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Todays lecture:

short version of a detailed lecture (266 pages)

at the Joliot-Curie International School 2018

https://ejc2018.sciencesconf.org/data/pages/joliot.20.pdf

Today only some selected (important) topics ...
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—————————————————————

1 Introduction

—————————————————————
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EPOS is an event generator to treat consistently

� e+e- annihilation (test string fragmentation)

� ep scattering (test parton evolution)

� pp, pA, AA collisions

at high energies
(collision finished before particle production starts)
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Basic structure of EPOS (for modelling pp, pA, AA)

� Primary interactions
Multiple scattering, instantaneously, in parallel

(Parton Based Gribov-Regge Theory)

– in pA and AA: multiple NN scattering

– but also in pp : Multiple parton scattering

(or for each NN scattering in pA, AA)

� Secondary interactions
formation of “matter” which expands

collectively, like a fluid, decays statistically
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Some history of Gribov-Regge Theory

(the heart of EPOS)

� 1960-1970: Gribov-Regge Theory of multiple scattering.
pp = multiple exchange of “Pomerons”
(with amplitudes based on Regge poles)

� 1980-1990: pQCD processes
added into GRT scheme (Capella)

� 1990: M.Braun, V.A.Abramovskii, G.G.Leptoukh:
problem with energy conservation
(not done consistently)
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� 2001: H.J.Drescher, M.Hladik, S.Ostapchenko, T. Pierog,
and K. Werner, Phys. Rept. 350, p93:
Marriage pQCD + GRT, with energy sharing (NEXUS)

x+
2

2x−x1

−

+x1

✎
✍

☞
✌∑ x±

i + x±
remn = 1

Multiple scatterings
(in parallel !!)

in pp, pA, or AA

Single scattering

= hard elementary
scattering
including
IS + FS
radiation
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� ~ 2003 NEXUS split into

� QGSJET (S. Ostapchenko)

– Triple Pomeron contributions and more, to all orders

� EPOS (T. Pierog, KW)

– Saturation scale, secondary interactions

– two versions, EPOSLHC and EPOS3, going to be “fused”,
with a rigorous (selfconsistent) treatment of new key features

(HF, saturation & factorization)
=> new public version (β version exists since few days ...)

Two of the key models used for airshower simulations
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Secondary interactions:

Example:

space-time evolution in pp

leading to collective flow
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Radial flow visible in particle distributions

Particle spectra affected by radial flow
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pPb at 5TeV CMS,EPJC 74 (2014) 2847, arXiv:1307.3442
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Anisotropic radial flow

visible in dihadron-correlations

R =
1

Ntrigg

dn

d∆φ∆η

Anisotropic flow due to initial

azimuthal anisotropies
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Initial “elliptical” matter

distribution:

Preferred expansion
along φ = 0
and φ = π

ηs-invariance
same form at any ηs

ηs =
1
2 ln t+z

t−z

φ
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Particle
distribution:
Preferred
directions
φ = 0 and φ = π

∝ 1 + 2v2 cos(2φ)
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Ridges (in dihadron correlation functions) seen in pPb (and even pp)

Central - peripheral (to remove jets) Phys. Lett. B 726 (2013) 164-177
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Heavy ion approach

= primary (multiple) scattering
+ subsequent fluid evolution

becomes interesting for pp and pA
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—————————————————————

2 Glauber and Gribov-Regge approach

—————————————————————

concerning primary interactions

providing initial conditions
for secondary interactions
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Glauber approach

Nucleus-nucleus collision A + B :

� Sequence of independent binary
nucleon-nucleon collisions

� Nucleons travel on straight-line trajectories

� The inelastic nucleon-nucleon cross-section σNN is in-
dependent of the number od NN collisions

Monte Carlo version: Two nucleons collide if their trans-
verse distance is less than

√
σNN/π .
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Analytical formulas for A + B scattering:

� Be ρA and ρB the (normalized nuclear densities), and

� b = (bx, by) the
impact parameter

x

y
b

Define integral over nuclear density for each nucleus:

TA/B(b
′) =

∫

ρA/B(b
′, z)dz,
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and the “thickness function”

TAB(b) =
∫

TA(b
′)TB(b

′ − b)d2b′

x

y
b

b’

b’−b

Probability of interaction (for ρA and ρB normalized to 1)

P = TAB(b) σNN
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Having AB possible pairs: probability of n interactions :

Pn =

(
AB
n

)

Pn(1 − P)AB−n

Probability of at least one interaction (given b):

AB

∑
n=1

Pn = 1 − P0 = 1 − (1 − P)AB

And finally the AB cross section (called optical limit):

σAB =
∫

{
1 − (1 − P)AB

}
d2b,
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so the probability of an interaction is

dσAB

d2b
= 1 −

{
(1 − TAB(b) σNN)

AB
}

.

