Introduction	Exclusive heavy quark photoproduction in UPC	Cross section results	Conclusion

◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ● < ① へ ○</p>

3.36pt

Introduction	Exclusive heavy quark photoproduction in UPC	Cross section results	Conclusion
0000	0000000	000000	000

Parton tomography: Wigner distributions in nucleon and nuclear targets

Emmanuel G. de Oliveira

emmanuel.de.oliveira@ufsc.br UFSC – Federal University of Santa Catarina Florianópolis, Brazil *in collaboration with* Pelicer, M. R. and Pasechnik, R. 10.1103/PhysRevD.99.034016 [1811.12888]

COST Heavy-Ion Workshop, Lund March 1st, 2019

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Introduction	Exclusive heavy quark photoproduction in UPC	Cross section results	Conclusion	
0000				
Distributions				
Parton correlator and distributions				

Markus Diehl 1512.01328

$$k - \frac{1}{2}\Delta$$

$$P - \frac{1}{2}\Delta$$

$$P + \frac{1}{2}\Delta$$

◆□▶ ◆□▶ ★□▶ ★□▶ □ のQ@

Introduction	Exclusive heavy quark photoproduction in UPC	Cross section results	Conclusion
0000			
Distributions			
Quark Wigner	distribution		

$$\begin{split} W(x,\vec{k}_{\perp},\vec{b}_{\perp}) &= \frac{1}{2} \int \frac{d^2 \vec{b}_{\perp}}{(2\pi)^2} e^{i\vec{\Delta}_{\perp}\cdot\vec{b}_{\perp}} \int \frac{dz^-}{2\pi} e^{iz^-xP^+} \int \frac{d^2 \vec{z}_{\perp}}{(2\pi)^2} e^{-i\vec{z}_{\perp}\cdot\vec{k}_{\perp}} \\ &\times \left\langle p(P+\frac{\Delta_{\perp}}{2}) | \bar{q}(-\frac{z}{2}) \Gamma q(\frac{z}{2}) | p(P-\frac{\Delta_{\perp}}{2}) \right\rangle \end{split}$$

- Five dimensional distribution.
- Most complete information for on-shell partons in a Lorentz contracted nucleus.
- Orbital angular momentum introduces correlations between \vec{k} and \vec{b}_{\perp} :

$$L_z == \int dx \, d^2 \vec{k}_\perp \, d^2 \vec{b}_\perp (\vec{b}_\perp \times \vec{k}_\perp) W(x, \vec{k}_\perp, \vec{b}_\perp)$$

• These correlations can contribute to elliptic flow.

Introduction	Exclusive heavy q	uark photoproductio	n in UPC	Cross section re	sults Conc	clusion
0000						
Distributions						
			· ·			

Gluon Wigner distribution at small x from the dipole cross section

$$S(\vec{k},\vec{\Delta}_{\perp}) = \int \frac{d^2 \vec{r}_{\perp} d^2 \vec{b}_{\perp}}{(2\pi)^4} e^{i\vec{\Delta}_{\perp} \cdot \vec{b}_{\perp} + i\vec{k}_{\perp} \cdot \vec{r}_{\perp}} \left\langle \frac{1}{N_c} \operatorname{Tr} U\left(\vec{b}_{\perp} + \frac{\vec{r}_{\perp}}{2}\right) U^{\dagger}\left(\vec{b}_{\perp} - \frac{\vec{r}_{\perp}}{2}\right) \right\rangle$$

- The dipole *S*-matrix provides information on correlations in impact parameter space
- During scattering, dipole size does not change.
- Extra propagator and coupling.

In the small-x limit, the dipole *S*-matrix is related to the the Fourier transform of the gluon Wigner distribution (or directly to the GTMD) in diffractive dijet production (Hatta, Xiao, Yuan, PRL 116, 202301, 2016).

$$xG(\vec{k}_{\perp},\vec{\Delta}_{\perp}) \stackrel{x \to 0}{\approx} \frac{2N_c}{\alpha_s} \left(k_{\perp}^2 - \frac{\Delta_{\perp}^2}{4}\right) S(\vec{k}_{\perp},\vec{\Delta}_{\perp}),$$

Introduction	Exclusive heavy quark photoproduction in UPC	Cross section results	Conclusion
Observables			
Observables			

Deeply Virtual Compton Scattering

Vector meson production

<□▶ <□▶ < □▶ < □▶ < □▶ < □ > ○ < ○

Introduction	Exclusive heavy quark photoproduction in UPC	Cross section results	Conclusion
Observables			
Exclusive dijet	s in UPC		

Hagiwara, Hatta, Pasechnik, Tasevsky, Teryaev, PRD 96, 034009 (2017).

