QGP-like effects in Small Systems with LHC Run3+

Naghmeh Mohammadi

arxiv:1812.06772 (HL-LHC WG5 yellow report)

COST Workshop on Interplay of hard and soft QCD probes for collectivity in HIC, Lund, Sweden

01.03.2019

Initially a reference for the effects observed in Pb-Pb collisions

Observations in high multiplicity pp collisions:

Azimuthal correlations of final state hadrons

Naghmeh Mohammadi @ COST workshop-Lund university

Initially a reference for the effects observed in Pb-Pb collisions

- Observations in high multiplicity pp collisions:

Naghmeh Mohammadi @ COST workshop-Lund university

Initially a reference for the effects observed in Pb-Pb collisions

Observations in high multiplicity pp collisions:

Naghmeh Mohammadi @ COST workshop-Lund university

Nature Physics 13, 535–539 (2017)

4

Initially a reference for the effects observed in Pb-Pb collisions

Observations in high multiplicity pp collisions:

- Azimuthal correlations of final state hadrons
 - ➡ Is the physical origin of collectivity the same in small and large systems?
- Enhanced production of multi-strange hadrons
 - → Is there a **smooth transition** from pp to PbPb collisions?
- Is there a unified theory to describe small and large systems simultaneously?

To tackle these questions: Higher luminosity LHC for more detailed studies

01.03.2019

Naghmeh Mohammadi @ COST workshop-Lund university

- Multiplicity distribution extrapolation based on the current ALICE and ATLAS data
 - Extrapolated to 200 pb⁻¹ 14 TeV high multiplicity pp collisions

Range	${ m d}N_{ m ch}/{ m d}\eta$	Fraction	Events per pb ⁻¹	Eve
5–7 $\langle N_{\rm ch} \rangle$	35–49	2.4e-03	1.9e+08	
7–10 $\langle N_{\rm ch} \rangle$	49–70	1.3e-04	1.0e+07	
10–12 $\langle N_{ m ch} angle$	70–84	1.1e-06	9.0e+04	
12–14 $\langle N_{\rm ch} \rangle$	84–98	4.7e-08	3.7e+03	
14–16 $\langle N_{\rm ch} \rangle$	98–112	1.8e-09	1.4e+02	

- Multiplicity distribution extrapolation based on the current ALICE and ATLAS data
 - Extrapolated to 200 pb⁻¹ 14 TeV high multiplicity pp collisions
 - Few particle systems to study the onset of collectivity

Range	${ m d}N_{ m ch}/{ m d}\eta$	Fraction	Events per pb ⁻¹	Eve
5–7 $\langle N_{\rm ch} \rangle$	35–49	2.4e-03	1.9e+08	
7–10 $\langle N_{\rm ch} \rangle$	49–70	1.3e-04	1.0e+07	
10–12 $\langle N_{ m ch} angle$	70–84	1.1e-06	9.0e+04	
12–14 $\langle N_{\rm ch} \rangle$	84–98	4.7e-08	3.7e+03	
14–16 $\langle N_{\rm ch} \rangle$	98–112	1.8e-09	1.4e+02	

- Multiplicity distribution extrapolation based on the current ALICE and ATLAS data
 - Extrapolated to 200 pb⁻¹ 14 TeV high multiplicity pp collisions
 - 730k events in multiplicity range of 65-70% PbPb collisions
 - Overlap between pp and PbPb allows to compare the two systems

Range	${ m d}N_{ m ch}/{ m d}\eta$	Fraction	Events per pb ⁻¹	Eve
5–7 $\langle N_{\rm ch} \rangle$	35–49	2.4e-03	1.9e+08	
7–10 $\langle N_{\rm ch} \rangle$	49–70	1.3e-04	1.0e+07	
10–12 $\langle N_{\rm ch} \rangle$	70–84	1.1e-06	9.0e+04	
12–14 $\langle N_{\rm ch} \rangle$	84–98	4.7e-08	3.7e+03	
14–16 $\langle N_{\rm ch} \rangle$	98–112	1.8e-09	1.4e+02	

