# Statistical thermal model

a.k.a. statistical hadronization model (SHM) or hadron resonance gas (HRG)

#### Volodymyr Vovchenko

Goethe University Frankfurt & Frankfurt Institute for Advanced Studies

https://fias.uni-frankfurt.de/~vovchenko/

COST Workshop on Interplay of hard and soft QCD probes for collectivity in heavy-ion collisions Lund, Sweden, February 25 – March 1, 2019











### Relativistic heavy-ion collisions



Event display of a Pb-Pb collision in ALICE at LHC

Thousands of particles created in relativistic heavy-ion collisions

Apply concepts of statistical mechanics to describe particle production 2/30

#### **Historical perspective**

- **1951-1953:** Early applications of statistical concepts to particle production [Fermi; Landau; Pomeranchuk]
- **1965-1975:** Hagedorn's model (statistical bootstrap), applications to high-energy collisions  $\rho(m) = A m^{-\alpha} \exp(m/T_H)$ 
  - **1969:** S-matrix formulation of statistical mechanics, the basis of the thermal model Dashen, Ma, Bernstein, PRC 187, 45 (1969)
  - ~1975: QCD as accepted theory of strong interactions
  - **1992-...:** Thermal fits to heavy-ion hadron yield data, mapping HIC to the QCD phase diagram Cleymans, Satz; Braun-Munzinger, Stachel; Rafelski; Redlich; Becattini;...
  - **2003-...:** Open-source implementations of the thermal model: SHARE (Rafelski+), THERMUS (Cleymans+), the Thermal-FIST package (V.V.)
- 3/30



Изв. АН СССР, серия физ., 17, 51, 1953



# Relativistic heavy-ion collisions: Thermal model



- Simplest model with very few free parameters (T,  $\mu_B$ ,...)
- Connection to QCD phase diagram
- Easier to test new ideas

- No dynamics
- Describes only yields
- Thermal parameters fitted to data at each energy

**HRG:** Equation of state of hadronic matter as a multi-component noninteracting gas of known hadrons and resonances

$$\ln Z \approx \sum_{i \in M, B} \ln Z_i^{id} = \sum_{i \in M, B} \frac{d_i V}{2\pi^2} \int_0^\infty \pm p^2 dp \ln \left[ 1 \pm \exp\left(\frac{\mu_i - E_i}{T}\right) \right]$$

**Grand-canonical ensemble:**  $\mu_i = b_i \mu_B + q_i \mu_Q + s_i \mu_S$  *chemical equilibrium* 



#### Thermal model:

Equilibrated hadron resonance gas at the chemical freeze-out stage of high-energy collisions

#### Model parameters:

*T* – temperature

 $\mu_{B_{i}} \mu_{Q_{i}} \mu_{S}$  – chemical potentials V – system volume **Dashen, Ma, Bernstein (1969):** Inclusion of narrow resonances as free, point-like particles models attractive interactions where they are being formed [S-matrix formulation of statistical mechanics, PRC 187, 345 (1969)]



$$\ln Z^{\text{hrg}} = \sum_{i \in M, B} \frac{d_i V}{2\pi^2} \int_0^\infty \pm p^2 dp \ln \left[ 1 \pm \exp\left(\frac{\mu_i - E_i}{T}\right) \right]$$

Particle list in the thermal model usually includes all hadrons and resonances listed as established in the PDG listing

