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Setting the stage

Goal: understand high-energy nuclear collisions

I “Small” systems (e.g., p+p and p+Pb collisions)

I “Intermediate” systems (e.g., O+O collisions)

I “Large” systems (e.g., Pb+Pb collisions)

Things we still need to understand:

I Collectivity : what causes it, and is it the same for all systems?

I Thermodynamics: do these systems actually thermalize?1

I The nucleus: how well do we understand cold nuclear matter?2

I Jets: what can they tell us about nuclear collisions?3

I Light : what can we learn from photons?4

1Cf. Volodymyr Vovchenko’s talk (Tuesday)
2Cf. Ilkka Helenius’s talk (Tuesday)
3Cf. talks by Stefan Prestel (Monday) and Liliana Apolinário (Tuesday)
4Cf. Wolfgang Schäfer’s talk (Tuesday)
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This talk

Descriptions of nuclear collisions:
I Microscopic approach: kinetic theory
I Macroscopic approach: hydrodynamics and its relation to kinetic

theory

Applications:
I When are kinetic theory and/or hydrodynamics valid?
I What is collectivity, and how is it related to hydrodynamics?

Conventions:

~ = c = kB = 1∑
µ

xµxµ ≡ xµxµ

gµν = diag {+1,−1,−1,−1}
“Local rest frame” (LRF) :

uµ = uµLRF ≡ (1,0)
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Part I:
Introduction to kinetic theory

and hydrodynamics



Introduction to kinetic theory and hydrodynamics

What is kinetic theory?

Kinetic theory:

- an approach to describing the evolution of systems

- composed of weakly coupled particles

- in terms of the single-particle distribution f(~r, ~p, t)

Assumptions:

I System composed of weakly coupled particles

I Particle collisions are uncorrelated

=⇒ kinetic theory cannot describe strongly coupled systems!

14 / 46



Introduction to kinetic theory and hydrodynamics

Starting point: the Boltzmann equation:

∂f

∂t
+

~p

m
· ∂f
∂~r
− ∂V (~r)

∂~r
· ∂f
∂~p︸ ︷︷ ︸

“streaming terms”

= C [f ] (~r, ~p, t)︸ ︷︷ ︸
“collision term”

Notation:

I f (~r, ~p, t): the single-particle distribution function

I V (~r): some external potential (e.g., gravity)

I Streaming terms describe evolution in absence of particle collisions

I Collision term describes internal interactions between particles in the
system
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Introduction to kinetic theory and hydrodynamics

Relativistic version:

pµ
∂f

∂xµ
+mFµ

∂f

∂pµ
= C [f ]

From now on, I will assume that Fµ = 0, for simplicity.

For 2→ 2 scattering, the collision term can be written

C [f ] =
m

2

∫
d3p2 d

3p′1 d
3p′2w

(
12→ 1′2′

)
×

[
f
(
x, p′1

)
f
(
x, p′2

)
− f(x, p) f(x, p2)

]
where w (12→ 1′2′) is the transition rate.

In QCD, C [f ] also receives contributions from

I 1→2 scattering (e.g., gluon splitting)

I 2→1 scattering (e.g., gluon fusion)

I Etc.
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Introduction to kinetic theory and hydrodynamics

What is hydrodynamics?

Hydrodynamics:

- an approach to describing the evolution of systems

- based on collective flow of conserved quantities (e.g., Tµν)

- in terms of “course-grained,” thermodynamic quantities like
number density n and pressure P

Main assumption:

I System must be well-described by slowly-varying quantities in
space and time

Next: let’s illustrate some of these concepts with an example.
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Example: gas of N non-interacting particles

Single-particle distribution:

f(x, p) =
N∑
i=1

δ3 (~x− ~xi(t)) δ3 (~p− ~pi)

→ n(x) =
N∑
i=1

δ3 (~x− ~xi(t)) =

∫
d3pf(x, p) =

∫
d3p

p0
p0f(x, p). 5

Now boost to a frame with relative velocity uµ(x):

n(x)→ jµ(x) ≡
∫
d3p

p0
pµf(x, p) ≡ 〈pµ〉 ,

where 〈O (x, p)〉 ≡
∫
d3p

p0
O (x, p) f(x, p)

jµ(x) = n(x)uµ(x) 6

5Recall that d3p/p0 is a Lorentz invariant.
6You can add more terms to this, but I will not worry about these today.
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Example: gas of N non-interacting particles

Similarly(∗)

Tµν(x) ≡ 〈pµpν〉

=
N∑
i=1

pµi p
ν
i

Ei
δ3 (~x− ~xi(t))

boost to uµ(x) → e(x)uµ(x)uν(x) + P (x)∆µν(x);

where ∆µν(x) ≡ gµν − uµ(x)uν(x),

e(x) =
〈(
p0
)2〉

, and P (x) =

〈
p0

3
(~v · ~p)

