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The Big Question:

How do we know when we’ve created the QGP?

Some broad options (not mutually exclusive):

I Look for collectivity
I Anisotropic flow
I The ridge

I Look for chemistry
I J/ψ abundances
I Strangeness enhancement

I Look for quenching

But why haven’t we seen jet quenching in small systems?
Consider the space-time geometry!
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Fig credit: Ulrich Heinz and Scott Moreland
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Freeze-out volume constant, but space-time volume changes significantly!



How can we probe the space-time geometry?

→ HBT1 particle interferometry is ideal for this

Today:

I Particle interferometry: basics

I Particle interferometry with hydrodynamics

I Particle interferometry with Pythia 8

1HBT≡Hanbury Brown-Twiss
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Correlation functions and HBT radii

C(~p1, ~p2) ≡ Ep1Ep2
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→ Cfit(~q, ~K) ≡ 1 + λ exp
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Cth(~q, ~K) ≈ 1 +
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x̃i ≡ xi − 〈xi〉S , t̃ ≡ t− 〈t〉S , ~β ≡ ~K/K0

Christopher J. Plumberg Particle Interferometry from Hydrodynamics and Event Generators



Correlation functions and HBT radii

C(~p1, ~p2) ≡ Ep1Ep2

d6N

d3p1d3p2
/

(
Ep1

d3N

d3p1
Ep2

d3N

d3p2

)

→ Cfit(~q, ~K) ≡ 1 + λ exp

− ∑
i,j=o,s,l

R2
ij(
~K)qiqj


~q ≡ ~p1 − ~p2, ~K ≡

1

2
(~p1 + ~p2)

Cth(~q, ~K) ≈ 1 +

∣∣∣∣∫ d4xS(x,K)eiq·x∫
d4xS(x,K)

∣∣∣∣2
For Gaussian sources:

=⇒ R2
ij(
~K) ≡

〈
(x̃i − βit̃)(x̃j − βj t̃)

〉
S
,

〈f(x)〉S ≡
∫
d4x f(x)S(x,K)∫
d4xS(x,K)

x̃i ≡ xi − 〈xi〉S , t̃ ≡ t− 〈t〉S , ~β ≡ ~K/K0

Christopher J. Plumberg Particle Interferometry from Hydrodynamics and Event Generators



Correlation functions and HBT radii

C(~p1, ~p2) ≡ Ep1Ep2

d6N

d3p1d3p2
/

(
Ep1

d3N

d3p1
Ep2

d3N

d3p2

)

→ Cfit(~q, ~K) ≡ 1 + λ exp

− ∑
i,j=o,s,l

R2
ij(
~K)qiqj


~q ≡ ~p1 − ~p2, ~K ≡

1

2
(~p1 + ~p2)

Cth(~q, ~K) ≈ 1 +

∣∣∣∣∫ d4xS(x,K)eiq·x∫
d4xS(x,K)

∣∣∣∣2

For Gaussian sources:

=⇒ R2
ij(
~K) ≡

〈
(x̃i − βit̃)(x̃j − βj t̃)

〉
S
,

〈f(x)〉S ≡
∫
d4x f(x)S(x,K)∫
d4xS(x,K)

x̃i ≡ xi − 〈xi〉S , t̃ ≡ t− 〈t〉S , ~β ≡ ~K/K0

Christopher J. Plumberg Particle Interferometry from Hydrodynamics and Event Generators



Correlation functions and HBT radii

C(~p1, ~p2) ≡ Ep1Ep2

d6N

d3p1d3p2
/

(
Ep1

d3N

d3p1
Ep2

d3N

d3p2

)

→ Cfit(~q, ~K) ≡ 1 + λ exp

− ∑
i,j=o,s,l

R2
ij(
~K)qiqj


~q ≡ ~p1 − ~p2, ~K ≡

1

2
(~p1 + ~p2)

Cth(~q, ~K) ≈ 1 +

∣∣∣∣∫ d4xS(x,K)eiq·x∫
d4xS(x,K)

∣∣∣∣2
For Gaussian sources:

=⇒ R2
ij(
~K) ≡

〈
(x̃i − βit̃)(x̃j − βj t̃)

〉
S
,

〈f(x)〉S ≡
∫
d4x f(x)S(x,K)∫
d4xS(x,K)

x̃i ≡ xi − 〈xi〉S , t̃ ≡ t− 〈t〉S , ~β ≡ ~K/K0

Christopher J. Plumberg Particle Interferometry from Hydrodynamics and Event Generators



Space-time evolution in Hydrodynamics
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=⇒ pp has more flow than pPb or PbPb!
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Conclusion: particle interferometry may help constrain the
system’s geometry in relation to jet quenching, but quantitative

studies are still needed.
So how do we do this with event generators?
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HBT and Pythia8

Method 1: momentum-space modifications

I The idea: modify pairwise correlations in particle momenta to emulate
Bose-Einstein (BE) enhancement

I Strategy: perturb final-state momenta of identical particle pairs by some
amount δQ, where∫ Q

0

q2dq√
q2 + 4m

=

∫ Q+δQ

0

f2(q)
q2dq√
q2 + 4m

and f2 (Q) ∼ 1 + λ exp
(
−Q2R2

)
is the Bose-Einstein enhancement factor,2

and λ and R are (user-defined) coherence and radius parameters,
respectively, and Q2 = − (p1 − p2)2

I Net shift for a hadron is vector sum of shifts in all pairs it belongs to

I Implements BE correlations directly into spectra; all space-time information
contained in R

Output: List of particle momenta with BE effects included

2The precise form depends on the algorithm being used
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HBT and Pythia8

Method 2: space-time vertex tracking3

I Assume qq̄ string with linear confinement potential, for simplicity

I Hadrons formed by multiple string breaks

I For a ith break:

- Longitudinal coordinates fixed by choosing momentum fraction z
and requiring new system to have invariant mass mh,⊥

- Transverse coordinates x and y obtained from 2D Gaussian with
width σ ≈ 0.5 fm

I Hadron production vertex is average of string breaking vertices

I This process can be generalized to more complex string topologies

I Space-time information determined explicitly by string fragmentation
geometry; spectra remain unperturbed

Output: List of particle momenta with no BE effects, together with space-time
locations of hadron production vertices

3S. Ferreres-Solé and T. Sjöstrand, Eur. Phys. J. C 78, 983 (2018).
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3S. Ferreres-Solé and T. Sjöstrand, Eur. Phys. J. C 78, 983 (2018).
Christopher J. Plumberg Particle Interferometry from Hydrodynamics and Event Generators



0.0 0.2 0.4 0.6 0.8 1.0
Q (GeV)

0.9

1.0

1.1

1.2

1.3

C(
Q

)

Method 1: momentum-space modifications
Method 2: space-time vertex tracking



0.0 0.2 0.4 0.6 0.8 1.0
Q (GeV)

0.9

1.0

1.1

1.2

1.3

C(
Q

)

Method 1
Method 2: bw=40 MeV
Method 2: bw=150 MeV



Conclusions

Existence of jet quenching in small systems remains an open question

I Could be a consequence of the collision geometry

I Or the lack of QGP formation

I Or something else...

Particle interferometry provides valuable insight into space-time
evolution and collision geometries relevant to jet-quenching models

I Already existing infrastructure for addressing this question
within hydrodynamics

I Ongoing work to equip Pythia8 with same capability

I Explore effects related to string shoving, rope hadronization, and
more

I Stay tuned!
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Thanks for your attention!