|         |           |      |                |            |      |                |           |      |                    |                      |      |                                                |                 |                                         |                 | Available from                      |
|---------|-----------|------|----------------|------------|------|----------------|-----------|------|--------------------|----------------------|------|------------------------------------------------|-----------------|-----------------------------------------|-----------------|-------------------------------------|
| p       | $1/2^{+}$ | **** | $\Delta(1232)$ | $3/2^{+}$  | **** | $\Sigma^+$     | $1/2^{+}$ | **** | Ξ <sup>0</sup>     | $1/2^{+}$            | **** |                                                |                 |                                         |                 |                                     |
| п       | $1/2^{+}$ | **** | $\Delta(1600)$ | 3/2+       | **** | $\Sigma^0$     | $1/2^{+}$ | **** | Ξ-                 | $1/2^{+}$            | **** |                                                |                 |                                         |                 |                                     |
| N(1440) | $1/2^{+}$ | **** | $\Delta(1620)$ | $1/2^{-}$  | **** | $\Sigma^{-}$   | $1/2^{+}$ | **** | $\Xi(1530)$        | $3/2^{+}$            | **** | +                                              |                 | ((,,,,,,))                              |                 |                                     |
| N(1520) | $3/2^{-}$ | **** | $\Delta(1700)$ | $3/2^{-}$  | **** | $\Sigma(1385)$ | $3/2^{+}$ | **** | $\Xi(1620)$        |                      | *    | • $\pi^{\perp}$                                | 1 (0)           | • $\phi(1680)$                          | $0^{-}(1^{-})$  | • K -                               |
| N(1535) | $1/2^{-}$ | **** | $\Delta(1750)$ | $1/2^{+}$  | *    | $\Sigma(1480)$ |           | *    | $\Xi(1690)$        |                      | ***  | • $\pi^0$                                      | $1^{-}(0^{-+})$ | • $\rho_3(1690)$                        | 1+(3)           | • K <sup>0</sup>                    |
| N(1650) | $1/2^{-}$ | **** | $\Delta(1900)$ | $1/2^{-}$  | ***  | $\Sigma(1560)$ |           | **   | $\Xi(1820)$        | $3/2^{-}$            | ***  | • η                                            | $0^+(0^{-+})$   | • $\rho(1700)$                          | $1^+(1^{})$     | $\bullet K_S^0$                     |
| N(1675) | $5/2^{-}$ | **** | $\Delta(1905)$ | $5/2^{+}$  | **** | $\Sigma(1580)$ | $3/2^{-}$ | *    | $\Xi(1950)$        |                      | ***  | • $f_0(500)$                                   | $0^+(0^{++})$   | $a_2(1700)$                             | $1^{-}(2^{++})$ | $\bullet K_L^0$                     |
| N(1680) | 5/2+      | **** | $\Delta(1910)$ | $1/2^{+}$  | **** | $\Sigma(1620)$ | $1/2^{-}$ | *    | $\Xi(2030)$        | $\geq \frac{5}{2}$ ? | ***  | • <i>ρ</i> (770)                               | $1^+(1^{})$     | • $f_0(1710)$                           | $0^+(0^{++})$   | • $K_0^*(700)$                      |
| N(1700) | $3/2^{-}$ | ***  | $\Delta(1920)$ | $3/2^{+}$  | ***  | $\Sigma(1660)$ | $1/2^{+}$ | ***  | $\Xi(2120)$        | - 2                  | *    | • ω(782)                                       | $0^{-}(1^{-})$  | $\eta(1760)$                            | $0^+(0^{-+})$   | • K*(892)                           |
| N(1710) | $1/2^{+}$ | **** | $\Delta(1930)$ | 5/2-       | ***  | $\Sigma(1670)$ | $3/2^{-}$ | **** | $\Xi(2250)$        |                      | **   | • η′(958)                                      | $0^+(0^{-+})$   | • $\pi(1800)$                           | $1^{-}(0^{-+})$ | • K <sub>1</sub> (1270              |
| N(1720) | $3/2^{+}$ | **** | $\Delta(1940)$ | $3/2^{-}$  | **   | $\Sigma(1690)$ | 1         | **   | $\Xi(2370)$        |                      | **   | • <i>f</i> <sub>0</sub> (980)                  | $0^+(0^{++})$   | $f_2(1810)$                             | $0^+(2^{++})$   | • K <sub>1</sub> (1400              |
| N(1860) | $5/2^{+}$ | **   | $\Delta(1950)$ | $7/2^{+}$  | **** | $\Sigma(1730)$ | $3/2^{+}$ | *    | $\Xi(2500)$        |                      | *    | • <i>a</i> <sub>0</sub> (980)                  | $1^{-}(0^{+})$  | X(1835)                                 | $?^{!}(0^{-+})$ | • K*(141                            |
| N(1875) | $3/2^{-}$ | ***  | $\Delta(2000)$ | $5/2^+$    | **   | $\Sigma(1750)$ | $1/2^{-}$ | ***  | _()                |                      |      | • $\phi(1020)$                                 | $0^{-}(1^{-})$  | X(1840)                                 | ?!(?!!)         | • K <sup>*</sup> <sub>0</sub> (1430 |
| N(1880) | $1/2^{+}$ | ***  | $\Delta(2150)$ | $1/2^{-}$  | *    | $\Sigma(1770)$ | $1/2^{+}$ | *    | $\Omega^{-}$       | $3/2^{+}$            | **** | • $h_1(1170)$                                  | $0^{-}(1^{+})$  | • $\phi_3(1850)$                        | 0-(3)           | • K <sup>*</sup> <sub>2</sub> (1430 |
| N(1895) | $1/2^{-}$ | **** | $\Delta(2200)$ | $7/2^{-}$  | ***  | $\Sigma(1775)$ | $5/2^{-}$ | **** | $\Omega(2250)^{-}$ | - / -                | ***  | <ul> <li><i>b</i><sub>1</sub>(1235)</li> </ul> | $1^+(1^+)$      | $\eta_2(1870)$                          | 0+(2-+)         | K(1460)                             |
| N(1900) | $3/2^+$   | **** | $\Delta(2300)$ | $9/2^+$    | **   | $\Sigma(1840)$ | $3/2^+$   | *    | $\Omega(2380)^{-}$ |                      | **   | • $a_1(1260)$                                  | $1^{-}(1^{++})$ | <ul> <li>π<sub>2</sub>(1880)</li> </ul> | $1^{-}(2^{-+})$ | $K_2(1580)$                         |
| N(1990) | $7/2^+$   | **   | $\Delta(2350)$ | $5/2^{-1}$ | *    | $\Sigma(1880)$ | $1/2^+$   | **   | $\Omega(2470)^{-}$ |                      | **   | • f <sub>2</sub> (1270)                        | 0+(2++)         | ho(1900)                                | $1^+(1^{})$     | K(1630                              |