〉
.
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e(x) =
〈(
p0
)2〉

, and P (x) =

〈
p0

3
(~v · ~p)

〉
.7

7So far, n(x), e(x), . . . still contain (microscopic) δ-functions and are not yet
smooth, (macroscopic) thermodynamic variables. To convert them to genuinely
smooth functions requires a procedure known as “course graining .” From now on,
I assume we have done this and will treat n(x), . . . as smoothly varying quantities
in space-time.
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Kinetic theory and hydrodynamics

There are two questions we need to answer:

1. What equations do jµ and T µν obey?

2. When is kinetic theory or hydrodynamics valid?
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Kinetic theory and hydrodynamics

1. What equations do jµ and Tµν obey?

Use the Boltzmann equation to find out!∫
d3p

(
∂f

∂t
+

~p

m
· ∂f
∂~r

)
=

∫
d3pC [f ] (~r, ~p, t)

or

0 =

∫
d3p

(
∂f

∂t
+

~p

m
· ∂f
∂~r

)
=

∂

∂t

∫
d3p f +

∂

∂~r
·
∫
d3p

~p

m
f

= ∂µ

∫
d3p

p0
pµf

= ∂µj
µ

→ jµ is a conserved quantity! Similarly, ∂µT
µν = 0.

We say that jµ and Tµν obey conservation laws.
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Kinetic theory and hydrodynamics

2. When is kinetic theory or hydrodynamics valid?

A relativistic system can be characterized by three lengthscales:

I mean free path λmfp ∼ 1/ (〈σv〉n)
- the typical distance a particle travels before scattering

I thermal de Broglie wavelength λth ∼ 1/T
- the typical size of a particle at temperature T

I hydrodynamic lengthscale Lhydro:

L−1
hydro ∼ θ ∼ |∂µε| /ε ∼ · · · , where θ ≡ ∂µuµ

- the scale over which macroscopic quantities vary

Ratios among these lengthscales give us regimes of validity :

I for kinetic theory: λmfp/λth

I for hydrodynamics: λmfp/Lhydro

Let’s rewrite these ratios in a more illuminating form.
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Kinetic theory and hydrodynamics

Kinetic theory estimates the shear viscosity η of a gas to be

η ∼ 1

3
n 〈p〉λmfp ∼ s 〈p〉λmfp ∼ λmfpT

4

Micro-to-micro (kinetic theory):

λmfp

λth
∼ η

T 3
∼ η

s
(the “specific shear viscosity”)

→ compares scale of inter-particle collisions with typical particle sizes

Micro-to-macro (hydrodynamics):

λmfp

Lhydro
∼ ηθ

sT
≡ Kn (the “Knudsen number”)

→ compares scale of inter-particle collisions with gradients of
thermodynamic variables
What does this tell us about kinetic theory and hydrodynamics?
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Kinetic theory and hydrodynamics

When is kinetic theory valid?

1. Dilute gas regime:
λmfp

λth
∼ η

s
� 1

Particles travel a long time between collisions, meaning they are
(mostly) on-shell and collisional broadening is negligible
→ kinetic theory works best here

2. Dense gas regime:
λmfp

λth
∼ η

s
∼ 1

Particles collide frequently and are consistently off-shell
→ kinetic theory must be improved with quantum kinetic approach

3. Liquid regime:
λmfp

λth
∼ η

s
� 1

No well-defined particle states
→ kinetic theory no longer applicable
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Kinetic theory and hydrodynamics

When is hydrodynamics valid?
Recall: Kn = η

sT · θ
1. Ideal (perfect) hydrodynamics:

Kn ≈ 0 : η/s ≈ 0 or θ ≈ 0

→ strong coupling and/or weak expansion ensures validity of
hydrodynamics

2. Viscous (non-ideal) hydrodynamics:

Kn . 1 : either η/s or θ sufficiently small

→ moderate coupling and/or moderate expansion requires viscous
hydrodynamics

3. Hydrodynamics invalid:

Kn� 1 : η/s and θ both large

→ coupling is too weak and/or expansion is too strong for
hydrodynamics to work
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Hydrodynamics and kinetic theory: a short formulary

Kinetic theory:

Boltzmann equation: pµ
∂f

∂xµ
= C [f ]

Hydrodynamics:

Conservation laws: ∂µT
µν = 0, ∂µj

µ = 0

Dictionary:

Particle current: jµ(x) =

∫
d3p

p0
pµf(x, p)

Energy-momentum: Tµν(x) =

∫
d3p

p0
pµpνf(x, p)

Entropy flow: sµ(x) =

∫
d3p

p0
pµf(x, p) (1− ln f(x, p))
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Recap

I Kinetic theory describes systems composed of particles

- Only describes systems composed of weakly coupled particles
- The single-particle distribution f is described by the Boltzmann

equation (BE)
- Collision term implements relevant microscopic dynamics

I Hydrodynamics replaces microscopic quantities (e.g., f) with
macroscopic equivalents (n, Tµν , etc.)