- Multiplicity distribution extrapolation based on the current ALICE and ATLAS data
 - Extrapolated to 200 pb⁻¹ 14 TeV high multiplicity pp collisions
 - 28k events in multiplicity range of 60-65% PbPb collisions
 - Overlap between pp and PbPb allows to compare the two systems

 Range	${ m d}N_{ m ch}/{ m d}\eta$	Fraction	Events per pb ⁻¹	Eve
5–7 $\langle N_{\rm ch} \rangle$	35–49	2.4e-03	1.9e+08	
7–10 $\langle N_{ m ch} angle$	49–70	1.3e-04	1.0e+07	
10–12 $\langle N_{ m ch} angle$	70–84	1.1e-06	9.0e+04	
12–14 $\langle N_{\rm ch} \rangle$	84–98	4.7e-08	3.7e+03	
 14–16 $\langle N_{\rm ch} \rangle$	98–112	1.8e-09	1.4e+02	

Energy density in different collision systems

- Energy density:
 - An estimate for pp, pPb and Pb-Pb collisions based on
 - ✤ IP-Glasma
 - Glauber MC (for pPb and PbPb) + Bjorken estimate

$$\epsilon = \frac{1}{A\tau} \langle E \rangle \frac{3}{2} \frac{dN_{ch}}{dy}.$$

- Dependent on the system at fixed multiplicity
- It can reach large values in pp and pPb collisions, of the order of central Pb-Pb collisions
- One way of calculating the energy density

Same multiplicity does not mean same energy density

10

Global-event properties

Shape of the multiplicity distribution

Mechanisms producing very high multiplicity events not clear

✤ Mean p_T increases with multiplicity

- Measurements exist only up to $dN_{ch}/d\eta \sim 55$
- HL-LHC will provide twice this value
- High multiplicity collisions originate from MPI within the same pp collision
 - Understanding particle production in high energy pp collisions
 - Number of low momentum transfer parton interactions increases linearly with multiplicity
 - Possible saturation at large multiplicity

Particle correlations: multi-particle cumulants

- Particle correlations:
 - In high multiplicity pp to compare with pPb and PbPb collisions
 - In low multiplicity regions to investigate the onset of the collective-like effects

4 particle cumulants (cn{4})

Suppresses correlations from jets and dijets

- Measured in pp and pPb with Run 1 & 2 using 3 subevent method
 - C3{4} lacks statistics in pp and mostly consistent with zero
 - c3{4} negative non zero magnitude in PbPb collisions
 ls c₃{4} negative in pp collisions?

12

Particle correlations: multi-particle cumulants

- Particle correlations:
 - In high multiplicity pp to compare with pPb and PbPb collisions
 - In low multiplicity regions to investigate the onset of the collective-like effects

4 particle cumulants (cn{4})

Suppresses correlations from jets and dijets

- Measured in pp and pPb with Run 1 & 2 using 3 subevent method
 - C3{4} lacks statistics in pp and mostly consistent with zero
 - c3{4} negative non zero magnitude in PbPb collisions
 Is c₃{4} negative in pp collisions?

Particle correlations: symmetric cumulants

Particle correlations:

In high multiplicity pp to compare with pPb and PbPb collisions

- In low multiplicity regions to investigate the onset of the collective-like effects
- Symmetric cumulants: Correlations of different flow harmonics, e.g.

$$SC(3,2) = \langle v_2^2 v_3^2 \rangle - \langle v_2^2 \rangle \langle v_3^2 \rangle$$

Sensitive to

Initial conditions

- Hydrodynamic evolution
- In small systems: better description of the initial condition and proton substructure

b collisions the collective-like effects

Particle correlations: symmetric cumulants

Particle correlations:

In high multiplicity pp to compare with pPb and PbPb collisions

- In low multiplicity regions to investigate the onset of the collective-like effects
- Symmetric cumulants: Correlations of different flow harmonics, e.g.

$$SC(3,2) = \langle v_2^2 v_3^2 \rangle - \langle v_2^2 \rangle \langle v_3^2 \rangle$$

Sensitive to

Initial conditions

Hydrodynamic evolution

- In small systems: better description of the initial condition and proton substructure
- Current measurements -> large uncertainties
- Projections for SC(3,2) for HL pp and pPb collisions
 - Projections for no-sub: uncertainties invisible but largely contaminated with non-flow
 - ✤ 2,3 and 4-sub event methods possible: uncertainties of the order of a few 10-7

b collisions

argely contaminated with non-flow **s of the order of a few 10**-7

Particle correlations: heavy flavors in small systems

- Heavy flavor hadrons originate from heavy quarks that experienced all stages of the system evolution
- heavy flavor flow measurements:
 - Low p_T: test if heavy flavor quarks participate in the collective expansion dynamics
 - Intermediate p_T: sensitive to the heavy-quark hadronization mechanism/recombination
- ✤ v₂ for heavy flavor objects feasible in pPb collisions with HL-LHC:
 - \clubsuit Inclusive J/ ψ with ALICE, Prompt J/ ψ and D by CMS
 - Minor uncertainties expected

Particle correlations: probability distribution of event-by-event vn

Probability distribution of event-by-event v₂ (p(v₂)) in an approximate level:

$$p(\vec{v}_n) = \frac{1}{2\pi\delta_{v_n}^2} e^{-\left(\vec{v}_n - \vec{v}_n^{\mathrm{RP}}\right)^2 / \left(2\delta_{v_n}^2\right)}$$

Sensitive to

Initial conditions and final state dynamics of the medium

- Not measured in small systems so far
 - * Expected to have a narrower width and smaller $\langle v_2 \rangle$
- Feasible in small systems in HL-LHC
- Projections for pp at 14 TeV, $L_{int} = 200 \text{ pb}^{-1}$:
 - ✤ Based on 60-65% Pb-Pb collisions at 2.76 TeV

17

Strangeness enhancement

- Key observable in run 2 pp physics:
 - Smooth increase in strange-particle production as a function of system size
- pp collisions up to $dN_{ch}/d\eta = 17$
- Most peripheral PbPb collisions down to $dN_{ch}/d\eta = 96$
- Projection of the reach with pp collisions in HL-LHC
 - Strangeness enhancement scaling with the energy density of the system
 - continuous increase
 - saturation at PbPb value (thermal limit)

Naghmeh Mohammadi @ COST workshop-Lund university

Energy loss: hadron-jet correlations

Absence of jet quenching in p-Pb collisions in run 1 & 2

- If final state interactions explain observed collective phenomena
 - energy loss should be measurable OR put stringent limit

Potential to identify small energy loss effects in small systems with jet recoil against other objects

Projections for the modification of jet recoil yields extracted from hadron-jet correlations in run 3 and 4 for

pp and pPb collision -> 40-100 times smaller than the spectrum shift in PbPb collisions

Absence of jet quenching in p-Pb collisions in run 1 & 2

- If final state interactions explain observed collective phenomena
 - energy loss should be measurable OR put stringent limit

Potential to identify small energy loss effects in small systems with jet recoil against other objects

 \clubsuit Projections for the correlations between jet, y and Z in run 3 and 4 for pp and pPb collision

CERN

Thermal radiation

- Search for thermal dilepton signal in pp and pPb
 - QGP thermal radiation detection in pPb
 - Extract the medium temperature
- Measurements in pPb collisions
 - Statistical uncertainty of 10% on the temperature
 - If predictions accurate $-> L_{int} = 50 \text{ nb}^{-1}$ sufficient for the measurement
 - If signal 50% smaller -> 5 times the statistics is needed
 - Run 3+4 sensitive to down to 25% of the predicted signal by R. Rapp [Acta Phys. Polon. B42 (2011) 2823]

pPb

Oxygen-Oxygen collisions

- Study properties of low multiplicity (peripheral) Pb-Pb collisions
 - ***** O-O collision multiplicities similar to p-Pb collisions
 - Collision geometry well defined
- An opportunity to study
 - The emergence of collective phenomena
 - Possible energy loss

