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Centrality

9 e.g. from optical limit of Glauber:
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@ fraction of inelastic hadronic events contained in the centrality class C,
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@ experimentally, centrality is determined by binning in multiplicity and/or transverse energy.

@ Probability of no inelastic interaction:

Psurv(b) = exp[—oi% Taa (b)] ~ 6(b — 2R4)



Fermi-Weizsacker-Williams equivalent photons
Heavy nuclei Au, Pb have Z ~ 80
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equivalent photons

@ jon at rest: source of a Coulomb field, the highly boosted ion: sharp burst of field strength,
with |E|? ~ |B|? and E- B ~ 0. (See e.g. J.D Jackson textbook).

acts like a flux of “equivalent photons” (photons are collinear partons).
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Finite size of particle — charge form factor
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@ Seen from a large distance, the ion indeed acts like a pointlike charge.

@ When we come closer, the finite-size charge distribution important. Sometimes its effect is
simulated by a sharp lower cutoff in b.



Ultraperipheral collisions

some examples of ultraperipheral processes:

photoabsorption on a nucleus

diffractive photoproduction with and without breakup/excitation of a nucleus

~y-fusion.

electromagnetic excitation/dissociation of nuclei. Excitation of Giant Dipole Resonances.
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the intact nuclei in the final state are not measured. Each of the photon exchanges is
associated with a large rapidity gap.

@ very small pr of the photoproduced system.



Absorption corrected flux of photons
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Electromagnetic excitation of heavy ions
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@ Huge peak in the photoabsorption cross section — Giant Dipole Resonance.



Electromagnetic excitation of heavy ions
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@ Giant dipole resonance decays through emission of few neutrons.

@ experimental data on excitation functions for the reactions v2°8Pb — k neutrons + Pb allow
us to calculate the fractions f(E, k) of a final state with k = 1,2, 3 neutrons.

@ we can calculate “topological cross sections” with given numbers of neutrons in the forward
region of either ion.

@ Monte Carlo Code “Gemini” for evaporation of neutrons based on Hauser-Feshbach Theory.

o(A1 Az — (mN, X)(kN, Y)) = /dzb Paure(b) P (b, m) P (b, k).



Electromagnetic excitation of heavy ions
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@ electromagnetic dissociation cross section for 2% Pb. Data from SPS and LHC (ALICE).

[

calculations from M. Ktusek-Gawenda, M. Ciemala, W. S. and A. Szczurek, Phys. Rev. C 89
(2014) 054907.

@ cross section at LHC ~ 200 barn!

(9

these processes play an important role as “triggers” for ultraperipheral processes.



Inelastic diffraction: kinematics & t-channel exchanges
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* To bridge a gap (say Ay = 3) : a(0) =2 1 (Pomeron, C= +1; Odderon(??), C

» Exchange of secondary Reggeons: a(0)=0.5 for p,w,f2,al; a(0)=0 for pions
dies out exponentially with the gap size (no exchange of color or charge
over a large gap!).

« Pomeron/Odderon: multigluon exchanges; Reggeons: q q - exchange

* Photons (J=1, C=-1) also qualify!



Total photoproduction cross sections
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@ From soft to hard diffraction in the photoproduction of vector mesons.

@ Pomeron intercept depends on the meson...



Vector Meson Dominance

Extrapolate from the VM-pole to spacelike region:
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Vector Meson Dominance

Extrapolate from the VM-pole to spacelike region:
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A(Vp — Vp; W, t)

@ hadronic structure of the photon

@ parameters of A(Vp — Vp; W, t) can be taken from wN elastic scattering

SmA(Vp — Vp; W, t=0) = s-owot(Vp)
1
Utot(POP) = otot(wp) = E(Utot(W+P) + otot (77 p))
otot(dp) =  otot(KTP) + otot (K™ n) — rot(m T p)

@ works well for photoproduction of p,w,
@ cannot be correct in the deeply spacelike region Q2 > M\2/
@ connection to QCD degrees of freedom at large Q%7

@ heavy flavours ?