#### ~400 species

#### Connecting model to experiment

$$N_i^{hrg} = \frac{d_i V}{2\pi^2} \int_0^\infty p^2 dp \left[ \exp\left(\frac{E_i - \mu_i}{T}\right) \pm 1 \right]^{-1} \quad \propto \quad e^{-m_i/T}$$

Particle decays: Unstable resonances decay before being detected

$$\Delta \stackrel{\mathsf{N}}{\underset{\pi}{\leftarrow}} \overset{\mathsf{N}}{\underset{\pi}{\leftarrow}} \overset{\mathsf{K}}{\underset{\pi}{\leftarrow}} \overset{\mathsf{K}}{\underset{\pi}{\leftarrow}} \rho \stackrel{\mathsf{T}}{\underset{\pi}{\leftarrow}} \overset{\mathsf{etc.}}{\underset{\pi}{\leftarrow}}$$
etc.  
Fake into account feeddown:  $N_i^{\text{fin}} = N_i^{\text{hrg}} + \sum_j BR(j \to i) N_j^{\text{hrg}}$   
60-70% of  $\pi$ , p, etc. are from feeddown

#### **Conservation laws:**

Zero net strangeness  $\rightarrow \mu_S$ Electric-to-baryon ratio Q/B = 0.4-0.5  $\rightarrow \mu_Q$ 

Freeze-out parameters T,  $\mu_B$ , V extracted through  $\chi^2$  minimization

$$\chi^{2} = \sum_{i} \frac{(N_{i}^{\text{fin}} - N_{i}^{\text{exp}})^{2}}{(\sigma_{i}^{\text{exp}})^{2}}, \quad i = \pi, K, p, \Lambda, \dots$$

8/30

### Thermal fits at SPS and RHIC energies



- Fair data description across several orders of magnitude
- Evidence for chemical equilibration of matter

### Thermal fits at LHC



# Heavy-ion collisions and the QCD phase diagram

Thermal fits for systems at different collision energies map chemical freeze-out stage in heavy-ion collisions to the QCD phase diagram



#### HRG model and lattice QCD equation of state



[HotQCD collaboration, 1407.6387; similar results from Wuppertal-Budapest collab., 1309.5258]

#### HRG model and lattice QCD equation of state



[HotQCD collaboration, 1407.6387; similar results from Wuppertal-Budapest collab., 1309.5258]

HRG describes quite well LQCD thermodynamic functions below and in the vicinity of the pseudocritical temperature

### Thermal model and radial flow

$$N_i^{\rm hrg} = V \frac{d_i}{2\pi^2} \int_0^\infty p^2 dp \left[ \exp\left(\frac{E_i - \mu_i}{T}\right) \pm 1 \right]^{-1}$$

In thermal model yields are computed in **local rest frame**, i.e. no flow But matter in HIC appears to have a substantial collective flow, so how can the model be applied to data?

