EPOS

Klaus Werner

with

Tanguy Pierog, Karlsruhe, Germany Yuriy Karpenko, Nantes, France Benjamin Guiot, Valparaiso, Chile Gabriel Sophys, Nantes, France Maria Stefaniak, Nantes \& Warsaw, Poland Mahbobeh Jafarpour, Nantes, France Johannès Jahan, Nantes, France

Contents

1 Introduction 4
2 Glauber and Gribov-Regge approach 32
3 Collectivity 604 Summary84

Todays lecture: short version of a detailed lecture (266 pages)

$$
\text { at the Joliot-Curie International School } 2018
$$

https://ejc2018.sciencesconf.org/data/pages/joliot.20.pdf

Today only some selected (important) topics ...

1 Introduction

EPOS is an event generator to treat consistently

$\square \mathrm{e}+\mathrm{e}-\mathrm{annihilation}$ (test string fragmentation)
\square ep scattering (test parton evolution)
\square pp, pA, AA collisions
at high energies
(collision finished before particle production starts)

Basic structure of EPOS (for modelling pp, pA, AA)
\square Primary interactions
Multiple scattering, instantaneously, in parallel
(Parton Based Gribov-Regge Theory)

- in pA and AA: multiple NN scattering
- but also in pp : Multiple parton scattering (or for each NN scattering in pA, AA)
\square Secondary interactions
formation of "matter" which expands collectively, like a fluid, decays statistically

Some history of Gribov-Regge Theory (the heart of EPOS)

\square 1960-1970: Gribov-Regge Theory of multiple scattering. $\mathrm{pp}=$ multiple exchange of "Pomerons" (with amplitudes based on Regge poles)
\square 1980-1990: pQCD processes added into GRT scheme (Capella)
\square 1990: M.Braun, V.A.Abramovskii, G.G.Leptoukh: problem with energy conservation (not done consistently)
\square 2001: H.J.Drescher, M.Hladik, S.Ostapchenko, T. Pierog, and K. Werner, Phys. Rept. 350, p93:
Marriage pQCD + GRT, with energy sharing (NEXUS)

$$
\sum x_{i}^{ \pm}+x_{\operatorname{remn}}^{ \pm}=1
$$

Multiple scatterings (in parallel !!) in pp, pA, or AA

Single scattering
= hard elementary scattering including IS + FS radiation

\square ~ 2003 NEXUS split into

\square QGSJET (S. Ostapchenko)

- Triple Pomeron contributions and more, to all orders
\square EPOS (T. Pierog, KW)
- Saturation scale, secondary interactions
- two versions, EPOSLHC and EPOS3, going to be "fused", with a rigorous (selfconsistent) treatment of new key features
(HF, saturation \& factorization)
=> new public version (β version exists since few days ...)
Two of the key models used for airshower simulations

Secondary interactions:

Example:

space-time evolution in pp
leading to collective flow

Radial flow visible in particle distributions

 Particle spectra affected by radial flow
pPb at 5TeV CMS,EPJC 74 (2014) 2847, arXiv:1307.3442

Strong variation of shape with multiplicity
for kaon and even more for proton pt spectra
(EPOS curves: flow changes shapes)

Anisotropic radial flow visible in dihadron-correlations

$$
R=\frac{1}{N_{\text {trigg }}} \frac{d n}{d \Delta \phi \Delta \eta}
$$

Anisotropic flow due to initial azimuthal anisotropies

Initial "elliptical" matter distribution:

Preferred expansion along $\phi=0$ and $\phi=\pi$
η_{s}-invariance
same form at any η_{s}
$\eta_{s}=\frac{1}{2} \ln \frac{t+z}{t-z}$

Particle

 distribution:Preferred directions $\phi=0$ and $\phi=\pi$

Dihadrons: preferred $\Delta \phi=0$ and $\Delta \phi=\pi($ even for big $\Delta \eta)$

Ridges (in dihadron correlation functions) seen in $\mathbf{p P b}$ (and even pp)
Central - peripheral (to remove jets) Phys. Lett. B 726 (2013) 164-177

