FROM MICRO TO MACRO QCD PHENOMENA:

Origins of Collectivity in Nuclear Collisions

Christopher J. Plumberǿ Lund University

COST Workshop Mini-School February 26, 2019

Setting the stage

Goal: understand high-energy nuclear collisions

- "Small" systems (e.g., $\mathrm{p}+\mathrm{p}$ and $\mathrm{p}+\mathrm{Pb}$ collisions)
- "Intermediate" systems (e.g., O+O collisions)
- "Large" systems (e.g., $\mathrm{Pb}+\mathrm{Pb}$ collisions)

[^0]
Setting the stage

Goal: understand high-energy nuclear collisions

- "Small" systems (e.g., $\mathrm{p}+\mathrm{p}$ and $\mathrm{p}+\mathrm{Pb}$ collisions)
- "Intermediate" systems (e.g., O+O collisions)
- "Large" systems (e.g., $\mathrm{Pb}+\mathrm{Pb}$ collisions)

Things we still need to understand:

- Collectivity: what causes it, and is it the same for all systems?

[^1]
Setting the stage

Goal: understand high-energy nuclear collisions

- "Small" systems (e.g., $\mathrm{p}+\mathrm{p}$ and $\mathrm{p}+\mathrm{Pb}$ collisions)
- "Intermediate" systems (e.g., O+O collisions)
- "Large" systems (e.g., $\mathrm{Pb}+\mathrm{Pb}$ collisions)

Things we still need to understand:

- Collectivity: what causes it, and is it the same for all systems?
- Thermodynamics: do these systems actually thermalize? ${ }^{1}$

[^2]
Setting the stage

Goal: understand high-energy nuclear collisions

- "Small" systems (e.g., $\mathrm{p}+\mathrm{p}$ and $\mathrm{p}+\mathrm{Pb}$ collisions)
- "Intermediate" systems (e.g., O+O collisions)
- "Large" systems (e.g., $\mathrm{Pb}+\mathrm{Pb}$ collisions)

Things we still need to understand:

- Collectivity: what causes it, and is it the same for all systems?
- Thermodynamics: do these systems actually thermalize? ${ }^{1}$
- The nucleus: how well do we understand cold nuclear matter? ${ }^{2}$

[^3]
Setting the stage

Goal: understand high-energy nuclear collisions

- "Small" systems (e.g., $\mathrm{p}+\mathrm{p}$ and $\mathrm{p}+\mathrm{Pb}$ collisions)
- "Intermediate" systems (e.g., O+O collisions)
- "Large" systems (e.g., $\mathrm{Pb}+\mathrm{Pb}$ collisions)

Things we still need to understand:

- Collectivity: what causes it, and is it the same for all systems?
- Thermodynamics: do these systems actually thermalize? ${ }^{1}$
- The nucleus: how well do we understand cold nuclear matter? ${ }^{2}$
- Jets: what can they tell us about nuclear collisions? ${ }^{3}$

```
\({ }^{1}\) Cf. Volodymyr Vovchenko's talk (Tuesday)
\({ }^{2}\) Cf. Ilkka Helenius's talk (Tuesday)
\({ }^{3}\) Cf. talks by Stefan Prestel (Monday) and Liliana Apolinário (Tuesday)
\({ }^{4}\) Cf. Wolfgang Schäfer's talk (Tuesday)
```


Setting the stage

Goal: understand high-energy nuclear collisions

- "Small" systems (e.g., $\mathrm{p}+\mathrm{p}$ and $\mathrm{p}+\mathrm{Pb}$ collisions)
- "Intermediate" systems (e.g., O+O collisions)
- "Large" systems (e.g., $\mathrm{Pb}+\mathrm{Pb}$ collisions)

Things we still need to understand:

- Collectivity: what causes it, and is it the same for all systems?
- Thermodynamics: do these systems actually thermalize? ${ }^{1}$
- The nucleus: how well do we understand cold nuclear matter? ${ }^{2}$
- Jets: what can they tell us about nuclear collisions? ${ }^{3}$
- Light: what can we learn from photons? ${ }^{4}$

[^4]
$\mathcal{L}_{\mathrm{QCD}}$

$\mathcal{L}_{\mathrm{QCD}}$

QCD
phenomena

This talk

Descriptions of nuclear collisions:

- Microscopic approach: kinetic theory
- Macroscopic approach: hydrodynamics and its relation to kinetic theory
Applications:
- When are kinetic theory and/or hydrodynamics valid?
- What is collectivity, and how is it related to hydrodynamics?

This talk

Descriptions of nuclear collisions:

- Microscopic approach: kinetic theory
- Macroscopic approach: hydrodynamics and its relation to kinetic theory
Applications:
- When are kinetic theory and/or hydrodynamics valid?
- What is collectivity, and how is it related to hydrodynamics?

Conventions:

$$
\begin{aligned}
\hbar & =c=k_{B}=1 \\
\sum_{\mu} x^{\mu} x_{\mu} & \equiv x^{\mu} x_{\mu} \\
g^{\mu \nu} & =\operatorname{diag}\{+1,-1,-1,-1\}
\end{aligned}
$$

"Local rest frame" (LRF) :

$$
u^{\mu}=u_{L R F}^{\mu} \equiv(1, \mathbf{0})
$$

Part I:
 Introduction to kinetic theory and hydrodynamics

Introduction to kinetic theory and hydrodynamics

What is kinetic theory?

Kinetic theory:

- an approach to describing the evolution of systems
- composed of weakly coupled particles
- in terms of the single-particle distribution $f(\vec{r}, \vec{p}, t)$

Assumptions:

- System composed of weakly coupled particles
- Particle collisions are uncorrelated
\Longrightarrow kinetic theory cannot describe strongly coupled systems!

Introduction to kinetic theory and hydrodynamics

Starting point: the Boltzmann equation:

$$
\frac{\partial f}{\partial t}+\underbrace{\frac{\vec{p}}{m} \cdot \frac{\partial f}{\partial \vec{r}}-\frac{\partial V(\vec{r})}{\partial \vec{r}} \cdot \frac{\partial f}{\partial \vec{p}}}_{\text {"streaming terms" }}=\underbrace{C[f](\vec{r}, \vec{p}, t)}_{\text {"collision term" }}
$$

Notation:

- $f(\vec{r}, \vec{p}, t)$: the single-particle distribution function
- $V(\vec{r})$: some external potential (e.g., gravity)

Introduction to kinetic theory and hydrodynamics

Starting point: the Boltzmann equation:

$$
\frac{\partial f}{\partial t}+\underbrace{\frac{\vec{p}}{m} \cdot \frac{\partial f}{\partial \vec{r}}-\frac{\partial V(\vec{r})}{\partial \vec{r}} \cdot \frac{\partial f}{\partial \vec{p}}}_{\text {"streaming terms" }}=\underbrace{C[f](\vec{r}, \vec{p}, t)}_{\text {"collision term"" }}
$$

Notation:

- $f(\vec{r}, \vec{p}, t)$: the single-particle distribution function
- $V(\vec{r})$: some external potential (e.g., gravity)
- Streaming terms describe evolution in absence of particle collisions
- Collision term describes internal interactions between particles in the system

Introduction to kinetic theory and hydrodynamics

Relativistic version:

$$
p^{\mu} \frac{\partial f}{\partial x^{\mu}}+m F^{\mu} \frac{\partial f}{\partial p^{\mu}}=C[f]
$$

From now on, I will assume that $F^{\mu}=0$, for simplicity.
For $2 \rightarrow 2$ scattering, the collision term can be written

$$
\begin{aligned}
C[f] & =\frac{m}{2} \int d^{3} p_{2} d^{3} p_{1}^{\prime} d^{3} p_{2}^{\prime} w\left(12 \rightarrow 1^{\prime} 2^{\prime}\right) \\
& \times\left[f\left(x, p_{1}^{\prime}\right) f\left(x, p_{2}^{\prime}\right)-f(x, p) f\left(x, p_{2}\right)\right]
\end{aligned}
$$

where $w\left(12 \rightarrow 1^{\prime} 2^{\prime}\right)$ is the transition rate.

Introduction to kinetic theory and hydrodynamics

Relativistic version:

$$
p^{\mu} \frac{\partial f}{\partial x^{\mu}}+m F^{\mu} \frac{\partial f}{\partial p^{\mu}}=C[f]
$$

From now on, I will assume that $F^{\mu}=0$, for simplicity.

For $2 \rightarrow 2$ scattering, the collision term can be written

$$
\begin{aligned}
C[f] & =\frac{m}{2} \int d^{3} p_{2} d^{3} p_{1}^{\prime} d^{3} p_{2}^{\prime} w\left(12 \rightarrow 1^{\prime} 2^{\prime}\right) \\
& \times\left[f\left(x, p_{1}^{\prime}\right) f\left(x, p_{2}^{\prime}\right)-f(x, p) f\left(x, p_{2}\right)\right]
\end{aligned}
$$

where $w\left(12 \rightarrow 1^{\prime} 2^{\prime}\right)$ is the transition rate.
In QCD,$C[f]$ also receives contributions from
$-1 \rightarrow 2$ scattering (e.g., gluon splitting)

- $2 \rightarrow 1$ scattering (e.g., gluon fusion)
- Etc.

Introduction to kinetic theory and hydrodynamics

What is hydrodynamics?

Introduction to kinetic theory and hydrodynamics

What is hydrodynamics?

Hydrodynamics:

- an approach to describing the evolution of systems
- based on collective flow of conserved quantities (e.g., $T^{\mu \nu}$)
- in terms of "course-grained," thermodynamic quantities like number density n and pressure P

Main assumption:

- System must be well-described by slowly-varying quantities in space and time

Next: let's illustrate some of these concepts with an example.

Example: gas of N non-interacting particles

${ }^{5}$ Recall that $d^{3} p / p^{0}$ is a Lorentz invariant.
${ }^{6}$ You can add more terms to this, but I will not worry about these today.

Example: gas of N non-interacting particles

Single-particle distribution:

$$
f(x, p)=\sum_{i=1}^{N} \delta^{3}\left(\vec{x}-\vec{x}_{i}(t)\right) \delta^{3}\left(\vec{p}-\vec{p}_{i}\right)
$$

[^5]
Example: gas of N non-interacting particles

Single-particle distribution:

$$
\begin{aligned}
f(x, p) & =\sum_{i=1}^{N} \delta^{3}\left(\vec{x}-\vec{x}_{i}(t)\right) \delta^{3}\left(\vec{p}-\vec{p}_{i}\right) \\
\rightarrow n(x) & =\sum_{i=1}^{N} \delta^{3}\left(\vec{x}-\vec{x}_{i}(t)\right)
\end{aligned}
$$

${ }^{5}$ Recall that $d^{3} p / p^{0}$ is a Lorentz invariant.
${ }^{6}$ You can add more terms to this, but I will not worry about these today.

Example: gas of N non-interacting particles

Single-particle distribution:

$$
\begin{aligned}
& f(x, p)=\sum_{i=1}^{N} \delta^{3}\left(\vec{x}-\vec{x}_{i}(t)\right) \delta^{3}\left(\vec{p}-\vec{p}_{i}\right) \\
& \rightarrow n(x)=\sum_{i=1}^{N} \delta^{3}\left(\vec{x}-\vec{x}_{i}(t)\right)=\int d^{3} p f(x, p)
\end{aligned}
$$

${ }^{5}$ Recall that $d^{3} p / p^{0}$ is a Lorentz invariant.
${ }^{6}$ You can add more terms to this, but I will not worry about these today.

Example: gas of N non-interacting particles

Single-particle distribution:

$$
\begin{aligned}
& f(x, p)=\sum_{i=1}^{N} \delta^{3}\left(\vec{x}-\vec{x}_{i}(t)\right) \delta^{3}\left(\vec{p}-\vec{p}_{i}\right) \\
& \rightarrow n(x)=\sum_{i=1}^{N} \delta^{3}\left(\vec{x}-\vec{x}_{i}(t)\right)=\int d^{3} p f(x, p)=\int \frac{d^{3} p}{p^{0}} p^{0} f(x, p)
\end{aligned}
$$

${ }^{5}$ Recall that $d^{3} p / p^{0}$ is a Lorentz invariant.
${ }^{6}$ You can add more terms to this, but I will not worry about these today.

Example: gas of N non-interacting particles

Single-particle distribution:

$$
\begin{align*}
& f(x, p)=\sum_{i=1}^{N} \delta^{3}\left(\vec{x}-\vec{x}_{i}(t)\right) \delta^{3}\left(\vec{p}-\vec{p}_{i}\right) \\
& \rightarrow n(x)=\sum_{i=1}^{N} \delta^{3}\left(\vec{x}-\vec{x}_{i}(t)\right)=\int d^{3} p f(x, p)=\int \frac{d^{3} p}{p^{0}} p^{0} f(x, p) \tag{5}
\end{align*}
$$

Now boost to a frame with relative velocity $u^{\mu}(x)$:

$$
n(x) \rightarrow j^{\mu}(x) \equiv \int \frac{d^{3} p}{p^{0}} p^{\mu} f(x, p)
$$

${ }^{5}$ Recall that $d^{3} p / p^{0}$ is a Lorentz invariant.
${ }^{6}$ You can add more terms to this, but I will not worry about these today.