#### Thermal model and radial flow

$$N_i^{\rm hrg} = V \frac{d_i}{2\pi^2} \int_0^\infty p^2 dp \left[ \exp\left(\frac{E_i - \mu_i}{T}\right) \pm 1 \right]^{-1}$$

In thermal model yields are computed in **local rest frame**, i.e. no flow But matter in HIC appears to have a substantial collective flow, so how can the model be applied to data?

**Hydro:** 
$$N_i = \int_{\sigma} d\sigma_{\mu} u^{\mu} \underbrace{\int \frac{d^3 p_i}{p^0} p_{\mu} u^{\mu} \frac{d_i}{(2\pi)^3} \left[ \exp\left(\frac{p_i^{\mu} u_{\mu} - \mu_i}{T}\right) \pm 1 \right]^{-1}}_{n_i^{\text{hrg}}}$$

"Freeze-out" across space-time hypersurface  $\sigma(x)$  with collective velocity profile  $u^{\mu}(x)$ . If T and  $\mu_i$  uniform across the hypersurface then

$$N_i = n_i^{\text{hrg}} \underbrace{\int_{\sigma} d\sigma_{\mu} u^{\mu}}_{V_{\text{eff}}}$$
 and  $\frac{\mathbf{N_i}}{\mathbf{N_j}} = \frac{\mathbf{N_i^{\text{hrg}}}}{\mathbf{N_j^{\text{hrg}}}}$ 

### Thermal model and radial flow

$$N_i^{\rm hrg} = V \frac{d_i}{2\pi^2} \int_0^\infty p^2 dp \left[ \exp\left(\frac{E_i - \mu_i}{T}\right) \pm 1 \right]^{-1}$$

In thermal model yields are computed in **local rest frame**, i.e. no flow But matter in HIC appears to have a substantial collective flow, so how can the model be applied to data?

**Hydro:** 
$$N_i = \int_{\sigma} d\sigma_{\mu} u^{\mu} \underbrace{\int \frac{d^3 p_i}{p^0} p_{\mu} u^{\mu} \frac{d_i}{(2\pi)^3} \left[ \exp\left(\frac{p_i^{\mu} u_{\mu} - \mu_i}{T}\right) \pm 1 \right]^{-1}}_{n_i^{\text{hrg}}}$$

"Freeze-out" across space-time hypersurface  $\sigma(x)$  with collective velocity profile  $u^{\mu}(x)$ . If T and  $\mu_i$  uniform across the hypersurface then

$$N_{i} = n_{i}^{\text{hrg}} \underbrace{\int_{\sigma} d\sigma_{\mu} u^{\mu}}_{V_{\text{eff}}} \quad \text{and} \quad \frac{N_{i}}{N_{j}} = \frac{N_{i}^{\text{hrg}}}{N_{j}^{\text{hrg}}}$$

Effects of collective motion largely cancel out in yield ratios

#### Many aspects of the thermal model

- particle list and decay properties
- finite resonance widths
- loosely bound states
- chemical non-equilibrium ( $\gamma_a$ ,  $\gamma_s$ )
- excluded volume/van der Waals interactions
- exact conservation of conserved charges (canonical ensemble)
- particle number fluctuations
- statistical hadronization of charm

### **Different particle lists**

- Established (\*\*\* & \*\*\*\*) hadrons from PDG (the standard option)
- Include unconfirmed (\* & \*\*) or theoretical (quark model) states



[Alba et al., 1702.01113; see also 1404.6511 (HotQCD)]