- Exclusive dijets in UPC are a way to probe the GTMDs.
- The convolution involving the dipole *S*-matrix components and the light-cone wave function can be analytically inverted in the back to back limit.
- Problem 1: at low transverse momentum there is no hard scale.
- Problem 2: Measuring jets coming from light quarks is very hard at relatively low transverse momentum.

Introduction	Exclusive heavy quark photoproduction in UPC	Cross section results	Conclusion
Observables			
Exclusive dijet	s in UPC		

Hagiwara, Hatta, Pasechnik, Tasevsky, Teryaev, PRD 96, 034009 (2017).

- Exclusive dijets in UPC are a way to probe the GTMDs.
- The convolution involving the dipole *S*-matrix components and the light-cone wave function can be analytically inverted in the back to back limit.
- Problem 1: at low transverse momentum there is no hard scale.
- Problem 2: Measuring jets coming from light quarks is very hard at relatively low transverse momentum.
- What if we use heavy quarks?

Introduction	Exclusive heavy quark photoproduction in UPC	Cross section results	Conclusion
0000	0000000	000000	000

Exclusive heavy quark photoproduction in UPC

• Ultraperipheral collisions (UPC), photon is real and has comes from the projectile (nucleus) with Weizsäcker–Williams flux:

$$\frac{dN_{\gamma}}{d\omega} = \frac{2Z^2\alpha}{\pi\omega} \left[\xi_{jA} \mathcal{K}_0(\xi_{jA}) \mathcal{K}_1(\xi_{jA}) - \frac{\xi_{ja}^2}{2} \left(\mathcal{K}_1^2(\xi_{jA}) - \mathcal{K}_0^2(\xi_{jA}) \right) \right]$$

with $\xi_{jA} = \omega (R_j + R_A) / \gamma$

- The Z² enhancement in the photon flux makes the process much more efficient in probing the Wigner distribution then pp collisions.
- We study the forward direction, such that the contribution to the longitudinal quark momentum is small.

Introduction	Exclusive heavy quark photoproduction in UPC	Cross section results	Conclusion
	0000000		
Light-cone F	- Feynman rules		

- To calculate the interaction among the photon and the two gluons light-cone Feynman rules.
- The rule for particles on-shell are as in usual Feynman rules (spinors and polarization vectors).
- Each intermediate state denotes a factor

$$\frac{1}{\sum_{\rm in} k^- - \sum_{\rm int} k^- + i\epsilon}$$

where in denotes initial states and int intermediary ones.

- For each internal line include a factor $\theta(k^+)/k^+$.
- Vertices are changed by a normalization factor, for instance, quark-gluon vertice: $-g\gamma^{\mu}t^{a}_{ij}$.
- Each independent momentum must be integrated with a measure

$$\int \frac{dk^+ d^2 k_\perp}{2(2\pi)^3}.$$

(ロ)、(同)、(E)、(E)、(E)、(O)へ(C)

Introduction	Exclusive heavy quark photoproduction in UPC	Cross section results	Conclusion
	000000		
Dipole T r	natrix		

- As a final step, we need the probability of having two gluons from the target.
- It will be given by the Wigner distribution (a.k.a. dipole scattering amplitude) squared.
- Focusing on the first harmonic, we can expand T = 1 S as:

$$T(\vec{k}_{\perp},\vec{\Delta}_{\perp}) = T_0(k_{\perp},\Delta_{\perp}) + T_\epsilon(k_{\perp},\Delta_{\perp})\cos 2(\phi_k - \phi_{\Delta}) + \cdots$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ = ● ● ●

- The elliptic part is the one that will produce correlations, which can be solely responsible for observed final state asymmetries
- If $|\vec{k}_{\perp}| \gg |\vec{\Delta}_{\perp}|$, the isotropic component will be the largest and we can neglect terms with order higher than the elliptic one.

Introduction	Exclusive heavy quark photoproduction in UPC	Cross section results	Conclusion
	0000000		
MV model			

- For the dipole *T*-matrix we use the MV model improved for an inhomogeneous target in the transverse plane by lancu and Rezaeian, Phys. Rev. D 95, 094003, 2017.
- With a large gluon occupation number at small x, the color field is treated as a classical one in the presence of sources.
- The saturation scale Q_s grows with $A^{1/3}$.