Highest multiplicities in pPb in the tail of the distribution Similar multiplicities reached in O-O collisions

Summary and outlook

- Discoveries in recent years caused a paradigm shift in modelling:
 - Heavy ion collisions
 - Underlying events in pp collisions
- Multi-particle correlations present also in small systems
 - No evidence for other features related to final state interactions, e.g. energy loss
- HL-LHC provides the data required for understanding the remaining open question in small systems
 - Higher order correlations
 - Strange-particle yields
 - Thermal radiation
 - Energy loss signals
 - * ...

Universal description of small to large collision systems

01.03.2019

Naghmeh Mohammadi @ COST workshop-Lund university

Overview of Experimental Results

Observable or effect	Pb–Pb	p–Pb (high mult.)	pp (high mult.)	Refs.
Low p_{T} spectra ("radial flow")	yes	yes	yes	[23,26,28,33,35,36,38-41]
Intermed. p_{T} ("recombination")	yes	yes	yes	[26-33]
Particle ratios	GC level	GC level except Ω	GC level except Ω	[34-37]
Statistical model	$\gamma_s^{ m GC} = 1,1030\%$	$\gamma_s^{ m GC} \approx 1,20-40\%$	MB: $\gamma^{ m C}_{s} < 1, 20$ –40%	36, 42, 43
HBT radii $(R(k_T), R(\sqrt[3]{N_{ch}}))$	$R_{\rm out}/R_{\rm side} \approx 1$	$R_{\rm out}/R_{\rm side} \lesssim 1$	$R_{\rm out}/R_{\rm side} \lesssim 1$	[44-51]
Azimuthal anisotropy (v _n)	v ₁ -v ₇	$v_1 - v_5$	$v_2 - v_4$	[22, 52-68]
(from two particle correlations)				
Characteristic mass dependence	$v_2 - v_5$	v_2, v_3	v_2	[62, 65, 66, 69-73]
Directed flow (from spectators)	yes	no	no	[74]
Charge dependent correlations	yes	yes	yes	[75-81]
Higher order cumulants	" $4 \approx 6 \approx 8 \approx LYZ$ "	" $4 \approx 6 \approx 8 \approx LYZ$ "	" $4 \approx 6$ "	[62, 68, 82-95]
(mainly $v_2\{n\}, n \ge 4$)	+higher harmonics	+higher harmonics		
Symmetric cumulants	up to $SC(5,3)$	only $SC(4,2), SC(3,2)$	only $SC(4,2), SC(3,2)$	[67, 96-100]
Linear and non-linear flow modes	up to v_6	not measured	not measured	[101]
Weak η dependence	yes	yes	not measured	[64, 92, 94, 102-107]
Factorization breaking	yes $(n = 2, 3)$	yes $(n = 2, 3)$	not measured	[59, 63, 108-110]
Event-by-event v_n distributions	n = 2 - 4	not measured	not measured	[111, 112]
Direct photons at low p_{T}	yes	not measured	not observed	[113, 114]
Jet quenching through dijet asymmetry	yes	not measured	not observed	[115-119]
Jet quenching through R_{AA}	yes	not observed	not observed	[120-129]
Jet quenching through correlations	yes (Z+jet, γ +jet, h+jet)	not observed (h+jet)	not measured	[127, 130-138]
Heavy flavor anisotropy	yes	yes	not measured	[139-151]
Quarkonia	suppressed ³	suppressed	not measured	[143, 149, 152–171]