Evidence for extra strange baryons from lattice QCD

• Exponential Hagedorn mass spectrum  $\rho(m) = A m^{-\alpha} \exp(m/T_H)$ New phenomena: "limiting" temperature, (phase) transition to QGP etc. [Gallmeister et al., 1712.04018; V.V. et al., 1811.05737] Decay properties of many resonances are not very well established This affects determination of feeddown contributions

| K1(1400) DECAY MODES    | Fraction $(\Gamma_i/\Gamma)$ | N(1650) DECAY MODES | Fraction $(\Gamma_i/\Gamma)$ |
|-------------------------|------------------------------|---------------------|------------------------------|
| <b>Κ*(892)</b> π        | (94 ±6)%                     | Νπ                  | 50-70 %                      |
| Κρ                      | ( 3.0±3.0) %                 | Nη                  | 15-35 %                      |
| K f <sub>0</sub> (1370) | ( 2.0±2.0) %                 | ΛΚ                  | 5-15 %                       |
| $\kappa\omega$          | $(1.0\pm1.0)\%$              | $N\pi\pi$           | 8-36 %                       |

PDG

2016 PARTICLE PHYSICS BOOKLET Decay properties of many resonances are not very well established This affects determination of feeddown contributions

| K1(1400) DECAY MODES | Fraction $(\Gamma_i/\Gamma)$ | N(1650) DECAY MODES | Fraction $(\Gamma_i/\Gamma)$ |
|----------------------|------------------------------|---------------------|------------------------------|
| $K^*(892)\pi$        | (94 ±6 )%                    | Νπ                  | 50-70 %                      |
| Κρ                   | ( 3.0±3.0) %                 | Nη                  | 15-35 %                      |
| $K f_0(1370)$        | ( 2.0±2.0) %                 | ΛΚ                  | 5-15 %                       |
| $\kappa\omega$       | ( 1.0±1.0) %                 | $N\pi\pi$           | 8-36 %                       |

| E(1690) DECAY MODES     | Fraction $(\Gamma_i/\Gamma)$ | E(1820) DECAY MODES    | Fraction $(\Gamma_i/\Gamma)$ |
|-------------------------|------------------------------|------------------------|------------------------------|
| Λ <del>Κ</del>          | seen                         | ΛK                     | large                        |
| $\Sigma \overline{K}$   | seen                         | $\Sigma \overline{K}$  | small                        |
| $\equiv \pi$            | seen                         | $\equiv \pi$           | small                        |
| $\Xi^{-}\pi^{+}\pi^{-}$ | possibly seen                | $\Xi(1530)\pi$         | small                        |
|                         |                              |                        |                              |
|                         | 1                            | hat's not very helpful |                              |

"Educated" guesses sometimes needed to calculate feeddown

Source of a systematic uncertainty ~10%

PDG

PARTICLE PHYSICS BOOKLET

$$n_i(T,\mu;m_i) \to \int_{m_i^{\min}}^{m_i^{\max}} dm \,\rho_i(m) \,n_i(T,\mu;m) \int_{\mathbb{R}_4^m}^{\mathbb{R}_4^m} dm \,\rho_i(m) \,n_i(m) \,n$$

1) Zero-width approximation

Simplest possibility, used commonly in LQCD comparisons

2) Constant Breit-Wigner (BW) in  $\pm 2\Gamma_i$  interval

Popular choice in thermal fits Enhances resonance yields

3) Energy-dependent Breit-Wigner (eBW)

$$\Gamma_{i \to j}(m) = b_{i \to j} \Gamma_i \left[ 1 - \left( \frac{m_{i \to j}^{\text{thr}}}{m} \right)^2 \right]^{l_{ij}+1/2}$$

suppression at the threshold

Suppresses resonance yields

4) Phase shifts within the S-matrix approach  $\rho_i(m) \propto \frac{\partial \delta(m)}{\partial m}$ Usually based on measured scattering phase shifts



 $\rho_i(m) = A_i \frac{2 m m_i \Gamma_i}{(m^2 - m_i^2)^2 + m_i^2 \Gamma_i^2}$ 

### Finite resonance widths: effect on thermal fits



Energy-dependent Breit-Wigner leads to a 15% suppression of proton yields

This is enough to describe the 'proton yield anomaly' at the LHC

[V.V., Gorenstein, Stoecker, 1807.02079; see also phase shift analysis P. Lo et al., 1808.03102] 18/30

⁴He

### Thermal model and loosely-bound states

Yields of light nuclei at LHC decrease exponentially with mass



### Thermal model and loosely-bound states



### Thermal model and loosely-bound states



Loosely-bound states (few MeV or less binding energy) expected to be immediately destroyed at T = 155 MeV. Why the thermal model works so well for the yields of light nuclei remains not fully understood 19