Example: gas of N non-interacting particles

Single-particle distribution:

$$
\begin{align*}
& f(x, p)=\sum_{i=1}^{N} \delta^{3}\left(\vec{x}-\vec{x}_{i}(t)\right) \delta^{3}\left(\vec{p}-\vec{p}_{i}\right) \\
& \rightarrow n(x)=\sum_{i=1}^{N} \delta^{3}\left(\vec{x}-\vec{x}_{i}(t)\right)=\int d^{3} p f(x, p)=\int \frac{d^{3} p}{p^{0}} p^{0} f(x, p) \tag{5}
\end{align*}
$$

Now boost to a frame with relative velocity $u^{\mu}(x)$:

$$
\begin{aligned}
n(x) \rightarrow j^{\mu}(x) & \equiv \int \frac{d^{3} p}{p^{0}} p^{\mu} f(x, p) \equiv\left\langle p^{\mu}\right\rangle, \\
\text { where }\langle\mathcal{O}(x, p)\rangle & \equiv \int \frac{d^{3} p}{p^{0}} \mathcal{O}(x, p) f(x, p)
\end{aligned}
$$

[^6]
Example: gas of N non-interacting particles

Single-particle distribution:

$$
\begin{align*}
& f(x, p)=\sum_{i=1}^{N} \delta^{3}\left(\vec{x}-\vec{x}_{i}(t)\right) \delta^{3}\left(\vec{p}-\vec{p}_{i}\right) \\
& \rightarrow n(x)=\sum_{i=1}^{N} \delta^{3}\left(\vec{x}-\vec{x}_{i}(t)\right)=\int d^{3} p f(x, p)=\int \frac{d^{3} p}{p^{0}} p^{0} f(x, p) \tag{5}
\end{align*}
$$

Now boost to a frame with relative velocity $u^{\mu}(x)$:

$$
\begin{aligned}
n(x) \rightarrow j^{\mu}(x) & \equiv \int \frac{d^{3} p}{p^{0}} p^{\mu} f(x, p) \equiv\left\langle p^{\mu}\right\rangle, \\
\text { where }\langle\mathcal{O}(x, p)\rangle & \equiv \int \frac{d^{3} p}{p^{0}} \mathcal{O}(x, p) f(x, p) \\
j^{\mu}(x) & =n(x) u^{\mu}(x)^{6}
\end{aligned}
$$

${ }^{5}$ Recall that $d^{3} p / p^{0}$ is a Lorentz invariant.
${ }^{6}$ You can add more terms to this, but I will not worry about these today.

Example: gas of N non-interacting particles

Similarly ${ }^{(*)}$

$$
T^{\mu \nu}(x) \equiv\left\langle p^{\mu} p^{\nu}\right\rangle
$$

Example: gas of N non-interacting particles

Similarly ${ }^{(*)}$

$$
\begin{aligned}
T^{\mu \nu}(x) & \equiv\left\langle p^{\mu} p^{\nu}\right\rangle \\
& =\sum_{i=1}^{N} \frac{p_{i}^{\mu} p_{i}^{\nu}}{E_{i}} \delta^{3}\left(\vec{x}-\vec{x}_{i}(t)\right)
\end{aligned}
$$

Example: gas of N non-interacting particles

Similarly ${ }^{(*)}$

$$
\begin{aligned}
T^{\mu \nu}(x) & \equiv\left\langle p^{\mu} p^{\nu}\right\rangle \\
& =\sum_{i=1}^{N} \frac{p_{i}^{\mu} p_{i}^{\nu}}{E_{i}} \delta^{3}\left(\vec{x}-\vec{x}_{i}(t)\right)
\end{aligned}
$$

boost to $u^{\mu}(x) \rightarrow e(x) u^{\mu}(x) u^{\nu}(x)+P(x) \Delta^{\mu \nu}(x) ;$

Example: gas of N non-interacting particles

Similarly ${ }^{(*)}$

$$
\begin{aligned}
T^{\mu \nu}(x) & \equiv\left\langle p^{\mu} p^{\nu}\right\rangle \\
& =\sum_{i=1}^{N} \frac{p_{i}^{\mu} p_{i}^{\nu}}{E_{i}} \delta^{3}\left(\vec{x}-\vec{x}_{i}(t)\right)
\end{aligned}
$$

boost to $u^{\mu}(x) \rightarrow e(x) u^{\mu}(x) u^{\nu}(x)+P(x) \Delta^{\mu \nu}(x)$;
where $\Delta^{\mu \nu}(x) \equiv g^{\mu \nu}-u^{\mu}(x) u^{\nu}(x)$,

$$
e(x)=\left\langle\left(p^{0}\right)^{2}\right\rangle, \text { and } P(x)=\left\langle\frac{p^{0}}{3}(\vec{v} \cdot \vec{p})\right\rangle \cdot{ }^{7}
$$

${ }^{7}$ So far, $n(x), e(x), \ldots$ still contain (microscopic) δ-functions and are not yet smooth, (macroscopic) thermodynamic variables. To convert them to genuinely smooth functions requires a procedure known as "course graining." From now on, I assume we have done this and will treat $n(x), \ldots$ as smoothly varying quantities in space-time.

Kinetic theory and hydrodynamics

There are two questions we need to answer:

Kinetic theory and hydrodynamics

There are two questions we need to answer: 1. What equations do j^{μ} and $T^{\mu \nu}$ obey?

Kinetic theory and hydrodynamics

There are two questions we need to answer:

1. What equations do j^{μ} and $T^{\mu \nu}$ obey?
2. When is kinetic theory or hydrodynamics valid?

Kinetic theory and hydrodynamics

1. What equations do j^{μ} and $T^{\mu \nu}$ obey?

Use the Boltzmann equation to find out!

$$
\int d^{3} p\left(\frac{\partial f}{\partial t}+\frac{\vec{p}}{m} \cdot \frac{\partial f}{\partial \vec{r}}\right)=\int d^{3} p C[f](\vec{r}, \vec{p}, t)
$$

Kinetic theory and hydrodynamics

1. What equations do j^{μ} and $T^{\mu \nu}$ obey?

Use the Boltzmann equation to find out!

$$
\int d^{3} p\left(\frac{\partial f}{\partial t}+\frac{\vec{p}}{m} \cdot \frac{\partial f}{\partial \vec{r}}\right)=\int d^{3} p C[f](\vec{r}, \vec{p}, t)
$$

or

$$
0=\int d^{3} p\left(\frac{\partial f}{\partial t}+\frac{\vec{p}}{m} \cdot \frac{\partial f}{\partial \vec{r}}\right)
$$

Kinetic theory and hydrodynamics

1. What equations do j^{μ} and $T^{\mu \nu}$ obey?

Use the Boltzmann equation to find out!

$$
\int d^{3} p\left(\frac{\partial f}{\partial t}+\frac{\vec{p}}{m} \cdot \frac{\partial f}{\partial \vec{r}}\right)=\int d^{3} p C[f](\vec{r}, \vec{p}, t)
$$

or

$$
\begin{aligned}
0 & =\int d^{3} p\left(\frac{\partial f}{\partial t}+\frac{\vec{p}}{m} \cdot \frac{\partial f}{\partial \vec{r}}\right) \\
& =\frac{\partial}{\partial t} \int d^{3} p f+\frac{\partial}{\partial \vec{r}} \cdot \int d^{3} p \frac{\vec{p}}{m} f
\end{aligned}
$$