Naghmeh Mohammadi @ COST workshop-Lund university

1

Proton-proton collisions at extreme multiplicities

- Multiplicity distribution extrapolation based on the current ALICE and ATLAS data
- Parametrization with single negative binomial distribution for various center of mass energies
- Extrapolated to 14 TeV pp collisions at ALICE and ATLAS
 - Predict no. of events at a given multiplicity using smaller phase space ($|\eta| < 1.5$)
 - Extrapolate up to $|\eta| < 2.5$ using flat η distribution
 - Use PYTHIA to go to $|\eta| < 4.0$ for run 4

Proton-proton collisions at extreme multiplicities

- Multiplicity distribution extrapolation based on the current ALICE and ATLAS data
- Parametrization with single negative binomial distribution for various center of mass energies
- Extrapolated to 14 TeV pp collisions at ALICE and ATLAS
 - Predict no. of events at a given multiplicity using smaller phase space ($|\eta| < 1.5$)
 - Extrapolate up to $|\eta| < 2.5$ using flat η distribution
 - Use PYTHIA to go to $|\eta| < 4.0$ for run 4

Range

$$5-7 \langle N_{ch} \rangle$$

 $7-10 \langle N_{ch} \rangle$
 $10-12 \langle N_{ch} \rangle$
 $12-14 \langle N_{ch} \rangle$
 $12-14 \langle N_{ch} \rangle$

	${ m d}N_{ m ch}/{ m d}\eta$	Fraction	Events per pb ⁻¹	Events in $200 \mathrm{pb}^{-1}$
\rangle	35–49	2.4e-03	1.9e+08	3.7e+10
$_{n}\rangle$	49–70	1.3e-04	1.0e+07	2.0e+09
$_{\rm eh}\rangle$	70–84	1.1e-06	9.0e+04	1.8e+07
$_{\rm eh}\rangle$	84–98	4.7e-08	3.7e+03	7.3e+05
$_{\rm eh}\rangle$	98–112	1.8e-09	1.4e+02	2.8e+04

Proton-proton collisions at extreme multiplicities

- Multiplicity distribution extrapolation based on the current ALICE and ATLAS data
- Parametrization with single negative binomial distribution for various center of mass energies
- Extrapolated to 14 TeV pp collisions at ALICE and ATLAS
 - Predict no. of events at a given multiplicity using smaller phase space ($|\eta| < 1.5$)
 - Extrapolate up to $|\eta| < 2.5$ using flat η distribution
 - Use PYTHIA to go to $|\eta| < 4.0$ for run 4
 - Number of events with equivalent multiplicity ranges in pPb and Pb-Pb collisions

Range	${ m d}N_{ m ch}/{ m d}\eta$	Events per pb^{-1}	Events in $200 \mathrm{pb}^{-1}$
0–5% p–Pb	41–56	4.9e+07	9.8e+09
5–10% p–Pb	34–41	1.9e+08	3.8e+10
10–20% p–Pb	27–34	6.6e+08	1.3e+11
60–65% Pb–Pb	98–137	1.5e+02	3.0e+04
65–70% Pb–Pb	68–98	1.6e+05	3.1e+07
70–75% Pb–Pb	45-68	2.1e+07	4.2e+09
75–80% Pb–Pb	29–45	5.9e+08	1.2e+11

Particle correlations: multi-particle cumulants

- Particle correlations:
 - In high multiplicity pp to compare with pPb and PbPb collisions
 - In low multiplicity regions to investigate the onset of the collective-like effects

✤ 4 particle cumulants (c_n{4})

✤ pp: 1.5% v₃{4} accessible for N_{ch}> 170

- ✤ pPb: 1.5% v₃{4} accessible for 100 < N_{ch} < 500</p>
- Larger tracker acceptance in run 4 ATLAS & CMS -> **1% v3{4}** accessible

Particle correlations: multi-particle cumulants

- Particle correlations:
 - In high multiplicity pp to compare with pPb and PbPb collisions
 - In low multiplicity regions to investigate the onset of the collective-like effects

