Nuclear Parton Distribution Functions

Ilkka Helenius

February 26th, 2019

University of Jyväskylä Department of Physics

Motivation

Jets in collinear factorization

$$\mathrm{d}\sigma^{AB o jet + X} = \sum_{ij} f^A_i \otimes f^B_j \otimes \mathrm{d}\sigma^{ij o jet + X}$$

- $d\sigma^{ij \rightarrow jet + X}$: partonic cross section
- *f*_i^A: Parton distribution functions (PDFs) describing the partonic structure of the beam particle

Nuclear PDFs

- $f_i^A \neq f_i^p$
- Determined from exp. data
- Provides pQCD baseline for jet quenching effects

$$R_{\rm PbPb} = \frac{{\rm d}\sigma^{\rm PbPb}}{208^2 {\rm d}\sigma^{\rm pp}}$$

Outline for the lecture

1. Theoretical framework for PDF analyses

- Deep Inelastic scattering
- DGLAP evolution
- Uncertainty analysis
- 2. Nuclear PDF analyses
 - Data types
 - Current status and uncertainties

3. New constraints from

- LHC experiments
- Future facilities

4. Loose ends

Theoretical framework for PDF analyses

How to probe nucleon structure?

Deep Inelastic Scattering (DIS)

- Lepton scatters from a nucleon via a virtual photon with $Q^2 = -q^2$
- High Q² ⇒ Small length scales
 ⇒ Sensitive to nucleon structure
- Invariant variables:

$$x = \frac{Q^2}{2 p \cdot q}, \quad y = \frac{p \cdot q}{p \cdot k}$$

• Cross section in terms of structure functions $F_{1,2}(x, Q^2)$

$$\frac{d\sigma^{\text{DIS}}}{dxdQ^2} = \frac{4\pi\alpha_{EM}^2}{Q^4} \frac{1}{x} \left[xy^2 F_1(x,Q^2) + \left(1 - y - \frac{xyM^2}{s - M^2}\right) F_2(x,Q^2) \right]$$

 \Rightarrow Scattered lepton provides information on $F_{1,2}(x, Q^2)$

Parton model in leading order

Assume that nucleon consists of partons

- Each parton carries a certain fraction x of the nucleon momentum ($\hat{p} = x p$)
- Lepton scatters off from a parton $d\sigma^{\text{DIS}} = \sum_{i} \int_{0}^{1} dx \, d\hat{\sigma} f_{i}(x)$

where

- $d\hat{\sigma}$: Partonic cross section of 2 \rightarrow 2 scattering
- $f_i(x)$: Number density of partons *i* inside nucleon (=PDF)
 - Leading-order parton model: $2xF_1(x, Q^2) = F_2(x, Q^2) = \sum_i e_i^2 f_i(x)$
 - Process-independent (unlike F_{1,2})

Scale dependence

- At higher orders in $\alpha_{\rm S}$ the PDFs become scale dependent
 - \Rightarrow The partonic structure depends on the scale at which the nucleon is probed

Scale evolution from DGLAP equations [Dokshitzer-Gribov-Lipatov-Altarelli-Parisi]

• Derived by resumming logarithmically divergent terms from collinear emissions to all orders

$$\frac{\partial f_{q_i}(x, Q^2)}{\partial \log Q^2} = \frac{\alpha_s(Q^2)}{2\pi} \left[P_{q_i q_j} \otimes f_{q_j}(Q^2) + P_{q_i g} \otimes f_g(Q^2) \right]$$
$$\frac{\partial f_g(x, Q^2)}{\partial \log Q^2} = \frac{\alpha_s(Q^2)}{2\pi} \left[P_{gg} \otimes f_g(Q^2) + P_{gq_j} \otimes f_{q_j}(Q^2) \right]$$

Convolution defined as

$$P_{ij} \otimes f_j = \int_x^1 \frac{\mathrm{d}z}{z} P_{ij}(x/z) f_j(z)$$

Splitting functions

Splitting function can be interpreted as probabilities for partonic splittings

- Splitting functions P_{ij} calculable within pQCD, currently know up to α_s^2 (NNLL)
- PDFs for different partons mix during evolution