EPOS3.074

Heavy ion approach

$=$ primary (multiple) scattering + subsequent fluid evolution
becomes interesting for pp and pA

2 Glauber and Gribov-Regge approach

concerning primary interactions

providing initial conditions for secondary interactions

Glauber approach

Nucleus-nucleus collision A + B :
\square Sequence of independent binary nucleon-nucleon collisions
\square Nucleons travel on straight-line trajectories
\square The inelastic nucleon-nucleon cross-section $\sigma_{N N}$ is independent of the number od NN collisions

Monte Carlo version: Two nucleons collide if their transverse distance is less than $\sqrt{\sigma_{N N} / \pi}$.

Analytical formulas for A + B scattering:
$\square \operatorname{Be} \rho_{A}$ and ρ_{B} the (normalized nuclear densities), and
$\square b=\left(b_{x}, b_{y}\right)$ the impact parameter

Define integral over nuclear density for each nucleus:

$$
T_{A / B}\left(b^{\prime}\right)=\int \rho_{A / B}\left(b^{\prime}, z\right) d z,
$$

and the "thickness function"

$$
T_{A B}(b)=\int T_{A}\left(b^{\prime}\right) T_{B}\left(b^{\prime}-b\right) d^{2} b^{\prime}
$$

Probability of interaction (for ρ_{A} and ρ_{B} normalized to 1)

$$
P=T_{A B}(b) \sigma_{N N}
$$

Having $A B$ possible pairs: probability of n interactions :

$$
P_{n}=\binom{A B}{n} P^{n}(1-P)^{A B-n}
$$

Probability of at least one interaction (given b):

$$
\sum_{n=1}^{A B} P_{n}=1-P_{0}=1-(1-P)^{A B}
$$

And finally the $A B$ cross section (called optical limit):

$$
\sigma^{A B}=\int\left\{1-(1-P)^{A B}\right\} d^{2} b,
$$

so the probability of an interaction is

$$
\frac{d \sigma^{A B}}{d^{2} b}=1-\left\{\left(1-T_{A B}(b) \sigma_{N N}\right)^{A B}\right\}
$$

Glauber MC formula (with $\sigma_{N N}=\int f(b) d^{2} b$):

$$
\frac{d \sigma^{A B}}{d^{2} b}=1-\left\{\int \prod_{i=1}^{A} d^{2} b_{i}^{A} T_{A}\left(b_{i}^{A}\right) \prod_{j=1}^{B} d^{2} b_{j}^{B} T_{B}\left(b_{j}^{B}\right) \prod_{k=1}^{A B}(1-f)\right\}
$$

In the MC version, one extracts $N_{\text {coll }}, N_{\text {particip, }}$ and one usually employs a "wounded nucleon approach"

Does this make sense?

Theoretical justification?

... based on relativistic quantum mechanical scattering theory, compatible with QCD
=> Gribov-Regge approach

Gribov-Regge approach and cut diagrams

details see https://ejc2018.sciencesconf.org/data/pages/joliot.20.pdf (266 page lecture for diploma and PhD students)
The scattering operator \hat{S} is defined via

$$
|\psi(t=+\infty\rangle=\hat{S}| \psi(t=-\infty\rangle
$$

Unitarity relation $\hat{S}^{\dagger} \hat{S}=1$ gives (considering a discrete Hilbert space)

$$
\begin{aligned}
1 & =\langle i| \hat{S}^{\dagger} \hat{S}|i\rangle \\
& =\sum_{f}\langle i| \hat{S}^{\dagger}|f\rangle\langle f| \hat{S}|i\rangle \\
& =\sum_{f}\langle f| \hat{S}|i\rangle^{*}\langle f| \hat{S}|i\rangle \\
& =\sum_{f} S_{f i}^{*} S_{f i}
\end{aligned}
$$

Using $S_{f i}=\delta_{f i}+i(2 \pi)^{4} \delta\left(p_{f}-p_{i}\right) T_{f i}$ and the Schwarz reflection principle $\left(T_{i i}\left(s^{*}, t\right)=T_{i i}(s, t)^{*}\right)$ and

$$
\operatorname{disc} T=T_{i i}(s+i \epsilon, t)-T_{i i}(s-i \epsilon, t)
$$

one gets

$$
\frac{1}{\mathrm{i}} \operatorname{disc} T=(2 \pi)^{4} \delta\left(p_{f}-p_{i}\right) \sum_{f}\left|T_{f i}\right|^{2}=2 s \sigma_{\mathrm{tot}}
$$

Interpretation: $\frac{1}{\mathrm{i}}$ disc T can be seen as a so-called "cut diagram", with modified Feynman rules, the "intermediate particles" are on mass shell.