### Incomplete chemical equilibrium of strangeness

A reasonable description of strangeness production often requires introduction of strangeness saturation parameter  $\gamma_S$ , which in thermal picture interpreted as an incomplete equilibration of strangeness



### Chemical non-equilibrium scenario

In chemical non-equilibrium scenario  $N_i^{\text{hrg}} \rightarrow (\gamma_q)^{|q_i|} (\gamma_s)^{|s_i|} N_i^{\text{hrg}}$ both light ( $|q_i|$ ) and strange ( $|s_i|$ ) quarks out of chemical equilibrium

Scenario: hadronization of chem. non-eq. supercooled QGP [Letessier, Rafelski, '99]



• smaller reduced  $\chi^2$  compared to chem. equilibrium scenario

- $\gamma_q = 1.63 \Rightarrow \mu_\pi \approx 135 \ MeV \approx m_\pi \Rightarrow \text{ pion BEC?}$  [V. Begun et al., 1503.04040]
- However,  $\gamma_q \approx \gamma_s \approx 1$  when light nuclei included in fit [M. Floris, 1408.6403]

Notion that hadrons have finite eigenvolume suggested awhile ago

[R. Hagedorn, J. Rafelski, PLB '80]

Excluded volume model:  $V \rightarrow V - bN \Rightarrow p(T, \mu) = p^{id}(T, \mu - bp)$ [D. Rischke et al., Z. Phys. C '91]

Excluded

Recent lattice QCD data favor EV-like effects in baryonic interactions



Evidence for EV effects for mesons is less compelling

### Excluded volume corrections and thermal fits

Excluded volume effect:  $N_i \rightarrow \kappa e^{-\frac{v_i \rho}{T}} N_i$ 

This may have an effect on data description if  $v_i$  are different



Depending on  $v_i$  parameterization effects on fits are between being negligible to strong and controversial ( $\chi^2$  minima at very high T) 23/30

#### van der Waals interactions in HRG



#### Canonical statistical model

Grand-canonical ensemble: configurations with all possible quantum numbers

$$Z^{\text{gce}}(\mu_B, \mu_Q, \mu_S) = \sum_{B=-\infty}^{\infty} \sum_{Q=-\infty}^{\infty} \sum_{S=-\infty}^{\infty} e^{\frac{B\mu_B + Q\mu_Q + S\mu_S}{T}} Z^{\text{ce}}(B, Q, S)$$

including those not realized in heavy-ion collisions, e.g.  $S \neq 0$ 

Thermodynamic equivalence of ensembles:  $N_i^{\text{gce}} = N_i^{\text{ce}} + O(V^{-1})$ 

GCE justified for large systems, but canonical effects needed for smaller systems [Rafelski, Danos, et al., PLB '80; Hagedorn, Redlich, ZPC '85]

#### Canonical statistical model

Grand-canonical ensemble: configurations with all possible quantum numbers

$$Z^{\text{gce}}(\mu_B, \mu_Q, \mu_S) = \sum_{B=-\infty}^{\infty} \sum_{Q=-\infty}^{\infty} \sum_{S=-\infty}^{\infty} e^{\frac{B\mu_B + Q\mu_Q + S\mu_S}{T}} Z^{\text{ce}}(B, Q, S)$$

including those not realized in heavy-ion collisions, e.g.  $S \neq 0$ 

Thermodynamic equivalence of ensembles:  $N_i^{\text{gce}} = N_i^{\text{ce}} + O(V^{-1})$ 

GCE justified for large systems, but canonical effects needed for smaller systems [Rafelski, Danos, et al., PLB '80; Hagedorn, Redlich, ZPC '85]

#### **Canonical partition function:**

$$\mathcal{Z}(B,Q,S) = \int_{-\pi}^{\pi} \frac{d\phi_B}{2\pi} \int_{-\pi}^{\pi} \frac{d\phi_Q}{2\pi} \int_{-\pi}^{\pi} \frac{d\phi_S}{2\pi} e^{-i(B\phi_B + Q\phi_Q + S\phi_S)} \exp\left[\sum_j z_j^1 e^{i(B_j\phi_B + Q_j\phi_Q + S_j\phi_S)}\right]$$
[Becattini et al., ZPC '95, ZPC '97]

$$z_j^1 = V_c \int dm \,\rho_j(m) \,d_j \frac{m^2 T}{2\pi^2} \,\mathcal{K}_2(m/T) \qquad \langle N_j^{\text{prim}} \rangle^{\text{ce}} = \frac{Z(B - B_j, Q - Q_j, S - S_j)}{Z(B, Q, S)} \,\langle N_j^{\text{prim}} \rangle^{\text{gce}}$$