• The larger the Δ , the more important the elliptic part is.

Introduction	Exclusive heavy quark photoproduction in UPC	Cross section results	Conclusion
	0000000		
Putting it all	together		

Hadron level cross section:

$$\begin{split} \frac{d\sigma^{Aj}}{d\mathcal{PS}} &= \frac{d\sigma^{Aj}}{dy_1 \, dy_2 \, d^2 \vec{P}_\perp \, d^2 \vec{\Delta}_\perp} \\ &= \omega \frac{dN}{d\omega} 2(2\pi)^2 N_c \alpha_{em} e_q^2 z(1-z) \frac{1}{P_\perp^2} \\ &\times \left\{ (z^2 + (1-z)^2) \, \left[\mathcal{A}(P_\perp, \Delta_\perp) + \mathcal{B}(P_\perp, \Delta_\perp) \cos 2(\phi_P - \phi_\Delta) \right]^2 \right. \\ &+ \frac{m_f^2}{P_\perp^2} \, \left[\mathcal{C}(P_\perp, \Delta_\perp) + \mathcal{D}(P_\perp, \Delta_\perp) \cos 2(\phi_P - \phi_\Delta) \right]^2 \right\} \,. \end{split}$$

<□▶ <□▶ < □▶ < □▶ < □▶ < □ > ○ < ○

where $2\vec{P}_{\perp} = \vec{k}_{1\perp} - \vec{k}_{2\perp}$.

The above can be thought as the photon to quark pair wavefunction convoluted with target structure functions.

Introduction	Exclusive heavy quark photoproduction in UPC	Cross section results	Conclusion
	00000000		

Mass-corrected A and B structure functions

$$\begin{split} \mathcal{A}(P_{\perp},\Delta_{\perp}) = \int_{0}^{\infty} k_{\perp} dk_{\perp} \frac{P_{\perp}^{2}}{k_{\perp}^{2} + P_{\perp}^{2} + m_{Q}^{2} + \sqrt{(k_{\perp}^{2} + P_{\perp}^{2} + m_{Q}^{2})^{2} - 4P_{\perp}^{2}k_{\perp}^{2}}} \\ \times \left[1 + \frac{P_{\perp}^{2} + m_{Q}^{2} - k_{\perp}^{2}}{\sqrt{(k_{\perp}^{2} + P_{\perp}^{2} + m_{Q}^{2})^{2} - 4P_{\perp}^{2}k_{\perp}^{2}}} \right] T_{0}(k_{\perp},\Delta_{\perp}), \end{split}$$

$$\begin{split} B(P_{\perp},\Delta_{\perp}) = & \frac{1}{2P_{\perp}^2} \int_0^\infty \frac{dk_{\perp}}{k_{\perp}} (P_{\perp}^2 - k_{\perp}^2 - m_Q^2) T_{\epsilon}(k_{\perp},\Delta_{\perp}) \\ & \times \left[\frac{(k_{\perp}^2 + P_{\perp}^2 + m_Q^2)^2 - 2k_{\perp}^2 P_{\perp}^2}{\sqrt{(k_{\perp}^2 + P_{\perp}^2 + m_Q^2)^2 - 4P_{\perp}^2 k_{\perp}^2}} - (P_{\perp}^2 + k_{\perp}^2 + m_Q^2) \right] \,. \end{split}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ □ のへぐ

Introduction	Exclusive heavy quark photoproduction in UPC	Cross section results	Conclusion
	00000000		
Nous Cand	D structure functions		

$$\begin{split} \mathcal{C}(P_{\perp},\Delta_{\perp}) &= \int_{0}^{\infty} k_{\perp} dk_{\perp} \frac{P_{\perp}^{2}}{\sqrt{(k_{\perp}^{2}+P_{\perp}^{2}+m_{Q}^{2})^{2}-4P_{\perp}^{2}k_{\perp}^{2}}} T_{0}(k_{\perp},\Delta_{\perp}), \\ \mathcal{D}(P_{\perp},\Delta_{\perp}) &= \int_{0}^{\infty} \frac{dk_{\perp}}{k_{\perp}} \left[k_{\perp}^{2}+P_{\perp}^{2}+m_{Q}^{2} - \frac{(k_{\perp}^{2}+P_{\perp}^{2}+m_{Q}^{2})^{2}-2P_{\perp}^{2}k_{\perp}^{2}}{\sqrt{(k_{\perp}^{2}+P_{\perp}^{2}+m_{Q}^{2})^{2}-4P_{\perp}^{2}k_{\perp}^{2}}} \right] \\ &\times T_{\epsilon}(k_{\perp},\Delta_{\perp}). \end{split}$$

- 2

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ④�?