Color dipole/ k, -factorization approach
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Color dipole representation of forward amplitude:

1
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@ impact parameters and helicities of high-energy g and g are conserved during the interaction.

@ scattering matrix is “diagonal” in the color dipole representation. Color dipoles as
“Good-Walker states”.



When do small dipoles dominate ?

<

the photon shrinks with Q? - photon wavefunction at large r:

Yy (2,1, Q) o exp[—er], e = \/m2 + z(1 — 2) Q2
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the integrand receives its main contribution from
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a large quark mass (bottom, charm) can be a hard scale even at Q% = 0.

<

for small dipoles we can approximate
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for £ > 1 we then obtain the asymptotics
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probes the gluon distribution, which drives the energy dependence.

From DGLAP fits: xg(x, 12) = (1/x)*(#) with A(42) ~ 0.1+ 0.4 for y2 = 1+ 102GeV2.
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Input to a calculation of J/¢) photoproduction

Overlap of light-cone wave functions
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@ “boosted Gaussian” wave functions as in Nemchik et al. ('94)
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Q z(1—2)r
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@ parameters mg, R & normalization as in Kowalski et al. (2006) for J/1 and Cox et al. (2008)
for T.

4

diffractive slope on a free nucleon:

B = By + 4o’ log(W /Wp) with Wy = 90 GeV, and o/ = 0.164 GeV 2 .
We take By = 4.88 GeV 2 for J/¢ and By = 3.68 GeV 2 for T.




Dipole cross section from Xfitter

BGK-form of the dipole cross section

2,2 2 2
a(x,r) = oo (1 — exp [—W 4 as(’gg):g(x’u )D P =C/r? + ud

@ the soft ansatz, as used in the original BGK model
xg(x, ;L(Q)) = Agx_’\g(l - X)Cg,
@ the soft + hard ansatz

xg(x, pd) = Agxfké’(l —x)%(1+ Dgx + Egx?),

¢ fit I: BGK fit with fitted valence quarks for o, for HLZEUS-NC data in the range
Q@2 > 3.5 GeV? and x < 0.01. NLO fit. Soft gluon.

o fit Il: BGK fit with valence quarks for o, for HIZEUS-NC data in the range Q2 > 0.35 GeV?
and x < 0.01. NLO fit. Soft + hard gluon.

@ fits from A. tuszczak and H. Kowalski, Phys. Rev. D 95 (2017).




Corrections for real part and skewedness

numerically important corrections:

@ real part of the diffractive amplitude:

otog ((Vio(x, r)lv))
Olog(1/x)

@ amplitude is non-forward also in the longitudinal momenta. Correction factor (Shuvaev et al.
(1999)):

b ) = (0 — ot ), obd) = vt (’rg" ) Ap—

- _ 228p13 [(Ap +5/2)
skewed — ﬁ r(Ap +4)

9 apply K-factor to the cross section:

K= (1 + p2(X)) . Rszkewed .




Exclusive diffractive J/¢) photoproduction on the proton
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@ besides the BGK-fit of Luszczak & Kowalski, we show to other dipole cross section fits which
incorporate heavy quarks:

Q ‘IIM’ (lancu, Itakura & Munier, which is a parametrization inspired by BFKL/BK-asymptotics).
Q a recent re-fit of the Golec-Biernat-Wiisthoff form of the dipole cross section obtained by
Golec-Biernat & Sapeta (2018).

@ the data at high energies were in fact extracted from exclusive diffraction in pp-collisions by
LHCb.

@ note: for our applications on nuclear targets, the region of W ~ 30 =- 100 GeV is the most
relevant.