Glauber MC formula (with σNN =
∫

f (b)d2b):

dσAB

d2b
= 1−

{
∫ A

∏
i=1

d2bA
i TA(b

A
i )

B

∏
j=1

d2bB
j TB(b

B
j )

AB

∏
k=1

(1− f )

}

.

In the MC version, one extracts Ncoll, Nparticip, and one

usually employs a “wounded nucleon approach”

Does this make sense?
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Theoretical justification?

... based on relativistic quantum mechanical

scattering theory, compatible with QCD

=> Gribov-Regge approach
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Gribov-Regge approach and cut diagrams
details see https://ejc2018.sciencesconf.org/data/pages/joliot.20.pdf
(266 page lecture for diploma and PhD students)

The scattering operator Ŝ is defined via

|ψ(t = +∞〉 = Ŝ |ψ(t = −∞〉
Unitarity relation Ŝ†Ŝ = 1 gives (considering a discrete Hilbert space)

1 = 〈i| Ŝ†Ŝ |i〉
= ∑

f

〈i| Ŝ† | f 〉 〈 f | Ŝ |i〉

= ∑
f

〈 f | Ŝ |i〉∗ 〈 f | Ŝ |i〉

= ∑
f

S∗
f iS f i
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Using S f i = δ f i + i(2π)4δ(p f − pi)Tf i and the Schwarz re-
flection principle (Tii(s∗, t) = Tii(s, t)∗) and

disc T = Tii(s + iǫ, t) − Tii(s − iǫ, t)

one gets

1

i
disc T = (2π)4δ(p f − pi)∑

f

∣
∣Tf i

∣
∣

2
= 2s σtot

Interpretation: 1
i
disc T can be seen as a so-called “cut di-

agram”, with modified Feynman rules, the “intermediate
particles” are on mass shell.
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Modified Feynman rules :

� Draw a dashed line from top to bottom

� Use “normal” Feynman rules to the left

� Use the complex conjugate expressions to the right

� For lines crossing the cut: Replace propagators by mass
shell conditions 2πθ(p0)δ(p2 − m2)
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Cutting a diagram representing elastic scattering

corresponds to inelastic scattering

2

=  
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Cutting diagrams is useful in case of substructures:

=

Precisely the multiple scattering structure
in EPOS (QCD is hidden in the colored squares)
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+

++

Cut diagram
= sum of products of cut/uncut subdiagrams
=> Gribov-Regge approach of multiple scattering
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What are the blocks, called Pomerons?

=

� Pomeron = parton ladders

� cut Pomerons => open ladder => kinky string
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Gribov Regge for A+B scattering

In the GR framework, defining

∫

dTAB :=
∫ A

∏
i=1

d2bA
i TA(b

A
i )

B

∏
j=1

d2bB
j TB(b

B
j ),

we obtain (neglecting energy sharing):

dσAB

d2b
=

∫

dTAB ∑
m1

... ∑
mAB

︸ ︷︷ ︸

∑ mi 6=0

AB

∏
k=1

W(bk)
mk

mk!
e−W(bk))

Relaxing the condition ∑ mi 6= 0 gives unity.
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So
σAB

d2b
= 1 −

∫

dTAB

{
AB

∏
k=1

e−W(bk)

}

Defining f = 1 − e−W(bk), i.e. the probability of an interac-
tion in pp, with σNN =

∫
f (b)d2b,

we get the Gribov-Regge result

σAB

d2b
= 1 −

{
∫

dTAB

AB

∏
k=1

(1 − f)

}

which corresponds to “Glauber Monte Carlo”.