Introduction	Exclusive heavy quark photoproduction in UPC	Cross section results	Conclusion
0000	0000000	000000	000

Nuclear structure functions from MV model

~ ~ ~ ~ ~

Introduction	Exclusive heavy quark photoproduction in UPC	Cross section results	Conclusion
		00000	
Angle-integrated results	;		
Angle-integrat	ed results		

- We focus on lead as the target.
- To present our results, we integrate in azimuthal angle.
- We calculate the hadron cross section integrated in angle with exact kinematics.
- However, in the limit $k_{1,2\perp} \rightarrow P_{\perp}$, azimuthal integration produces terms proportional to $2A^2 + B^2$ or $2C^2 + D^2$.
- Since *B* and *D* are small compared to *A* and *C* this is a measure of the isotropic component.
- We numerically investigated this approximation and found that it has negligible impact on the final result for our choice of small Δ_{\perp} .

・ロト ・ 日 ・ エ ヨ ・ ト ・ 日 ・ う へ つ ・

Introduction	Exclusive heavy quark photoproduction in UPC	Cross section results	Conclusion
		00000	
Angle-integrated results			
Angle-integrat	ed results		

- The A structure function is the dominant one, but where $P_{\perp} \lesssim 4 \text{ GeV}$ and $P_{\perp} \gtrsim 7 \text{ GeV}$, C has a non negligible contribution, and can be measured with an appropriate choice of kinematical cuts.
- By fixing P_{\perp} we see the dips present in the cross section, as expected in the small-x region.
- The dips (minima) are not affected by changing the c.m. energy; they are a feature of the nucleus structure.

Introduction	Exclusive heavy quark photoproduction in UPC	Cross section results	Conclusion	
		00000		
Cosine-weighted angular average				
Cosine-weighte	ed angular average			

- As seen above, the angular-integrated cross sections discussed above are not very convenient for getting any physics information about the elliptic part.
- Therefore, instead we would like use the cosine-weighted angle average determined as follows:

$$igg \langle rac{d\sigma^{pA}}{d\mathcal{PS}}\cos 2(\phi_P-\phi_\Delta) igg
angle = \int_0^{2\pi} d\phi_{P_\perp} \int_0^{2\pi} d\phi_{\Delta_\perp} \cos 2(\phi_P-\phi_\Delta) \ rac{d\sigma^{pA}}{rac{d\sigma^{pA}}{dy_1 dy_2 \ d^2ec{P}_\perp \ d^2ec{\Delta}_\perp}$$

- Roughly speaking, the more positive this observable is, the more P_{\perp} and Δ_{\perp} are parallel (or antiparallel); the negative case correlates with perpendicular vectors.
- If we integrate the cross section averaged by $\cos 2\delta\phi$, only crossed terms (*AB* and *CD*) appear in the limit $k_{1,2\perp} \rightarrow P_{\perp}$, allowing us to obtain information on the elliptic component.

Introduction	Exclusive heavy quark photoproduction in UPC	Cross section results	Conclusion
		000000	
Cosine-weighted angula	ar average		
Cosine-weight	ed angular average results		

- The azimuthal angle distribution is easy to measure and is not affected by fragmentation. Also, the ratio is less affected by experimental uncertainties. It is not possible to disentangle the *AB* and *CD* contribution, so the measurement is of both *B* and *D* simultaneously.
- In the right, we see the rise of the elliptic contribution with Δ_{\perp} , which occurs due to the rapidly falling of T_0 .

Introduction	Exclusive heavy quark photoproduction in UPC	Cross section results	Conclusion
		000000	
Proton target			
Proton target			

- What would change if the target were a proton?
- Smaller cross section.
- $\bullet\,$ The dependence on Δ_{\perp} does not show oscillations for the ranges studied.

(日) (四) (日) (日)

э

Introduction	Exclusive heavy quark photoproduction in UPC	Cross section results	Conclusion
0000	0000000	000000	000
Proton target			
Proton target	 cosine-weighted average 		

- The dependence on P_{\perp} is pretty much the same as in the nuclear case.
- Again no oscillations.
- The cosine-weighted average increases steadily with Δ_{\perp} .