Modified Feynman rules :
\square Draw a dashed line from top to bottom

\square Use "normal" Feynman rules to the left
\square Use the complex conjugate expressions to the right
\square For lines crossing the cut: Replace propagators by mass shell conditions $2 \pi \theta\left(p^{0}\right) \delta\left(p^{2}-m^{2}\right)$

Cutting a diagram representing elastic scattering

corresponds to inelastic scattering

Cutting diagrams is useful in case of substructures:

Precisely the multiple scattering structure in EPOS (QCD is hidden in the colored squares)

Cut diagram
= sum of products of cut/uncut subdiagrams
=> Gribov-Regge approach of multiple scattering

What are the blocks, called Pomerons?

\square Pomeron = parton ladders
\square cut Pomerons => open ladder => kinky string

Gribov Regge for $A+B$ scattering

In the GR framework, defining

$$
\int d T_{A B}:=\int \prod_{i=1}^{A} d^{2} b_{i}^{A} T_{A}\left(b_{i}^{A}\right) \prod_{j=1}^{B} d^{2} b_{j}^{B} T_{B}\left(b_{j}^{B}\right),
$$

we obtain (neglecting energy sharing):

Relaxing the condition $\sum m_{i} \neq 0$ gives unity.

So

$$
\frac{\sigma^{A B}}{d^{2} b}=1-\int d T_{A B}\left\{\prod_{k=1}^{A B} e^{-W\left(b_{k}\right)}\right\}
$$

Defining $f=1-e^{-W\left(b_{k}\right)}$, i.e. the probability of an interaction in pp, with $\sigma_{N N}=\int f(b) d^{2} b$,
we get the Gribov-Regge result

$$
\frac{\sigma^{A B}}{d^{2} b}=1-\left\{\int d T_{A B} \prod_{k=1}^{A B}(1-f)\right\}
$$

which corresponds to "Glauber Monte Carlo".
So everything OK?

Even if the cross section formulas in GR and GMC are the same, particle production is done in a fundamentally different fashion
\square In Glauber

- one has (usually) a hard component ($\sim N_{\text {coll }}$)
- and a soft one ($\sim N_{\text {part, }}$ wounded nucleons)
\square In GR (EPOS)
- remnants contribute only at large rapidities,
- otherwise everything is coming from "cut Pomerons" associated to NN scatterings.

Factorization

Factoriztion says that the pp inclusive cross section can be written as

$$
\sum_{k l} \int d x d x^{\prime} d p_{\perp}^{2} f_{k}\left(x, M_{\mathrm{F}}^{2}\right) f_{l}\left(x^{\prime}, M_{\mathrm{F}}^{2}\right) \frac{d \sigma_{\mathrm{Born}}^{k l}}{d p_{\perp}^{2}}\left(x x^{\prime} s, p_{\perp}^{2}\right)
$$

with "parton distribution functions" obtained from DIS (ep scattering).

Not obvious in the EPOS GR framework, but one can prove that in the basic approach factorization holds (Phys. Rept. 350 (2001) p93)

Electron-proton scattering F_{2} vs x

We can compute
$F_{2}=\sum_{k} e_{k}^{2} x f_{k}\left(x, Q^{2}\right)$
with

$$
x=x_{B}=\frac{Q^{2}}{2 p q}
$$

in the EPOS framework

Compare with parton model calculation using CTEQ PDFs for pp at 7 TeV

In EPOS we do not employ explicitely factorization!

Compare with data: jet production in pp at 7 TeV

Why does factorization work?

Easy to see in the GR picture without energy conservation, using simple assumptions.