Kinetic theory and hydrodynamics

1. What equations do j^{μ} and $T^{\mu \nu}$ obey?

Use the Boltzmann equation to find out!

$$
\int d^{3} p\left(\frac{\partial f}{\partial t}+\frac{\vec{p}}{m} \cdot \frac{\partial f}{\partial \vec{r}}\right)=\int d^{3} p C[f](\vec{r}, \vec{p}, t)
$$

or

$$
\begin{aligned}
0 & =\int d^{3} p\left(\frac{\partial f}{\partial t}+\frac{\vec{p}}{m} \cdot \frac{\partial f}{\partial \vec{r}}\right) \\
& =\frac{\partial}{\partial t} \int d^{3} p f+\frac{\partial}{\partial \vec{r}} \cdot \int d^{3} p \frac{\vec{p}}{m} f \\
& =\partial_{\mu} \int \frac{d^{3} p}{p^{0}} p^{\mu} f
\end{aligned}
$$

Kinetic theory and hydrodynamics

1. What equations do j^{μ} and $T^{\mu \nu}$ obey?

Use the Boltzmann equation to find out!

$$
\int d^{3} p\left(\frac{\partial f}{\partial t}+\frac{\vec{p}}{m} \cdot \frac{\partial f}{\partial \vec{r}}\right)=\int d^{3} p C[f](\vec{r}, \vec{p}, t)
$$

or

$$
\begin{aligned}
0 & =\int d^{3} p\left(\frac{\partial f}{\partial t}+\frac{\vec{p}}{m} \cdot \frac{\partial f}{\partial \vec{r}}\right) \\
& =\frac{\partial}{\partial t} \int d^{3} p f+\frac{\partial}{\partial \vec{r}} \cdot \int d^{3} p \frac{\vec{p}}{m} f \\
& =\partial_{\mu} \int \frac{d^{3} p}{p^{0}} p^{\mu} f \\
& =\partial_{\mu} j^{\mu}
\end{aligned}
$$

$\rightarrow j^{\mu}$ is a conserved quantity! Similarly, $\partial_{\mu} T^{\mu \nu}=0$.
We say that j^{μ} and $T^{\mu \nu}$ obey conservation laws.

Kinetic theory and hydrodynamics

2. When is kinetic theory or hydrodynamics valid?

A relativistic system can be characterized by three lengthscales:

Kinetic theory and hydrodynamics

2. When is kinetic theory or hydrodynamics valid?

A relativistic system can be characterized by three lengthscales:

- mean free path $\lambda_{\text {mfp }} \sim 1 /(\langle\sigma v\rangle n)$
- the typical distance a particle travels before scattering

Kinetic theory and hydrodynamics

2. When is kinetic theory or hydrodynamics valid?

A relativistic system can be characterized by three lengthscales:

- mean free path $\lambda_{\mathrm{mfp}} \sim 1 /(\langle\sigma v\rangle n)$
- the typical distance a particle travels before scattering
- thermal de Broglie wavelength $\lambda_{\text {th }} \sim 1 / T$
- the typical size of a particle at temperature T

Kinetic theory and hydrodynamics

2. When is kinetic theory or hydrodynamics valid?

A relativistic system can be characterized by three lengthscales:

- mean free path $\lambda_{\mathrm{mfp}} \sim 1 /(\langle\sigma v\rangle n)$
- the typical distance a particle travels before scattering
- thermal de Broglie wavelength $\lambda_{\text {th }} \sim 1 / T$
- the typical size of a particle at temperature T
- hydrodynamic lengthscale $L_{\text {hydro }}$:

$$
L_{\text {hydro }}^{-1} \sim \theta \sim\left|\partial_{\mu} \epsilon\right| / \epsilon \sim \cdots, \text { where } \theta \equiv \partial_{\mu} u^{\mu}
$$

- the scale over which macroscopic quantities vary

Kinetic theory and hydrodynamics

2. When is kinetic theory or hydrodynamics valid?

A relativistic system can be characterized by three lengthscales:

- mean free path $\lambda_{\text {mfp }} \sim 1 /(\langle\sigma v\rangle n)$
- the typical distance a particle travels before scattering
- thermal de Broglie wavelength $\lambda_{\text {th }} \sim 1 / T$
- the typical size of a particle at temperature T
- hydrodynamic lengthscale $L_{\text {hydro }}$:

$$
L_{\text {hydro }}^{-1} \sim \theta \sim\left|\partial_{\mu} \epsilon\right| / \epsilon \sim \cdots, \text { where } \theta \equiv \partial_{\mu} u^{\mu}
$$

- the scale over which macroscopic quantities vary

Ratios among these lengthscales give us regimes of validity:

- for kinetic theory: $\lambda_{\operatorname{mfp}} / \lambda_{\text {th }}$
- for hydrodynamics: $\lambda_{\mathrm{mfp}} / L_{\mathrm{hydro}}$

Let's rewrite these ratios in a more illuminating form.

Kinetic theory and hydrodynamics

Kinetic theory estimates the shear viscosity η of a gas to be

$$
\eta \sim \frac{1}{3} n\langle p\rangle \lambda_{\mathrm{mfp}} \sim s\langle p\rangle \lambda_{\mathrm{mfp}} \sim \lambda_{\mathrm{mfp}} T^{4}
$$

Kinetic theory and hydrodynamics

Kinetic theory estimates the shear viscosity η of a gas to be

$$
\eta \sim \frac{1}{3} n\langle p\rangle \lambda_{\mathrm{mfp}} \sim s\langle p\rangle \lambda_{\mathrm{mfp}} \sim \lambda_{\mathrm{mfp}} T^{4}
$$

Micro-to-micro (kinetic theory):

$$
\frac{\lambda_{\mathrm{mfp}}}{\lambda_{\mathrm{th}}} \sim \frac{\eta}{T^{3}} \sim \frac{\eta}{s} \quad(\text { the "specific shear viscosity" })
$$

\rightarrow compares scale of inter-particle collisions with typical particle sizes

Kinetic theory and hydrodynamics

Kinetic theory estimates the shear viscosity η of a gas to be

$$
\eta \sim \frac{1}{3} n\langle p\rangle \lambda_{\mathrm{mfp}} \sim s\langle p\rangle \lambda_{\mathrm{mfp}} \sim \lambda_{\mathrm{mfp}} T^{4}
$$

Micro-to-micro (kinetic theory):

$$
\frac{\lambda_{\mathrm{mfp}}}{\lambda_{\mathrm{th}}} \sim \frac{\eta}{T^{3}} \sim \frac{\eta}{s} \quad(\text { the "specific shear viscosity" })
$$

\rightarrow compares scale of inter-particle collisions with typical particle sizes Micro-to-macro (hydrodynamics):

$$
\frac{\lambda_{\mathrm{mfp}}}{L_{\mathrm{hydro}}} \sim \frac{\eta \theta}{s T} \equiv \mathrm{Kn} \quad \text { (the "Knudsen number") }
$$

\rightarrow compares scale of inter-particle collisions with gradients of thermodynamic variables