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・

ж

Introduction	Exclusive heavy quark photoproduction in UPC	Cross section results	Conclusion
			000
Conclusion			
Conclusion			

• We derived the analytic expressions at leading order for the calculation of the exclusive heavy quark photoproduction. These are of definite importance to understand the angular correlations between the transverse momenta k_{\perp} and Δ_{\perp} in the GTMD, and can be related to elliptic flow in hadron and/or nuclei collisions.

Introduction	Exclusive heavy quark photoproduction in UPC	Cross section results	Conclusion
			000
Conclusion			
Conclusion			

- We derived the analytic expressions at leading order for the calculation of the exclusive heavy quark photoproduction. These are of definite importance to understand the angular correlations between the transverse momenta k_{\perp} and Δ_{\perp} in the GTMD, and can be related to elliptic flow in hadron and/or nuclei collisions.
- Predictions for bottom and charm pair production cross sections in a fully differential form, both for proton and nucleus target.

Introduction	Exclusive heavy quark photoproduction in UPC	Cross section results	Conclusion
			000
Conclusion			
Conclusion			

- We derived the analytic expressions at leading order for the calculation of the exclusive heavy quark photoproduction. These are of definite importance to understand the angular correlations between the transverse momenta k_{\perp} and Δ_{\perp} in the GTMD, and can be related to elliptic flow in hadron and/or nuclei collisions.
- Predictions for bottom and charm pair production cross sections in a fully differential form, both for proton and nucleus target.
- We defined the cosine-weighted angular average of the differential cross section in order to access the elliptic part of the hadron structure.

Introduction	Exclusive heavy quark photoproduction in UPC	Cross section results	Conclusion
			000
Conclusion			
Conclusion			

- We derived the analytic expressions at leading order for the calculation of the exclusive heavy quark photoproduction. These are of definite importance to understand the angular correlations between the transverse momenta k_{\perp} and Δ_{\perp} in the GTMD, and can be related to elliptic flow in hadron and/or nuclei collisions.
- Predictions for bottom and charm pair production cross sections in a fully differential form, both for proton and nucleus target.
- We defined the cosine-weighted angular average of the differential cross section in order to access the elliptic part of the hadron structure.
- The study of heavy-quark di-jets is relevant in comparison to its light quark equivalent, since it is less affected by fragmentation effects and has a cleaner QCD background.

Introduction	Exclusive heavy quark photoproduction in UPC	Cross section results	Conclusion
			000
Conclusion			
Conclusion			

- We derived the analytic expressions at leading order for the calculation of the exclusive heavy quark photoproduction. These are of definite importance to understand the angular correlations between the transverse momenta k_{\perp} and Δ_{\perp} in the GTMD, and can be related to elliptic flow in hadron and/or nuclei collisions.
- Predictions for bottom and charm pair production cross sections in a fully differential form, both for proton and nucleus target.
- We defined the cosine-weighted angular average of the differential cross section in order to access the elliptic part of the hadron structure.
- The study of heavy-quark di-jets is relevant in comparison to its light quark equivalent, since it is less affected by fragmentation effects and has a cleaner QCD background.
- Also, it has much smaller theoretical uncertainties w.r.t. higher order terms, as light quark jets suffer from potentially huge corrections.

Introduction	Exclusive heavy quark photoproduction in UPC	Cross section results	Conclusion
			000
Conclusion			
Future work			

- To have some precision predictions for comparison with experimental measurements it is necessary to include fragmentation functions (FF) for the $q\bar{q}$ pair.
- In the case of the charm quark, FFs for *D* mesons also should be included to know which range of transverse momentum should be looked.
- As for light quarks, it is interesting to include FFs for charged pions, which have a high impact in the cross section.

・ロト ・ 日 ・ エ ヨ ・ ト ・ 日 ・ う へ つ ・

• Also it is important to study a range of models for the dipole cross section, including some x dependence.

Introduction	Exclusive heavy quark photoproduction in UPC	Cross section results	Conclusion
			000
Thanks			
Thanks			

- To organizers of this workshop.
- To collaborators.
- To funding agencies Fapesc, CNPq, Capes, INCT-FNA, COST.

<□▶ <□▶ < □▶ < □▶ < □▶ < □ > ○ < ○