Consider multiple scattering amplitude

$$
i T=\prod i T_{\mathrm{P}}
$$

cross section:
sum over all cuts.

For each cut Pom:

$$
\frac{1}{i} \operatorname{disc} T_{\mathrm{P}}=2 \operatorname{Im} T_{\mathrm{P}} \equiv G
$$

For each uncut one:

$$
\begin{aligned}
& i T_{\mathrm{P}}+\left\{i T_{\mathrm{P}}\right\}^{*} \\
= & i\left(i \operatorname{Im} T_{\mathrm{P}}\right)+\left\{i\left(i \operatorname{Im} T_{\mathrm{P}}\right)\right\}^{*} \\
= & =-2 \operatorname{Im} T_{\mathrm{P}} \equiv-\mathrm{G}
\end{aligned}
$$

Inclusive particle production cross section $\sigma_{\text {incl }}$: Assume that each cut Pomerons produces N particles, an uncut one nothing.

Contribution to the inclusive cross section for n Pomerons (k refers to the cut Pomerons):

$$
\begin{aligned}
\sigma_{\text {incl }}^{(n)} & \propto \sum_{k=0}^{n} k N G^{k}(-G)^{n-k}\binom{n}{k} \\
& \propto \sum_{k=0}^{n}(-1)^{n-k} k \times\binom{ n}{k}
\end{aligned}
$$

$\sum_{k=0}^{n}(-1)^{n-k} k \times\binom{ n}{k}:$
For $n=2$:

$$
+0 \times 1-1 \times 2+2 \times 1=0
$$

No contribution!

For $n=3$:

$$
-0 \times 1+1 \times 3-2 \times 3+3 \times 1=0
$$

No contribution either !

Actually, for any $n>1$:

$$
\sum_{k=0}^{n}(-1)^{n-k} k \times\binom{ n}{k}=0
$$

\square Almost all of the diagrams (i.e. $\mathrm{n}=2, \mathrm{n}=3, \ldots$. .) do not contribute at all to the inclusive cross section
\square Enormous amount of cancellations (interference), only $\mathrm{n}=1$ contributes
\square AGK cancellations
(Abramovskii, Gribov and Kancheli cancellation (1973))

simple diagram even in case of multiple scattering

corresponds to factorization:

$$
\sigma_{\mathrm{incl}}=f \otimes \sigma_{\mathrm{elem}} \otimes f
$$

The F_{2} discussed earlier: Half of this diagram

Since it is known that factorization works, the ansatz

$$
\sigma_{\mathrm{incl}}=f \otimes \sigma_{\mathrm{elem}} \otimes f
$$

may be used as starting point, with f taken from DIS (electron-proton).

3 Collectivity

Pomerons =>

Parton ladders $=$ color flux tubes $=$ kinky strings

(here no IS radiation, only hard process producing two gluons)

which expand and break

via the production of quark-antiquark pairs
(Schwinger mechanism)

String segment = hadron. Close to "kink": jets

Consider heavy ion collisions

or high energy \& high multiplicity pp events:

again: single scattering => 2 color flux tubes

... two scatterings => 4 color flux tubes

... many scatterings (AA) => many color flux tubes

=> matter + escaping pieces (jets)

Core-corona procedure (for pp, pA, AA):

Pomeron => parton ladder => flux tube => string segments

High pt segments escape => corona The others => core

(core $=$ initial condition for hydro depending on the local string density)

Hydrodynamic evolution of the core

The evolution of the system for $\tau \geq \tau_{0}$ treated macroscopicly, solving the equations of relativistic hydrodynamics:

Three equations concerning conserved currents:

$$
\partial_{v} N_{q}^{v}=0
$$

with

$$
N_{q}^{v}=n_{q} u^{v}
$$

and n_{q} ($q=u, d, s$) representing (net) quark densities, u^{v} is the velocity four vector.

