministerium für Bildung und Forschung

FG Deutsche Forschungsgemeinschaft

PHSD group - 2019

GSI & Frankfurt University Elena Bratkovskaya Pierre Moreau Lucia Oliva Olga Soloveva

Giessen University Wolfgang Cassing Taesoo Song

Thanks to Olena Linnyk Volodya Konchakovski Hamza Berrehrah Thorsten Steinert Alessia Palmese Eduard Seifert

External Collaborations

SUBATECH, Nantes University: Jörg Aichelin Christoph Hartnack Pol-Bernard Gossiaux Marlene Nahrgang

> Texas A&M University: Che-Ming Ko

JINR, Dubna: Viacheslav Toneev Vadim Voronyuk Viktor Kireev

Valencia University: Daniel Cabrera

Barcelona University: Laura Tolos

> Duke University: Steffen Bass

Universitat Autònomal de Barcelona

Thank you for your attention !

Thanks to the Organizers !