DGLAP evolution

Scale evolution of $d\sigma_{reduced}^{DIS}(\propto F_2 \approx \sum_i e_i^2 f_i)$ from HERA [Eur. Phys. J. C (2015) 75]

- Small x: F_2 increase with O^2
- Intermediate-x:
 Weak dependence on Q²
- Large x: F_2 decrease with O^2
- ⇒ DGLAP evolution shifts partons from high x to low x
- ⇒ Very good description of the data in broad range of x and Q^2

Problem:

• PDFs cannot be calculated from perturbative QCD

Solution:

• Parametrize the x dependence of PDFs at an initial scale Q_0^2 ($\mathcal{O}(1 \text{ GeV}^2)$)

$$f_i(x, Q_0^2) = x^{-a_i}(1-x)^{b_i}F_i(x; c_i, \ldots)$$

- Use DGLAP equations to evolve PDFs and use data to fix the parameters
- Parametrization should be flexible enough to accommodate the physical features of the data
- PDF analyses also test the universality of the PDFs and QCD factorization

PDF fitting requires

- Effective DGLAP solving
- Fast evaluation of the cross sections
- Robust minimization algorithm
- Data with broad reach in x and Q^2 and flavour sensitivity

PDF properties

A few parameters may be fixed by sum rules

Number of valence quarks

$$\int_0^1 dx [f_q(x, Q^2) - f_{\bar{q}}(x, Q^2)] = N_q,$$

where $N_{\rm u} = 2$, $N_{\rm d} = 1$ for protons

• Momentum sum rule

$$\sum_{i=q,\bar{q},g}\int_0^1 \mathrm{d}x \, x f_i(x,Q^2) = 1$$

⇒ The total momentum of all partons equals the momentum of the nucleon

The PDFs are fitted to finite number of points with some experimental uncertainty

 Acceptable agreement with different parameters and parametrizations

- Acceptable agreement with different parameters and parametrizations
- Fits comprise some amount of uncertainty
- ⇒ How to quantify this uncertainty and how it propagates to observables?

PDF uncertainties: The Hessian method

• The fit minimizes χ^2 defined as

$$\chi^2 = \sum_{i}^{N} \left[\frac{D_i - T_i(\{a_j\})}{\delta_i} \right]^2$$

where D_i are data points, δ_i their (statistical) uncertainty and T_i corresponding theory points with given set of parameters $\{a_i\}$

• Expand in terms of parameters a_i around minimum χ_0^2

$$\chi^2 \approx \chi_0^2 + \sum_{ij} \frac{1}{2} (a_i - a_i^0) (a_j - a_j^0) \left. \frac{\partial^2 \chi^2}{\partial a_i \partial a_j} \right|_{a=a^0}$$

where parameter set $\{a^0\}$ gives the χ^2_0

PDF uncertainties: The Hessian method

• The fit minimizes χ^2 defined as

$$\chi^2 = \sum_{i}^{N} \left[\frac{D_i - T_i(\{a_j\})}{\delta_i} \right]^2$$

where D_i are data points, δ_i their (statistical) uncertainty and T_i corresponding theory points with given set of parameters $\{a_j\}$

• Expand in terms of parameters a_i around minimum χ_0^2

$$\chi^2 \approx \chi_0^2 + \sum_{ij} \frac{1}{2} (a_i - a_i^0) (a_j - a_j^0) \left. \frac{\partial^2 \chi^2}{\partial a_i \partial a_j} \right|_{a=a^0} = \chi_0^2 + \sum_i Z_i^2$$

where parameter set $\{a^0\}$ gives the χ^2_0

- Diagonalize to find an orthonormal basis $\{z_i\}$
- Define error sets S_k^{\pm} by allowing certain $\Delta \chi^2 = \chi^2 \chi_0^2$ when moving along z_k in positive and negative directions ($\Delta \chi^2 \sim 1 100$)

PDF uncertainties: The Monte-Carlo method

• Generate replicas of the data as

 $D_i \rightarrow D_i (1 + \delta_i R_i)$

where δ_i is the experimental uncertainty and R_i a random number from a gaussian distribution

- Perform a refit to each prepared replica data
- The uncertainty of an observable is estimated from the variance of replica sets
- Requires $\mathcal{O}(1000)$ replicas for sufficient statistics

Further uncertainties

- These methods quantify only the uncertainty originating from the data
- Also some theoretical uncertainties due to parametrization etc.