So everything OK?
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Even if the cross section formulas in GR and GMC are

the same, particle production is done in a fundamentally

different fashion

� In Glauber

– one has (usually) a hard component (∼ Ncoll)

– and a soft one (∼ Npart, wounded nucleons)

� In GR (EPOS)

– remnants contribute only at large rapidities,

– otherwise everything is coming from

“cut Pomerons” associated to NN scatterings.



COST WS Lund University # February 2019 # Klaus Werner # Subatech, Nantes 49

Factorization

Factoriztion says that the pp inclusive cross section can be
written as

∑
kl

∫

dxdx′dp2
⊥ fk(x, M2

F) fl(x
′, M2

F)
dσkl

Born

dp2
⊥

(xx′s, p2
⊥),

with “parton distribution functions” obtained from DIS (ep
scattering).

Not obvious in the EPOS GR framework, but one can prove
that in the basic approach factorization holds (Phys. Rept.
350 (2001) p93)
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Electron-proton scattering F2 vs x
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We can compute

F2 = ∑
k

e2
k x fk(x, Q2)

with

x = xB =
Q2

2pq

in the EPOS frame-
work
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Compare with parton model calculation

using CTEQ PDFs for pp at 7 TeV
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In EPOS we do not employ explicitely factorization!
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Compare with data: jet production in pp at 7 TeV

10
-8

10
-7

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

1

0 20 40 60 80 100

 jet p
t
 (GeV/c)

 d
2
n
 /

 d
y
 d

p
t (

c/
G

eV
)

pp at 7 TeV         jets anti-kt

preliminary

EPOS3.076

ATLAS

ALICE



COST WS Lund University # February 2019 # Klaus Werner # Subatech, Nantes 53

Why does factorization work ?

Easy to see in the GR picture without energy conservation,
using simple assumptions.

Consider multiple scattering amplitude

iT = ∏ iTP

cross section:
sum over all
cuts.

+

++
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For each cut Pom:

1

i
discTP = 2ImTP ≡ G

For each uncut one:

iTP + {iTP}∗

= i (i ImTP) + {i (i ImTP)}∗

= −2ImTP ≡ −G

+

++
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Inclusive particle production cross section σincl: Assume
that each cut Pomerons produces N particles, an uncut one
nothing.

Contribution to the inclusive cross section for n
Pomerons (k refers to the cut Pomerons):

σ
(n)
incl ∝

n

∑
k=0

kN Gk (−G)n−k

(
n
k

)

∝
n

∑
k=0

(−1)n−k k ×
(

n
k

)
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∑
n
k=0 (−1)n−k k ×

(
n
k

)

:

For n = 2 :
+0 × 1 − 1 × 2 + 2 × 1 = 0

No contribution !

For n = 3 :

−0 × 1 + 1 × 3 − 2 × 3 + 3 × 1 = 0

No contribution either !
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Actually, for any n > 1 :

n

∑
k=0

(−1)n−k k ×
(

n

k

)

= 0

� Almost all of the diagrams (i.e. n=2, n=3, ....) do not

contribute at all to the inclusive cross section

� Enormous amount of cancellations (interference),

only n=1 contributes

� AGK cancellations
(Abramovskii, Gribov and Kancheli cancellation (1973))
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simple diagram even in case of multiple scattering

corresponds to factorization:

σincl = f ⊗ σelem ⊗ f

The F2 discussed earlier: Half of this diagram
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Since it is known that factorization works, the ansatz

σincl = f ⊗ σelem ⊗ f

may be used as starting point, with f taken from
DIS (electron-proton).
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—————————————————————

3 Collectivity

—————————————————————
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Pomerons =>

Parton ladders = color flux tubes = kinky strings

remnant

remnant

flux tube

(here no IS radiation, only hard process producing two gluons)
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which expand and break
via the production of quark-antiquark pairs
(Schwinger mechanism)

remnant

remnant
jet

jet

String segment = hadron. Close to “kink”: jets
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Consider heavy ion collisions

or high energy & high multiplicity pp events:
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again: single scattering => 2 color flux tubes

remnant

remnant

flux tube
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... two scatterings => 4 color flux tubes

remnant

flux tube

remnant
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... many scatterings (AA) => many color flux tubes

=> matter + escaping pieces (jets)
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Core-corona procedure (for pp, pA, AA):
Pomeron => parton ladder => flux tube => string segments

✤

✣

✜

✢
High pt segments escape => corona

The others => core
(core = initial condition for hydro depending on the local string density)
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Hydrodynamic evolution of the core

The evolution of the system for τ ≥ τ0 treated
macroscopicly, solving the equations of
relativistic hydrodynamics:

Three equations concerning conserved currents:

∂νNν
q = 0

with Nν
q = nq uν

and nq (q =u ,d, s) representing (net) quark densities, uν is

the velocity four vector.
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Four equations concerning energy-momentum conserva-

tion:

∂νTµν = 0.