- Micro ↔ macro transition effected by “course-graining”
- Works best when Nd.o.f. � 1
- BE for f ⇐⇒ conservations laws for jµ, Tµν
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Part II:
Hydrodynamics and collectivity



So what is collectivity?

29 / 46



Basically, it’s the difference between

this and this

More precisely: “Collectivity” means
I fluid-like velocity profile and behavior
I strong position-momentum (x-p) correlations
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Conservation laws

I All dynamics arises from requiring energy-momentum
conservation and, if necessary, number (charge) conservation:

∂µT
µν = 0

∂µJ
µ
i = 0,

where i ranges over the conserved charges in the system

I In general, must include all relevant Jµi , but ignore today for
simplicity; focus on Tµν

I Two important questions about the conservation laws:

- How do we solve them?
- What do we learn from them?
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Conservation laws: how to solve them

In general, 4 separate equations of motion (EoMs):

EoM : # of constraints

∂µT
µν = 0 : 4 (ν = 0, 1, 2, 3)

But 5 total unknowns:

Quantity : # of unknowns

e(x) : 1

P (x) : 1

uµ(x) : 3 (since uµuµ = 1)

Total unknowns > total constraints =⇒ system is underdetermined!

Need additional equation of state (EoS) to get unique solution:

P = P (e, {ni}) ←→ P (T, {µi})

EoS encodes the microscopic properties of the system.
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Conservation laws: what we learn

What physics is implied by a hydrodynamic approach?

Recall: Tµν(x) = [e(x) + P (x)]uµ(x)uν(x)− P (x)gµν

0 = ∂µT
µν

= (∂µe+ ∂µP )uµuν + (e+ P ) (uν∂µu
µ + uµ∂µu

ν)− gµν∂µP
= uν ė+ (e+ P ) [uνθ + u̇ν ]−∇νP,

where θ ≡ ∂µuµ, ∆µν ≡ gµν − uµuν , and

Ẋ ≡ uµ∂µX, ∇µX ≡ ∆µν∂νX

are covariant derivatives w.r.t. time and space, respectively; i.e.,

(∗)in LRF uµ = (1,0) : Ẋ → ∂tX, ∇µX → ~∇X

33 / 46



Conservation laws: what we learn

What physics is implied by a hydrodynamic approach?

Recall: Tµν(x) = [e(x) + P (x)]uµ(x)uν(x)− P (x)gµν

0 = ∂µT
µν

= (∂µe+ ∂µP )uµuν + (e+ P ) (uν∂µu
µ + uµ∂µu

ν)− gµν∂µP
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Conservation laws: what we learn

∂µT
µν = 0 =⇒ uν ė+ (e+ P ) [uνθ + u̇ν ]−∇νP = 0,

Let’s apply uν (· · ·) to this result. First notice that

uνu
ν = 1

uν u̇
ν = uνu

µ∂µu
ν =

1

2
uµ∂µ (uνu

ν)

=
1

2
uµ∂µ (1) = 0

uν∇νX = uν (gµν − uµuν) ∂µX

= (uµ − uµ) ∂µX = 0

Then you can show(∗)

ė = − (e+ P ) θ

and

u̇ν =
∇νP
e+ P
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Conservation laws: what we learn

I ė = − (e+ P ) θ

- ė: time-derivative of energy density e
- θ: scalar expansion rate (i.e., four-divergence)
- Since e+ P > 0,

θ > 0⇐⇒ ė < 0 and vice versa,

→ expansion decreases the energy density and v.v.

I u̇ν =
∇νP
e+ P

- u̇ν : net acceleration of fluid element
- e+ P : relativistic “mass” of fluid element
- ∇νP : net force of pressure gradient on fluid element

→ relativistic hydrodynamics version of ~F = m~a
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Conservation laws: what we learn

Relativistic Euler equation:

u̇ν =
∇νP
e+ P

=
c2
s

1 + c2
s

∇νe
e
, c2

s =
∂P

∂e

What does it mean?

I Hydrodynamics predicts a collective, momentum-space response
to coordinate-space gradients of pressure or density

I Large speed-of-sound c2
s (“stiff” EoS) means a strong response;

small c2
s (“soft” EoS) means a weak response
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~cos 2φ!!