Kinetic theory and hydrodynamics

Kinetic theory estimates the shear viscosity η of a gas to be

$$
\eta \sim \frac{1}{3} n\langle p\rangle \lambda_{\mathrm{mfp}} \sim s\langle p\rangle \lambda_{\mathrm{mfp}} \sim \lambda_{\mathrm{mfp}} T^{4}
$$

Micro-to-micro (kinetic theory):

$$
\frac{\lambda_{\mathrm{mfp}}}{\lambda_{\mathrm{th}}} \sim \frac{\eta}{T^{3}} \sim \frac{\eta}{s} \quad(\text { the "specific shear viscosity" })
$$

\rightarrow compares scale of inter-particle collisions with typical particle sizes Micro-to-macro (hydrodynamics):

$$
\frac{\lambda_{\mathrm{mfp}}}{L_{\mathrm{hydro}}} \sim \frac{\eta \theta}{s T} \equiv \mathrm{Kn} \quad \text { (the "Knudsen number") }
$$

\rightarrow compares scale of inter-particle collisions with gradients of thermodynamic variables
What does this tell us about kinetic theory and hydrodynamics?

Kinetic theory and hydrodynamics

When is kinetic theory valid?

1. Dilute gas regime:

$$
\frac{\lambda_{\mathrm{mfp}}}{\lambda_{\mathrm{th}}} \sim \frac{\eta}{s} \gg 1
$$

Particles travel a long time between collisions, meaning they are (mostly) on-shell and collisional broadening is negligible \rightarrow kinetic theory works best here
2. Dense gas regime:

$$
\frac{\lambda_{\mathrm{mfp}}}{\lambda_{\mathrm{th}}} \sim \frac{\eta}{s} \sim 1
$$

Particles collide frequently and are consistently off-shell
\rightarrow kinetic theory must be improved with quantum kinetic approach
3. Liquid regime:

$$
\frac{\lambda_{\mathrm{mfp}}}{\lambda_{\mathrm{th}}} \sim \frac{\eta}{s} \ll 1
$$

No well-defined particle states
\rightarrow kinetic theory no longer applicable

Kinetic theory and hydrodynamics

When is hydrodynamics valid?

Recall: $\mathrm{Kn}=\frac{\eta}{s T} \cdot \theta$

1. Ideal (perfect) hydrodynamics:

$$
\mathrm{Kn} \approx 0: \eta / s \approx 0 \text { or } \theta \approx 0
$$

\rightarrow strong coupling and/or weak expansion ensures validity of hydrodynamics
2. Viscous (non-ideal) hydrodynamics:
$\mathrm{Kn} \lesssim 1$: either η / s or θ sufficiently small
\rightarrow moderate coupling and/or moderate expansion requires viscous hydrodynamics
3. Hydrodynamics invalid:

$$
\mathrm{Kn} \gg 1: \eta / s \text { and } \theta \text { both large }
$$

\rightarrow coupling is too weak and/or expansion is too strong for hydrodynamics to work

Hydrodynamics and kinetic theory: a short formulary

Kinetic theory:
Boltzmann equation: $p^{\mu} \frac{\partial f}{\partial x^{\mu}}=C[f]$
Hydrodynamics:

$$
\text { Conservation laws: } \partial_{\mu} T^{\mu \nu}=0, \quad \partial_{\mu} j^{\mu}=0
$$

Dictionary:

$$
\text { Particle current: } j^{\mu}(x)=\int \frac{d^{3} p}{p^{0}} p^{\mu} f(x, p)
$$

Energy-momentum: $T^{\mu \nu}(x)=\int \frac{d^{3} p}{p^{0}} p^{\mu} p^{\nu} f(x, p)$
Entropy flow: $s^{\mu}(x)=\int \frac{d^{3} p}{p^{0}} p^{\mu} f(x, p)(1-\ln f(x, p))$

Recap

- Kinetic theory describes systems composed of particles
- Only describes systems composed of weakly coupled particles
- The single-particle distribution f is described by the Boltzmann equation (BE)
- Collision term implements relevant microscopic dynamics

Recap

- Kinetic theory describes systems composed of particles
- Only describes systems composed of weakly coupled particles
- The single-particle distribution f is described by the Boltzmann equation (BE)
- Collision term implements relevant microscopic dynamics
- Hydrodynamics replaces microscopic quantities (e.g., f) with macroscopic equivalents ($n, T^{\mu \nu}$, etc.)
- Micro \leftrightarrow macro transition effected by "course-graining"
- Works best when $N_{\text {d.o.f. }} \gg 1$
- BE for $f \Longleftrightarrow$ conservations laws for $j^{\mu}, T^{\mu \nu}$

Part II:
 Hydrodynamics and collectivity

So what is collectivity?

Basically, it's the difference between

Basically, it's the difference between

 this

Basically, it's the difference between

this

and this

Basically, it's the difference between

this

 and this

More precisely: "Collectivity" means

- fluid-like velocity profile and behavior
- strong position-momentum ($x-p$) correlations

Conservation laws

- All dynamics arises from requiring energy-momentum conservation and, if necessary, number (charge) conservation:

$$
\begin{aligned}
\partial_{\mu} T^{\mu \nu} & =0 \\
\partial_{\mu} J_{i}^{\mu} & =0
\end{aligned}
$$

where i ranges over the conserved charges in the system

Conservation laws

- All dynamics arises from requiring energy-momentum conservation and, if necessary, number (charge) conservation:

$$
\begin{aligned}
\partial_{\mu} T^{\mu \nu} & =0 \\
\partial_{\mu} J_{i}^{\mu} & =0,
\end{aligned}
$$

where i ranges over the conserved charges in the system

- In general, must include all relevant J_{i}^{μ}, but ignore today for simplicity; focus on $T^{\mu \nu}$
- Two important questions about the conservation laws:
- How do we solve them?
- What do we learn from them?

Conservation laws: how to solve them

In general, 4 separate equations of motion (EoMs):

$$
\begin{array}{rll}
\underline{\text { EoM }} & : & \text { \# of constraints } \\
\partial_{\mu} T^{\mu \nu}=0 & : & 4 \quad(\nu=0,1,2,3)
\end{array}
$$

But 5 total unknowns:

$$
\begin{aligned}
\text { Quantity } & : \# \text { of unknowns } \\
\hline e(x) & : 1 \\
P(x) & : 1 \\
u^{\mu}(x) & : 3 \quad\left(\text { since } u^{\mu} u_{\mu}=1\right)
\end{aligned}
$$

Total unknowns $>$ total constraints \Longrightarrow system is underdetermined!