The energy-momentum tensor Tµν is

� the flux of the µth component of the momentum vector

� across a surface with constant ν coordinate (using four-
vectors)
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T00: Energy density dE/dx1dx2dx3 (x0 const)

T01: Energy flux dE/dx0dx2dx3 (x1 const)

T i0: Momentum density

T ij: Momentum flux
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The equation

∂νTµν = 0
is very general, no need for thermal equilibrium, no need
for particles.

The energy-momentum tensor is

the conserved Noether current

associated with space-time translations.
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� ∂νTµν represents 4 equations, so we should express T
in terms of 4 quantities (unknowns)

� and/or find additional equations

� which means additional assumptions



COST WS Lund University # February 2019 # Klaus Werner # Subatech, Nantes 73

First approach: Ideal Fluid

In the local rest frame of a fluid cell:

� T00 = ε (energy density in LRF)

� T0i = 0 (no energy flow)

� T0i = 0 (no momenum in LRF)

� Tij = δij p (p = isotropic pressure)
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In arbitrary frame:

Tµν = (ε + p)uµuν − pgµν

+ Equation of state p = p(ε) of QGP from lQCD

=> 4 equations for 4 unknowns (ε, velocity)
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Beyond ideal (viscous hydro):

The energy-momentum tensor may be expressed via a sys-
tematic expansion in terms of gradients (of ln ε and u):

Tµν = T
µν

(0) + T
µν

(1) + T
µν

(2) + ...,

with the “equilibrium term” T
µν

(0)

Mueller-Israel-Steward (MIS) approach
(second order + shear stress tensor and bulk pressure dy-
namical quantities, governed by relaxation equations)
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Freeze out

happens at a hypersurface Σ (constant energy density).

Cooper-Frye hadronization amounts to calculating

E
dn

d3 p
=

∫

dΣµ pµ f (up),

f is the Bose-Einstein or Fermi-Dirac distribution
(in case of ideal hydro).
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How does hydro evolution affect results?

� Mass dependent broadening of pt spectra (flow)

� Particular dihadron correlations

� Statistical particle production

(compared to string decay)
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Particle ratios to pions vs
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Proton to pion ratio (sofar GC)
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Omega to pion ratio (GC)
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New trends on the foundations

of hydrodynamics

� A systematic way get the equations of relativistic hy-

drodynamics is via a formal gradient expansion of

Tµν (in terms of gradients (of ln ε and u)

� The hydrodynamic gradient expansion has

(maybe) a vanishing radius of convergence

� There are tools to deal with that. Need to go beyond

perturbative expansions.
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In hydro toy models (Heller, Spalinski, PRL 115, 072501 (2015)) one can show
that the hydrodynamical expansion (gradient expansion)
is divergent, but numerically on gets an attractor

well defined solutions
even at small times,

contrary to the pertur-
bative expansion.

=> well defined solu-
tions “far off equilib-
rium”

Same results via “re-
summation”

Picture from Heller, M. Spalinski.
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What do these “resummation” results tell us?

� Hydro may be applicable even far off equilibrium

(in particular relevant for small systems)

� => True solution : Hydrodynamic attractor

Accessible (in principle) via resummation

� Frequently asked question:

“Why do small systems thermalize so quickly?”

Maybe they simply don´t ...
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4 Summary

� Multiple NN scattering in pA and AA: Essentially geometry
=> Glauber approach. Same cross section formula in Gribov-
Regge, using Pomerons, but completely different particle pro-
duction scheme

� In the EPOS GR approach, multiple scattering naturally extends
to pp => multiple cut Pomerons => overlapping strings => mat-
ter formation

� Attractive option: Implementing hydrodynamic expansion (pro-
vides observed flow effects) + statistical hadronization