Nuclear PDFs

Motivation for nPDFs

Observation: Differences in structure functions between different nuclei

Factorization of nuclear modifications:

- Absorb the observed modifications into universal nuclear PDFs, $f_i^A(x, Q^2)$
- Perform a global QCD analysis with the same framework as for proton PDFs

• Nuclear PDFs (nPDFs) are the sum of proton and neutron PDFs:

$$f_i^A(x, Q^2) = Z f_i^{p/A}(x, Q^2) + (A - Z) f_i^{n/A}(x, Q^2)$$

for nucleus with a mass number A and Z protons

• The PDFs for neutrons can be obtained from proton PDFs using *isospin symmetry*:

$$f_{\rm u}^{{\rm n}/{\rm A}}(x,Q^2) = f_{\rm d}^{{\rm p}/{\rm A}}(x,Q^2)$$
 and $f_{\rm d}^{{\rm n}/{\rm A}}(x,Q^2) = f_{\rm u}^{{\rm p}/{\rm A}}(x,Q^2)$

• Often one considers the nuclear modification of the PDFs defined as

$$R_i^{A}(x,Q^2) = \frac{f_i^{p/A}(x,Q^2)}{f_i^{p}(x,Q^2)}$$

Overview on applied data sets

- Should include only data where factorization of nuclear effects valid and no final state energy loss expected
- Measurements with several different A required to constrain A dependence

Kinematic reach in x and Q^2 of applied data

- (neutrino) DIS with nuclear target (fixed target only)
- Drell-Yan (DY) dilepton production in p+A (fixed target)
- Inclusive π^0 production in d+Au
- Dijets in p+Pb at the LHC
- W^{\pm} and Z production in p+Pb

Nuclear DIS data

LO cross section

$$\frac{\mathrm{d}\sigma^{\mathrm{DIS}}}{\mathrm{d}x\mathrm{d}Q^2} \approx \frac{\pi\alpha_{\mathrm{em}}^2}{xQ^4} \left[1 + (1-y)^2\right] \sum_q e_q^2 (f_q^A(x,Q^2) + f_{\bar{q}}^A(x,Q^2))$$

Kinematics from k'

• $Q^2 = -(k - k')^2$

• $x = \frac{Q^2}{2 p \cdot q}$

• $y = \frac{p \cdot q}{p \cdot k}$

- x and Q^2 can be directly related to observable
- Probes gluons only at NLO (and via scale evolution)
- Only fixed-target experiments with nuclear targets \Rightarrow Limited reach in x and O^2

Nuclear DY data

Kinematics from k_1, k_2

• $M^2 \equiv (k_1 + k_2)^2$ • $y_R = \frac{1}{2} \log \frac{E_{k_1 + k_2} + p_{k_1 + k_2}^2}{E_{k_1 + k_2} - p_{k_1 + k_2}^2}$ • $x_{1,2} = \frac{M}{\sqrt{s}} e^{\pm y_R}$

LO cross section

 $\frac{\mathrm{d}\sigma^{\mathrm{DY}}}{\mathrm{d}M^{2}\mathrm{d}y_{\mathrm{R}}} = \frac{4\pi\alpha_{\mathrm{EM}}^{2}}{9\mathrm{s}M^{2}}\sum_{q}e_{q}^{2}\left[f_{q}^{\mathrm{p}}(\mathsf{x}_{1},Q^{2})f_{\bar{q}}^{\mathrm{A}}(\mathsf{x}_{2},Q^{2}) + f_{q}^{\mathrm{A}}(\mathsf{x}_{2},Q^{2})f_{\bar{q}}^{\mathrm{p}}(\mathsf{x}_{1},Q^{2})\right]$