Four equations concerning energy-momentum conservation:

$$
\partial_{v} T^{\mu v}=0
$$

The energy-momentum tensor $T^{\mu \nu}$ is
\square the flux of the μ th component of the momentum vector
\square across a surface with constant v coordinate (using fourvectors)
$T^{00}:$ Energy density $d E / d x^{1} d x^{2} d x^{3}$ (x^{0} const)
T^{01} : Energy flux $d E / d x^{0} d x^{2} d x^{3}$ (x^{1} const)
$T^{i 0}$: Momentum density
$T^{i j}$: Momentum flux

The equation

$$
\partial_{v} T^{\mu v}=0
$$

is very general, no need for thermal equilibrium, no need for particles.

The energy-momentum tensor is
the conserved Noether current associated with space-time translations.
$\square \partial_{\nu} T^{\mu v}$ represents 4 equations, so we should express T in terms of 4 quantities (unknowns)
\square and/or find additional equations
\square which means additional assumptions

First approach: Ideal Fluid

In the local rest frame of a fluid cell:
$\square T^{00}=\varepsilon$ (energy density in LRF)
$\square T^{0 i}=0$ (no energy flow)
$\square T^{0 i}=0$ (no momenum in LRF)
$\square T^{i j}=\delta_{i j} p$ ($p=$ isotropic pressure)

In arbitrary frame:

$$
T^{\mu v}=(\varepsilon+p) u^{\mu} u^{v}-p g^{\mu v}
$$

+ Equation of state $p=p(\varepsilon)$ of QGP from lQCD
=> 4 equations for 4 unknowns (ε, velocity)

Beyond ideal (viscous hydro):

The energy-momentum tensor may be expressed via a systematic expansion in terms of gradients (of $\ln \varepsilon$ and u):

$$
T^{\mu v}=T_{(0)}^{\mu v}+T_{(1)}^{\mu v}+T_{(2)}^{\mu v}+\ldots,
$$

with the "equilibrium term" $T_{(0)}^{\mu v}$
Mueller-Israel-Steward (MIS) approach (second order + shear stress tensor and bulk pressure dynamical quantities, governed by relaxation equations)

Freeze out

happens at a hypersurface Σ (constant energy density).
Cooper-Frye hadronization amounts to calculating

$$
E \frac{d n}{d^{3} p}=\int d \Sigma_{\mu} p^{\mu} f(u p),
$$

f is the Bose-Einstein or Fermi-Dirac distribution (in case of ideal hydro).

How does hydro evolution affect results?
\square Mass dependent broadening of pt spectra (flow)
\square Particular dihadron correlations
\square Statistical particle production (compared to string decay)

Particle ratios to pions vs $\left\langle\frac{d n_{\mathrm{ch}}}{d \eta}(0)\right\rangle$

Proton to pion ratio (sofar GC)

Omega to pion ratio (GC)

New trends on the foundations of hydrodynamics
\square A systematic way get the equations of relativistic hydrodynamics is via a formal gradient expansion of $T^{\mu v}$ (in terms of gradients (of $\ln \varepsilon$ and u)
\square The hydrodynamic gradient expansion has (maybe) a vanishing radius of convergence
\square There are tools to deal with that. Need to go beyond perturbative expansions.

In hydro toy models (Heller, Spalinski, PRL 115,072501 (2015)) one can show that the hydrodynamical expansion (gradient expansion) is divergent, but numerically on gets an attractor

well defined solutions even at small times,
contrary to the perturbative expansion.
=> well defined solutions "far off equilibrium"

Same results via "resummation"

Picture from Heller, M. Spalinski.

What do these "resummation" results tell us?
\square Hydro may be applicable even far off equilibrium (in particular relevant for small systems)
\square => True solution : Hydrodynamic attractor Accessible (in principle) via resummation
\square Frequently asked question: "Why do small systems thermalize so quickly?" Maybe they simply don't ...

4 Summary

\square Multiple NN scattering in pA and AA: Essentially geometry => Glauber approach. Same cross section formula in GribovRegge, using Pomerons, but completely different particle production scheme
\square In the EPOS GR approach, multiple scattering naturally extends to $\mathrm{pp}=>$ multiple cut Pomerons => overlapping strings => matter formation
\square Attractive option: Implementing hydrodynamic expansion (provides observed flow effects) + statistical hadronization