Conservation laws: how to solve them

In general, 4 separate equations of motion (EoMs):

$$
\begin{array}{rll}
\underline{\text { EoM }} & : & \text { \# of constraints } \\
\partial_{\mu} T^{\mu \nu}=0 & : & 4 \quad(\nu=0,1,2,3)
\end{array}
$$

But 5 total unknowns:

$$
\begin{aligned}
\frac{\text { Quantity }}{} & : \# \text { of unknowns } \\
e(x) & : 1 \\
P(x) & : 1 \\
u^{\mu}(x) & : 3 \quad\left(\text { since } u^{\mu} u_{\mu}=1\right)
\end{aligned}
$$

Total unknowns $>$ total constraints \Longrightarrow system is underdetermined! Need additional equation of state (EoS) to get unique solution:

$$
P=P\left(e,\left\{n_{i}\right\}\right)
$$

Conservation laws: how to solve them

In general, 4 separate equations of motion (EoMs):

$$
\begin{array}{rll}
\underline{\text { EoM }} & : & \# \text { of constraints } \\
\partial_{\mu} T^{\mu \nu}=0 & : & 4 \quad(\nu=0,1,2,3)
\end{array}
$$

But 5 total unknowns:

$$
\begin{aligned}
\frac{\text { Quantity }}{} & : \# \text { of unknowns } \\
e(x) & : 1 \\
P(x) & : 1 \\
u^{\mu}(x) & : 3 \quad\left(\text { since } u^{\mu} u_{\mu}=1\right)
\end{aligned}
$$

Total unknowns $>$ total constraints \Longrightarrow system is underdetermined! Need additional equation of state (EoS) to get unique solution:

$$
P=P\left(e,\left\{n_{i}\right\}\right) \longleftrightarrow P\left(T,\left\{\mu_{i}\right\}\right)
$$

EoS encodes the microscopic properties of the system.

Conservation laws: what we learn

What physics is implied by a hydrodynamic approach?

Conservation laws: what we learn

What physics is implied by a hydrodynamic approach? Recall: $T^{\mu \nu}(x)=[e(x)+P(x)] u^{\mu}(x) u^{\nu}(x)-P(x) g^{\mu \nu}$ $0=\partial_{\mu} T^{\mu \nu}$

Conservation laws: what we learn

What physics is implied by a hydrodynamic approach? Recall: $T^{\mu \nu}(x)=[e(x)+P(x)] u^{\mu}(x) u^{\nu}(x)-P(x) g^{\mu \nu}$

$$
\begin{aligned}
0 & =\partial_{\mu} T^{\mu \nu} \\
& =\left(\partial_{\mu} e+\partial_{\mu} P\right) u^{\mu} u^{\nu}+(e+P)\left(u^{\nu} \partial_{\mu} u^{\mu}+u^{\mu} \partial_{\mu} u^{\nu}\right)-g^{\mu \nu} \partial_{\mu} P
\end{aligned}
$$

Conservation laws: what we learn

What physics is implied by a hydrodynamic approach?
Recall: $T^{\mu \nu}(x)=[e(x)+P(x)] u^{\mu}(x) u^{\nu}(x)-P(x) g^{\mu \nu}$

$$
\begin{aligned}
0 & =\partial_{\mu} T^{\mu \nu} \\
& =\left(\partial_{\mu} e+\partial_{\mu} P\right) u^{\mu} u^{\nu}+(e+P)\left(u^{\nu} \partial_{\mu} u^{\mu}+u^{\mu} \partial_{\mu} u^{\nu}\right)-g^{\mu \nu} \partial_{\mu} P \\
& =u^{\nu} \dot{e}+(e+P)\left[u^{\nu} \theta+\dot{u}^{\nu}\right]-\nabla^{\nu} P
\end{aligned}
$$

Conservation laws: what we learn

What physics is implied by a hydrodynamic approach?
Recall: $T^{\mu \nu}(x)=[e(x)+P(x)] u^{\mu}(x) u^{\nu}(x)-P(x) g^{\mu \nu}$

$$
\begin{aligned}
0 & =\partial_{\mu} T^{\mu \nu} \\
& =\left(\partial_{\mu} e+\partial_{\mu} P\right) u^{\mu} u^{\nu}+(e+P)\left(u^{\nu} \partial_{\mu} u^{\mu}+u^{\mu} \partial_{\mu} u^{\nu}\right)-g^{\mu \nu} \partial_{\mu} P \\
& =u^{\nu} \dot{e}+(e+P)\left[u^{\nu} \theta+\dot{u}^{\nu}\right]-\nabla^{\nu} P
\end{aligned}
$$

where $\theta \equiv \partial_{\mu} u^{\mu}, \Delta^{\mu \nu} \equiv g^{\mu \nu}-u^{\mu} u^{\nu}$, and

$$
\dot{X} \equiv u^{\mu} \partial_{\mu} X, \quad \nabla^{\mu} X \equiv \Delta^{\mu \nu} \partial_{\nu} X
$$

are covariant derivatives w.r.t. time and space, respectively;

Conservation laws: what we learn

What physics is implied by a hydrodynamic approach?
Recall: $T^{\mu \nu}(x)=[e(x)+P(x)] u^{\mu}(x) u^{\nu}(x)-P(x) g^{\mu \nu}$

$$
\begin{aligned}
0 & =\partial_{\mu} T^{\mu \nu} \\
& =\left(\partial_{\mu} e+\partial_{\mu} P\right) u^{\mu} u^{\nu}+(e+P)\left(u^{\nu} \partial_{\mu} u^{\mu}+u^{\mu} \partial_{\mu} u^{\nu}\right)-g^{\mu \nu} \partial_{\mu} P \\
& =u^{\nu} \dot{e}+(e+P)\left[u^{\nu} \theta+\dot{u}^{\nu}\right]-\nabla^{\nu} P,
\end{aligned}
$$

where $\theta \equiv \partial_{\mu} u^{\mu}, \Delta^{\mu \nu} \equiv g^{\mu \nu}-u^{\mu} u^{\nu}$, and

$$
\dot{X} \equiv u^{\mu} \partial_{\mu} X, \quad \nabla^{\mu} X \equiv \Delta^{\mu \nu} \partial_{\nu} X
$$

are covariant derivatives w.r.t. time and space, respectively; i.e.,

$$
{ }^{(*)} \text { in LRF } u^{\mu}=(1, \mathbf{0}): \quad \dot{X} \rightarrow \partial_{t} X, \quad \nabla^{\mu} X \rightarrow \vec{\nabla} X
$$

Conservation laws: what we learn

$$
\partial_{\mu} T^{\mu \nu}=0 \Longrightarrow u^{\nu} \dot{e}+(e+P)\left[u^{\nu} \theta+\dot{u}^{\nu}\right]-\nabla^{\nu} P=0
$$

Conservation laws: what we learn

$$
\partial_{\mu} T^{\mu \nu}=0 \Longrightarrow u^{\nu} \dot{e}+(e+P)\left[u^{\nu} \theta+\dot{u}^{\nu}\right]-\nabla^{\nu} P=0
$$

Let's apply $u_{\nu}(\cdots)$ to this result.