- x_1 and x_2 can be related to measured quantities
- Enhanced sensitive to sea quark PDFs
- Gluons appear only at NLO (and DGLAP)
- Fixed-target pA for nuclear targets, LHC soon

Inclusive hadron production

Partonic spectra convoluted with fragmentation functions (FFs)

$$\frac{\mathrm{d}\sigma^{\pi^0}}{\mathrm{d}P_{\mathsf{T}}\mathrm{d}Y} = \sum_{i,j,k} f_i^{\mathsf{p}}(\mathsf{x}_1,Q^2) \otimes f_j^{\mathsf{A}}(\mathsf{x}_2,Q^2) \otimes \frac{\mathrm{d}\hat{\sigma}^{ij\to k+X}}{\mathrm{d}p_{\mathsf{T}}\mathrm{d}y} \otimes D_k^{\pi^0}(\mathsf{x}_2,Q^2)$$

- Directly sensitive to gluon PDFs
- Convolutions smear the kinematics
 ⇒ Contribution from broad x₂ range
- Fragmentation not completely independent even in pA (baryon production, strangeness enhancement, ...)
- Now data also from LHC

Further data from LHC

Z bosons in pPb

- Very clean process
- Does not couple to gluons
- High-Q² process

Dijets in pPb

- Sensitivity to gluons PDFs
- Theoretically well known and only small effects from hadronization
- Requires high- $p_T \Rightarrow$ difficult to study small-x

Recent nPDF analyses

	EPS09	DSSZ12	ка15	NCTEQ15	EPPS16
Order in α_s	NLO	NLO	NNLO	NLO	NLO
DIS in ℓ [−] +A	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
Drell-Yan in p+A	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
RHIC pions d+Au	\checkmark	\checkmark		\checkmark	\checkmark
Neutrino-nucleus DIS		\checkmark			\checkmark
Drell-Yan in $\pi + A$					\checkmark
LHC p+Pb dijets					\checkmark
LHC p+Pb W, Z					\checkmark
Q cut in DIS	$1.3{ m GeV}$	$1{ m GeV}$	$1{ m GeV}$	$2{ m GeV}$	$1.3{ m GeV}$
datapoints	929	1579	1479	708	1811
free parameters	15	25	16	16	20
error analysis	Hessian	Hessian	Hessian	Hessian	Hessian
error tolerance $\Delta\chi^2$	50	30	N.N	35	52
proton baseline PDFs	CTEQ6.1	MSTW2008	JR09	CTEQ6M-like	CT14NLO
Heavy-quark effects		\checkmark		\checkmark	\checkmark
Flavour separation				partial	full
Reference	JHEP 0904 065	PR D85 074028	PR D93, 014026	PR D93 085037	EPJ C77 163

Recent nPDF analyses

	EPS09	DSSZ12	ка15	NCTEQ15	EPPS16
Order in α_s	NLO	NLO	NNLO	NLO	NLO
DIS in ℓ [−] +A	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
Drell-Yan in p+A	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
RHIC pions d+Au	\checkmark	\checkmark		\checkmark	\checkmark
Neutrino-nucleus DIS		\checkmark			\checkmark
Drell-Yan in $\pi + A$					\checkmark
LHC p+Pb dijets					\checkmark
LHC p+Pb W, Z					\checkmark
Q cut in DIS	$1.3{ m GeV}$	$1{ m GeV}$	$1{ m GeV}$	$2{ m GeV}$	$1.3{ m GeV}$
datapoints	929	1579	1479	708	1811
free parameters	15	25	16	16	20
error analysis	Hessian	Hessian	Hessian	Hessian	Hessian
error tolerance $\Delta\chi^2$	50	30	N.N	35	52
proton baseline PDFs	CTEQ6.1	MSTW2008	JR09	CTEQ6M-like	CT14NLO
Heavy-quark effects		\checkmark		\checkmark	\checkmark
Flavour separation				partial	full
Reference	JHEP 0904 065	PR D85 074028	PR D93, 014026	PR D93 085037	EPJ C77 163