C. Adler et al. [STAR Collaboration], PRL 90, 032301 (2003)



When is this collective response produced?
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=2.76 TeV
NN

sPb­Pb 

­1bµ= 8 intL

 < 3 GeVb

T
, p

a

T
2 < p

)η
∆, φ∆

C
(

I Two space-time events A and B are correlated only if their past light-cones overlap

I For given separation in spatial rapidity ηA − ηB , the latest τ0 when the correlations
could have been produced is

τ0 = τf exp

(
−

1

2
|ηA − ηB |

)

≈ τf exp

(
1−

1

2
|yA − yB |

)
≈ 2 fm/c

for |yA − yB | = 5 and τf = 10 fm/c.

I Collective response is generated very early in collision evolution!

=⇒ Collectivity consistent with hydrodynamic response to initial geometry!

A. Dumitru, F. Gelis, L. McLerran and R. Venugopalan, Nucl. Phys. A 810, 91 (2008)

G. Aad et al. [ATLAS Collaboration], Phys. Rev. C 86, 014907 (2012)
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I Two space-time events A and B are correlated only if their past light-cones overlap

I For given separation in spatial rapidity ηA − ηB , the latest τ0 when the correlations
could have been produced is

τ0 = τf exp

(
−
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2
|ηA − ηB |

)
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for |yA − yB | = 5 and τf = 10 fm/c.

I Collective response is generated very early in collision evolution!

=⇒ Collectivity consistent with hydrodynamic response to initial geometry!

A. Dumitru, F. Gelis, L. McLerran and R. Venugopalan, Nucl. Phys. A 810, 91 (2008)

G. Aad et al. [ATLAS Collaboration], Phys. Rev. C 86, 014907 (2012)
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When is this collective response produced?
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Recap

I Hydrodynamical conservation laws. . .

- are coupled, non-linear differential equations for thermodynamic
quantities (jµ, Tµν , etc.)

- require input from theoretical descriptions of QCD
- predict tight correlations between geometry and final-state spectra

which are established early in the collision
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Conclusions

I Both kinetic theory and hydrodynamics are useful tools for
describing the evolution of complex systems

- Kinetic theory works best for weakly coupled, dilute systems
- Hydrodynamics works best in systems with mean free path much

smaller than the scale of variation in thermodynamic quantities
- We can specify these regimes of validity quantitatively
- The two regimes are not mutually exclusive!

I Hydrodynamics implies collectivity, but not vice versa

- There may be alternatives to hydrodynamics (e.g., initial-state
correlations or string shoving) which generate collective behavior8

- Is hydrodynamics responsible for collectivity in all collision
systems? Or are there other mechanisms at play in smaller
systems?

8Cf. Leif Lönnblad’s talk (Monday)
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Where to from here?

Outstanding questions:

I Do the conditions for hydrodynamics apply in high-energy
nuclear collisions?

I What is the smallest possible system in which they can apply?

I Can a kinetic-theory approach explain all available data? Which
data truly require a hydrodynamic approach?

Look forward to exciting progress this week!

Thanks for your attention!
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Further reading

Introductions to Kinetic Theory and Hydrodynamics

I http://www.damtp.cam.ac.uk/user/tong/kintheory/kt.pdf

I https://courses.physics.ucsd.edu/2015/Fall/physics210b/LECTURES/CH05.pdf

I D. H. Rischke, Lect. Notes Phys. 516, 21 (1999)

I https://www.phys.unideb.hu/mta-
deparg/sites/default/files/seminar/etele molnar 2012.pdf

I S. Jeon and U. Heinz, Int. J. Mod. Phys. E 24, 1530010 (2015)

Collectivity and Nuclear Collisions

I U. W. Heinz, hep-ph/0407360.

I U. Heinz and R. Snellings, Ann. Rev. Nucl. Part. Sci. 63, 123 (2013)

I A. K. Chaudhuri, A Short Course on Relativistic Heavy Ion Collisions (book); 2014.

I J. L. Nagle and W. A. Zajc, Ann. Rev. Nucl. Part. Sci. 68, 211 (2018)

I C. Bierlich, G. Gustafson and L. Lönnblad, Phys. Lett. B 779, 58 (2018)
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An aside on course-graining [Back]

To convert n(x) from microscopics (δ-functions) to macroscopics (a
smooth function), we course-grain in the following way:

n(t, ~x)→ nCG(t, ~x) = lim
ε→0

3

4πε3

∫
d3x′ θ

(∣∣~x′ − ~x∣∣− ε)n(t, ~x′)

In other words, “course-graining” means

1. “bin” all particles by their phase-space coordinates x and p

2. make the binwidth ε as small as possible

3. interpret the resulting histogram as a smooth-ish function in x and p

Comments:

I Course-graining works best for N � 1, hence this condition for a
macroscopic treatment to be valid.

I Course-graining generalizes to non-classical microscopics too

I Hereafter I will pretend that the course-graining has been carried
out, and will treat n(x) (etc.) as smooth functions.
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