Conservation laws: what we learn

$$
\partial_{\mu} T^{\mu \nu}=0 \Longrightarrow u^{\nu} \dot{e}+(e+P)\left[u^{\nu} \theta+\dot{u}^{\nu}\right]-\nabla^{\nu} P=0
$$

Let's apply $u_{\nu}(\cdots)$ to this result. First notice that

$$
\begin{aligned}
u_{\nu} u^{\nu} & =1 \\
u_{\nu} \dot{u}^{\nu} & =u_{\nu} u^{\mu} \partial_{\mu} u^{\nu}=\frac{1}{2} u^{\mu} \partial_{\mu}\left(u_{\nu} u^{\nu}\right) \\
& =\frac{1}{2} u^{\mu} \partial_{\mu}(1)=0 \\
u_{\nu} \nabla^{\nu} X & =u_{\nu}\left(g^{\mu \nu}-u^{\mu} u^{\nu}\right) \partial_{\mu} X \\
& =\left(u^{\mu}-u^{\mu}\right) \partial_{\mu} X=0
\end{aligned}
$$

Conservation laws: what we learn

$$
\partial_{\mu} T^{\mu \nu}=0 \Longrightarrow u^{\nu} \dot{e}+(e+P)\left[u^{\nu} \theta+\dot{u}^{\nu}\right]-\nabla^{\nu} P=0
$$

Let's apply $u_{\nu}(\cdots)$ to this result. First notice that

$$
\begin{aligned}
u_{\nu} u^{\nu} & =1 \\
u_{\nu} \dot{u}^{\nu} & =u_{\nu} u^{\mu} \partial_{\mu} u^{\nu}=\frac{1}{2} u^{\mu} \partial_{\mu}\left(u_{\nu} u^{\nu}\right) \\
& =\frac{1}{2} u^{\mu} \partial_{\mu}(1)=0 \\
u_{\nu} \nabla^{\nu} X & =u_{\nu}\left(g^{\mu \nu}-u^{\mu} u^{\nu}\right) \partial_{\mu} X \\
& =\left(u^{\mu}-u^{\mu}\right) \partial_{\mu} X=0
\end{aligned}
$$

Then you can show ${ }^{(*)}$

$$
\dot{e}=-(e+P) \theta
$$

and

$$
\dot{u}^{\nu}=\frac{\nabla^{\nu} P}{e+P}
$$

Conservation laws: what we learn

- $\dot{e}=-(e+P) \theta$
- \dot{e} : time-derivative of energy density e
- θ : scalar expansion rate (i.e., four-divergence)
- Since $e+P>0$,

$$
\theta>0 \Longleftrightarrow \dot{e}<0 \text { and vice versa, }
$$

\rightarrow expansion decreases the energy density and v.v.

Conservation laws: what we learn

- $\dot{e}=-(e+P) \theta$
- \dot{e} : time-derivative of energy density e
- θ : scalar expansion rate (i.e., four-divergence)
- Since $e+P>0$,

$$
\theta>0 \Longleftrightarrow \dot{e}<0 \text { and vice versa }
$$

\rightarrow expansion decreases the energy density and v.v.
$>\dot{u}^{\nu}=\frac{\nabla^{\nu} P}{e+P}$

- \dot{u}^{ν} : net acceleration of fluid element
- $e+P$: relativistic "mass" of fluid element
- $\nabla^{\nu} P$: net force of pressure gradient on fluid element
\rightarrow relativistic hydrodynamics version of $\vec{F}=m \vec{a}$

Conservation laws: what we learn

Relativistic Euler equation:

$$
\dot{u}^{\nu}=\frac{\nabla^{\nu} P}{e+P}=\frac{c_{s}^{2}}{1+c_{s}^{2}} \frac{\nabla^{\nu} e}{e}, \quad c_{s}^{2}=\frac{\partial P}{\partial e}
$$

What does it mean?

- Hydrodynamics predicts a collective, momentum-space response to coordinate-space gradients of pressure or density
- Large speed-of-sound c_{s}^{2} ("stiff" EoS) means a strong response; small c_{s}^{2} ("soft" EoS) means a weak response

C. Adler et al. [STAR Collaboration], PRL 90, 032301 (2003)

When is this collective response produced?

- Two space-time events A and B are correlated only if their past light-cones overlap
- For given separation in spatial rapidity $\eta_{A}-\eta_{B}$, the latest τ_{0} when the correlations could have been produced is

$$
\tau_{0}=\tau_{f} \exp \left(-\frac{1}{2}\left|\eta_{A}-\eta_{B}\right|\right)
$$

A. Dumitru, F. Gelis, L. McLerran and R. Venugopalan, Nucl. Phys. A 810, 91 (2008) G. Aad et al. [ATLAS Collaboration], Phys. Rev. C 86, 014907 (2012)

When is this collective response produced?

- Two space-time events A and B are correlated only if their past light-cones overlap
- For given separation in spatial rapidity $\eta_{A}-\eta_{B}$, the latest τ_{0} when the correlations could have been produced is

$$
\tau_{0}=\tau_{f} \exp \left(-\frac{1}{2}\left|\eta_{A}-\eta_{B}\right|\right) \approx \tau_{f} \exp \left(1-\frac{1}{2}\left|y_{A}-y_{B}\right|\right)
$$

A. Dumitru, F. Gelis, L. McLerran and R. Venugopalan, Nucl. Phys. A 810, 91 (2008)
G. Aad et al. [ATLAS Collaboration], Phys. Rev. C 86, 014907 (2012)

When is this collective response produced?

- Two space-time events A and B are correlated only if their past light-cones overlap
- For given separation in spatial rapidity $\eta_{A}-\eta_{B}$, the latest τ_{0} when the correlations could have been produced is

$$
\tau_{0}=\tau_{f} \exp \left(-\frac{1}{2}\left|\eta_{A}-\eta_{B}\right|\right) \approx \tau_{f} \exp \left(1-\frac{1}{2}\left|y_{A}-y_{B}\right|\right) \approx 2 \mathrm{fm} / c
$$

for $\left|y_{A}-y_{B}\right|=5$ and $\tau_{f}=10 \mathrm{fm} / c$.

- Collective response is generated very early in collision evolution!
\Longrightarrow Collectivity consistent with hydrodynamic response to initial geometry!
A. Dumitru, F. Gelis, L. McLerran and R. Venugopalan, Nucl. Phys. A 810, 91 (2008)
G. Aad et al. [ATLAS Collaboration], Phys. Rev. C 86, 014907 (2012)

Recap

- Hydrodynamical conservation laws...
- are coupled, non-linear differential equations for thermodynamic quantities $\left(j^{\mu}, T^{\mu \nu}\right.$, etc.)
- require input from theoretical descriptions of QCD
- predict tight correlations between geometry and final-state spectra which are established early in the collision

Conclusions

- Both kinetic theory and hydrodynamics are useful tools for describing the evolution of complex systems
- Kinetic theory works best for weakly coupled, dilute systems
- Hydrodynamics works best in systems with mean free path much smaller than the scale of variation in thermodynamic quantities
- We can specify these regimes of validity quantitatively
- The two regimes are not mutually exclusive!