EPPS16 vs nCTEQ15

Parametrizations

• EPPS16: piece-wise function for R_i^A

$$R_i^{\text{EPPS16}}(x, Q_0^2) = \begin{cases} a_0 + a_1(x - x_a)^2 & x \le x_a \\ b_0 + b_1 x^{\alpha} + b_2 x^{2\alpha} + b_3 x^{3\alpha} & x_a < x \le x_e \\ c_0 + (c_1 - c_2 x)(1 - x) & x_e < x \le 1 \end{cases}$$

- with A dependence on three parameters \Rightarrow In total 20 parameters to fit
- nCTEQ15: CTEQ-like parametrization for $f_i^{p/A}$:

$$f_i^{\text{NCTEQ15}}(x, Q_0^2) = c_0 x^{c_1} (1-x)^{c_2} e^{c_3 x} (1+e^{c_4} x)^{c_5},$$

with $c_k(A) = c_{k,0} + c_{k,1}(1 - A^{-c_{k,2}})$ 16 free parameters, $R_i^A = f_i^{p/A}/f_i^p$

Valence quarks

Nuclear modification

- In both analyses u_V and d_V parameters independent
- However, nCTEQ15 finds large differences whereas in EPPS16 behaviour similar
 - EPPS16 use also neutrino-DIS data sensitive to flavour separation
- Remember: $f_i^{p/A} \neq f_i^A$
- ⇒ Total uncertainty reduced compared to individual ones as uncertainties correlated

Sea quarks

Nuclear modification

- In nCTEQ15 the sea guark parametrization flavor independent
- In EPPS16 $R_{\overline{u}}$, $R_{\overline{d}}$, $R_{\overline{s}}$ free
- \Rightarrow Larger uncertainties in EPPS16 but less biased
- Uncertainties in s-quark nPDFs large due to lack of data

1.6

1.2 1.0

0.8 0.6

0.2

0.0

10

 10^{-3}

10

 $10\,{\rm GeV}^2$) 1.4

 $R^{\rm Pb}_{\overline{u}}(x, t)$ 0.4

EPPS16

10

Gluons

Nuclear modification

- Data constrain gluons only around x ~ 0.1
 ⇒ Large uncertainties at small-x
- However, scale evolution rapidly shrinks the uncertainties at small-*x* as these originate from well-constrained quarks at higher *x*
- Reasonable agreement between the analyses
 - Intermediate x: Smaller uncertainty in EPPS16 due to dijet data
 - Small x: Smaller uncertainty in nCTEQ15 probably due to more restrictive parametrization

New constraints from LHC

New dijet from pPb at the LHC from CMS

New dijet from pPb at the LHC from CMS

- Increased statistics, More data points
- Impact quantified with reweighting method
- Reduces gluon uncertainty
- Favours enhanced shadowing

[K.J. Eskola, P. Paakkinen, H. Paukkunen, arXiv:1812.05438]

New data from CMS

- Old 5 TeV data on W[±] had only little impact due to small statistical weight
- Now data at 8 TeV with higher precision
- Strong preference for nPDFs
- Very good agreement with EPPS16
- Will provide further constraints for flavor decomposition

Heavy-flavour production

- Recent interest to constrain gluon PDFs in proton with *D* (and *B*) mesons
 [Gauld, Rojo, PRL 118, 072001; PROSA, EPJ C75, 396]
- Now also data from pPb collisions

D-meson production

- Contains a c-quark
 - \Rightarrow Always produced perturbatively
- Can probe very low *x* and *Q*², especially with LHCb acceptance
- Some challenge in theoretical treatment

Heavy-flavour *R*_{pPb} impact on nPDFs

Strong constraints for gluons

- LHCb data up to Y = 4 [JHEP 1710 (2017) 090]
- Sensitivity down to $x \sim 10^{-5}$
- Impact studied with reweighting method
 - Assuming simplified kinematics