CE effects typically suppress yields relative to the GCE (canonical suppression) Strangeness enhancement as a manifestation of an absence of CE suppression [Hamieh, Redlich, Tounsi, PLB (2000)] 25/30

### Canonical statistical model and thermal fits

Canonical thermodynamics allows to use thermal model for small systems such as p-p, p- $\overline{p}$ ,  $e^+e^-$ 



[F. Becattini et al., ZPC '95, ZPC '97]

#### Available thermal model codes:

- 1) SHARE 3 [G. Torrieri, J. Rafelski, M. Petran, et al.] Since 2003 Fortran/C++. Chemical (non-)equilibrium, fluctuations, charm, nuclei open source: http://www.physics.arizona.edu/~gtshare/SHARE/share.html
- 2) THERMUS 4 [S. Wheaton, J. Cleymans, B. Hippolyte, et al.] Since 2004 C++/ROOT. Canonical ensemble, EV corrections, charm, nuclei
   open source: https://github.com/thermus-project/THERMUS

#### Available thermal model codes:

- 1) SHARE 3 [G. Torrieri, J. Rafelski, M. Petran, et al.] Since 2003 Fortran/C++. Chemical (non-)equilibrium, fluctuations, charm, nuclei open source: http://www.physics.arizona.edu/~gtshare/SHARE/share.html
- 2) THERMUS 4 [S. Wheaton, J. Cleymans, B. Hippolyte, et al.] Since 2004 C++/ROOT. Canonical ensemble, EV corrections, charm, nuclei
   open source: https://github.com/thermus-project/THERMUS

#### **New development:**



Thermal-FIST v1.1 (or simply "The FIST")[V.V., H. Stoecker]C++. Chemical (non-)equilibrium, EV/vdW corrections, Monte Carlo,<br/>(higher-order) fluctuations, canonical ensemble, combinations of effectsopen source: https://github.com/vlvovch/Thermal-FISTSince 2018physics manual: arXiv:1901.05249

### **Thermal-FIST**



#### Graphical user interface for general-purpose thermal fits and more



# **Thermal-FIST**



#### Graphical user interface for general-purpose thermal fits and more



"So that's how you get your results so quickly!" J. Cleymans

"Thanks for reproducing my results!"

F. Becattini



The package is cross-platform (Linux, Mac, Windows, Android) Installation using git and cmake

```
# Clone the repository from GitHub
git clone https://github.com/vlvovch/Thermal-FIST.git
cd Thermal-FIST
# Create a build directory, configure the project with cmake
# and build with make
mkdir build
cd build
cmake ../
make
# Run the GUI frontend
./bin/QtThermalFIST
# Run the test calculations from the paper
./bin/examples/cpc1HRGTDep
./bin/examples/cpc2chi2
./bin/examples/cpc3chi2NEQ
./bin/examples/cpc4mcHRG
```

GUI requires free Qt5 framework, the rest of the package has no external dependencies

Quick start guide

Documentation

Physics manual 29/30

#### Summary

- The statistical thermal model is the "simplest" model for particle production, which describes yields across many collision energies on a 10-15% level
- The model has many ambiguous details sources of systematic uncertainty in the model currently under investigation
- Model applications available through a number of open source codes. New Thermal-FIST package provides most of the features used in thermal model analysis in a convenient way.

https://github.com/vlvovch/Thermal-FIST

#### Summary

- The statistical thermal model is the "simplest" model for particle production, which describes yields across many collision energies on a 10-15% level
- The model has many ambiguous details sources of systematic uncertainty in the model currently under investigation
- Model applications available through a number of open source codes. New Thermal-FIST package provides most of the features used in thermal model analysis in a convenient way.

https://github.com/vlvovch/Thermal-FIST

#### Thanks for your attention!