[^7]
Conclusions

- Both kinetic theory and hydrodynamics are useful tools for describing the evolution of complex systems
- Kinetic theory works best for weakly coupled, dilute systems
- Hydrodynamics works best in systems with mean free path much smaller than the scale of variation in thermodynamic quantities
- We can specify these regimes of validity quantitatively
- The two regimes are not mutually exclusive!
- Hydrodynamics implies collectivity, but not vice versa
- There may be alternatives to hydrodynamics (e.g., initial-state correlations or string shoving) which generate collective behavior ${ }^{8}$
- Is hydrodynamics responsible for collectivity in all collision systems? Or are there other mechanisms at play in smaller systems?

[^8]
Where to from here?

Outstanding questions:

- Do the conditions for hydrodynamics apply in high-energy nuclear collisions?
- What is the smallest possible system in which they can apply?
- Can a kinetic-theory approach explain all available data? Which data truly require a hydrodynamic approach?
Look forward to exciting progress this week!

> Thanks for your attention!

Further reading

Introductions to Kinetic Theory and Hydrodynamics

- http://www.damtp.cam.ac.uk/user/tong/kintheory/kt.pdf
- https://courses.physics.ucsd.edu/2015/Fall/physics210b/LECTURES/CH05.pdf
- D. H. Rischke, Lect. Notes Phys. 516, 21 (1999)
- https://www.phys.unideb.hu/mtadeparg/sites/default/files/seminar/etele_molnar_2012.pdf
- S. Jeon and U. Heinz, Int. J. Mod. Phys. E 24, 1530010 (2015)

Collectivity and Nuclear Collisions

- U. W. Heinz, hep-ph/0407360.
- U. Heinz and R. Snellings, Ann. Rev. Nucl. Part. Sci. 63, 123 (2013)
- A. K. Chaudhuri, A Short Course on Relativistic Heavy Ion Collisions (book); 2014.
- J. L. Nagle and W. A. Zajc, Ann. Rev. Nucl. Part. Sci. 68, 211 (2018)
- C. Bierlich, G. Gustafson and L. Lönnblad, Phys. Lett. B 779, 58 (2018)

Backup slides

An aside on course-graining [Back]

To convert $n(x)$ from microscopics (δ-functions) to macroscopics (a smooth function), we course-grain in the following way:

$$
n(t, \vec{x}) \rightarrow n_{\mathrm{CG}}(t, \vec{x})=\lim _{\epsilon \rightarrow 0} \frac{3}{4 \pi \epsilon^{3}} \int d^{3} x^{\prime} \theta\left(\left|\vec{x}^{\prime}-\vec{x}\right|-\epsilon\right) n\left(t, \vec{x}^{\prime}\right)
$$

An aside on course-graining [Back]

To convert $n(x)$ from microscopics (δ-functions) to macroscopics (a smooth function), we course-grain in the following way:

$$
n(t, \vec{x}) \rightarrow n_{\mathrm{CG}}(t, \vec{x})=\lim _{\epsilon \rightarrow 0} \frac{3}{4 \pi \epsilon^{3}} \int d^{3} x^{\prime} \theta\left(\left|\vec{x}^{\prime}-\vec{x}\right|-\epsilon\right) n\left(t, \vec{x}^{\prime}\right)
$$

In other words, "course-graining" means

1. "bin" all particles by their phase-space coordinates x and p
2. make the binwidth ϵ as small as possible
3. interpret the resulting histogram as a smooth-ish function in x and p

An aside on course-graining [Back]

To convert $n(x)$ from microscopics (δ-functions) to macroscopics (a smooth function), we course-grain in the following way:

$$
n(t, \vec{x}) \rightarrow n_{\mathrm{CG}}(t, \vec{x})=\lim _{\epsilon \rightarrow 0} \frac{3}{4 \pi \epsilon^{3}} \int d^{3} x^{\prime} \theta\left(\left|\vec{x}^{\prime}-\vec{x}\right|-\epsilon\right) n\left(t, \vec{x}^{\prime}\right)
$$

In other words, "course-graining" means

1. "bin" all particles by their phase-space coordinates x and p
2. make the binwidth ϵ as small as possible
3. interpret the resulting histogram as a smooth-ish function in x and p

Comments:

- Course-graining works best for $N \gg 1$, hence this condition for a macroscopic treatment to be valid.
- Course-graining generalizes to non-classical microscopics too
- Hereafter I will pretend that the course-graining has been carried out, and will treat $n(x)$ (etc.) as smooth functions.

[^0]: ${ }^{1}$ Cf. Volodymyr Vovchenko's talk (Tuesday)
 ${ }^{2}$ Cf. Ilkka Helenius's talk (Tuesday)
 ${ }^{3}$ Cf. talks by Stefan Prestel (Monday) and Liliana Apolinário (Tuesday)
 ${ }^{4}$ Cf. Wolfgang Schäfer's talk (Tuesday)

[^1]: ${ }^{1}$ Cf. Volodymyr Vovchenko's talk (Tuesday)
 ${ }^{2}$ Cf. Ilkka Helenius's talk (Tuesday)
 ${ }^{3}$ Cf. talks by Stefan Prestel (Monday) and Liliana Apolinário (Tuesday)
 ${ }^{4}$ Cf. Wolfgang Schäfer's talk (Tuesday)

[^2]: ${ }^{1}$ Cf. Volodymyr Vovchenko's talk (Tuesday)
 ${ }^{2}$ Cf. Ilkka Helenius's talk (Tuesday)
 ${ }^{3}$ Cf. talks by Stefan Prestel (Monday) and Liliana Apolinário (Tuesday)
 ${ }^{4}$ Cf. Wolfgang Schäfer's talk (Tuesday)

[^3]: ${ }^{1}$ Cf. Volodymyr Vovchenko's talk (Tuesday)
 ${ }^{2}$ Cf. Ilkka Helenius's talk (Tuesday)
 ${ }^{3}$ Cf. talks by Stefan Prestel (Monday) and Liliana Apolinário (Tuesday)
 ${ }^{4}$ Cf. Wolfgang Schäfer's talk (Tuesday)

[^4]: ${ }^{1}$ Cf. Volodymyr Vovchenko's talk (Tuesday)
 ${ }^{2}$ Cf. Ilkka Helenius's talk (Tuesday)
 ${ }^{3}$ Cf. talks by Stefan Prestel (Monday) and Liliana Apolinário (Tuesday)
 ${ }^{4}$ Cf. Wolfgang Schäfer's talk (Tuesday)

[^5]: ${ }^{5}$ Recall that $d^{3} p / p^{0}$ is a Lorentz invariant.
 ${ }^{6}$ You can add more terms to this, but I will not worry about these today.

[^6]: ${ }^{5}$ Recall that $d^{3} p / p^{0}$ is a Lorentz invariant.
 ${ }^{6}$ You can add more terms to this, but I will not worry about these today.

[^7]: ${ }^{8}$ Cf. Leif Lönnblad's talk (Monday)

[^8]: ${ }^{8}$ Cf. Leif Lönnblad's talk (Monday)