[Kusina et al., PRL 121, 052004]

• With full GM-VFNS NLO calculation

[Paukkunen et al., to appear]

- Good agreement with collinear factorization
- Provides significant reduction of the small-*x* gluon uncertainty
- Shadowing consistent with the dijet R_{pPb}

[See next lecture by W. Schafer]

Photo-nuclear dijets

- Nuclei pass without strong interaction
- EM-field, described with quasi-real photons, interacts with another nucleus
 ⇒ γA collision that can produce jets
- First preliminary data by ATLAS

Future facilities

Electron-Ion collider (EIC)

Proposed ep/eA collider projects

- JLEIC@JLAB ($\sqrt{s} \sim 20-60$ GeV) [arXiv:1504.07961]
- eRHIC@BNL ($\sqrt{s} \sim 80 140$ GeV) [arXiv:1409.1633]

nPDF constraints

- DIS still the cleanest probe of (n)PDFs
- Need more flexible parametrization for unbiased studies

•
$$R^{A}_{EPPS16}(x < x_a) = a_0 + a_1(x - x_a)^2$$

•
$$R^{A}_{\text{NEW}}$$
 $(x < x_a) = a_0 + a_1(x - x_a)^2 + (x - x_a)^2 \sum_{k=1}^2 a_{k+2} x^{k/4}$]

[E.C. Aschenauer, S. Fazio, M.A.C. Lamont, H. Paukkunen, P. Zurita, PRD96 (2017) no.11, 114005]

EIC impact on gluon nPDFs

- Increased freedom at small-x yields larger uncertainty (gray) than in EPPS16
- Estimated EIC potential provides significant constraints (blue)
- Some further effect when including also inclusive charm (bars)

[E.C. Aschenauer, S. Fazio, M.A.C. Lamont, H. Paukkunen, P. Zurita, PRD 96 (2017) no.11, 114005]

Large hadron-electron collider

- Use the proton/ion beam from LHC
- Construct a new lepton accelerator
 - \Rightarrow Provides e+p/A collider with $\sqrt{s}\sim$ 1 TeV

Estimated impact on nPDF precision

• Baseline: EPPS16 (blue)

(Recall parameter-bias at small-x)

- After simulated LHeC data (green)
- A drastic reduction of gluon nPDF uncertainties

Loose ends

nPDFs for smaller nuclei

- Only fixed-target data for lighter than ¹⁹⁷Au, LHC data only for ²⁰⁸Pb
- · A-dependence not well in control (parametrization-bias)
- Relevant for astrophysical applications (¹⁶O, ¹⁴N)

• Very different large-x A dependence in EPPS16 and nCTEQ15

Impact parameter dependence

- Different centralities probes different parts of nuclei
- Currently only min. bias (integrated over impact parameters) data in global analyses

- Only few studies on impact-parameter dependence
- Need more data for further studies

Summary

Nuclear PDFs

- Based on the well-established DGLAP framework
- Essential input for factorization-based cross-section calculations in nuclear collisions
- Currently well-constrained only at $x\gtrsim 0.01$

LHC impact

- Already some LHC data in nPDF analysis
- Further constraints will be provided by
 - W^{\pm} and Z boson production in pPb (maybe also PbPb)
 - Dijets in pPb collisions, possibly also UPCs
 - Inclusive *D*-meson production in pPb by LHCb
- $\cdot\,$ So far no observation of factorization breaking at the LHC

Outlook

Nuclear PDFs

- Add more data from LHC for improved constraints
- Current state-of-the art NLO in pQCD \Rightarrow first NNLO fits to come
- Need also more data for different nuclei, only Pb at the LHC
- Reduce parametrization bias by releasing some assumptions
- · Impact-parameter dependence?

New experimental facilities

- Projected electron-ion colliders can provide clean nPDF constraints (EIC, LHeC, also other proposals)
- Further possibilities with Future Circular Collider (FCC) at CERN ($\sqrt{s} \sim 40 100$ TeV)