Diffractive processes on the nuclear target

Y VY VY vy

diffractive processes on nuclear targets:
@ coherent diffraction — nucleus stays in the ground state
@ complete breakup of the nucleus, final state free protons & neutrons
@ intact nucleus, but an excited state

9 partial breakup of the nucleus, a variety of possible fragments

they all have in common:

@ large rapidity gap between vector meson and nuclear fragments
@ lack of production of additional particles




Off-forward amplitude
Amplitude at finite transverse momentum transfer A
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Coherent diffraction — Glauber averages
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in the limit of the dilute uncorrelated nucleus all we need are:
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Incoherent diffraction: summing over nuclear states
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Closure in the sum over nuclear final states:
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Only ground state nuclear averages:

C(b, b by, b_) = (AFT(b,, b ) (by,b_)A) — (AF(b,, b )|A)*(A|f(bi,b_)|A).




Nuclear averages as in Glauber & Matthiae
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Multiple scattering expansion of the incoherent cross section

Diffraction cone of the free nucleon: B < Rf\

1
o(x,r,A) =o(x,r) exp[—EBA2]

Multiple scattering expansion for A2 Rf‘ >1
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nuclear absorption




Diffractive incoherent photoproduction on the nuclear target
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Incoherent diffraction at low A?

at low A? the single scattering dominates, and one should rather use its exact form:

doincon
da?

h(x, b)

= miﬂ{wl(A)/d%TA(b)ul(x, b)2 — %'/dzbexp[fiAb]TA(b)Il(x,b)

Y

vanishes for A2 R,ZA >1

= (Violx N exsl—5o 00N Tab) 1)

nuclear absorption

If we were to neglect intranuclear absorption, we would obtain for small A2:
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Diffractive processes on the nuclear target

3

------- W=100 GeV,?®pb, J/p

2.5

@ solid line: exact single scattering
@ dashed: large |t|-limit of single scattering

@ exact result merges into the large |t| limit
quickly, the latter is a good approximation in
a broad range of t.
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Diffractive processes on the nuclear target
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Incoherent diffraction in ultraperipheral heavy ion collisions
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Cross section for AA collision uses Weizsacker-Williams photon fluxes:

doincon(AA — VAX)
dy

= n'y/A(z+)Uincoh(W+) + n'y/A(z— )Uincoh(W—) )

my
z+ = Feiy’ Wi = /zisyn -
NN




Coherent photoproduction of J/1 in heavy ion collisions

transverse momenta of outgoing ions.

@ P, P2

@ Interference induces azimuthal correlation (p; - p,)/(t1t2).

@ the interference is concentrated at very low pt of J/1 and can be neglected in rapidity

distributions.



Energies available for photoproduction

/5NN = 2.76 TeV
y W, [GeV] | W_[GeV] X4 X_ n(ws) | n(w=)
0.0 92.5 92.5 1.12-1073 | 1.12-10°3 69.4 69.4
1.0 152 56.1 413-10-% | 3.05-10"3 30.5 100
2.0 251 34.0 1.52.10~% | 8.29-10°3 145 132
3.0 414 20.6 5.59-10"° | 2.25.10"2 1.68 163
3.8 618 13.8 2.51-107° | 5.02-102 0.03 188

Table: Subenergies W4 and Bjorken-x values x4+ for /syy = 2.76 TeV for a given rapidity y. Also shown are
photon fluxes n(w ).

/SN = 5.02 TeV
y W, [GeV] | W_[GeV] X4 X_ n(ws) | n(w=)
0.0 125 125 6.17-10-% | 6.17-10~% 87.9 87.9
1.0 206 75.6 227-10% | 1.68-1073 57.2 119
2.0 339 45.9 8.35-107° | 4.56-10"3 28.5 150
3.0 559 27.8 3.07-107° | 1.24-1072 75 181
4.0 921 16.9 1.13-107° [ 337-10°2 | 035 213
4.8 1370 11.3 5.08-10~% | 7.50-10~2 | 0.001 238

Table: Subenergies W and Bjorken-x values x+ for \/syyv = 5.02 TeV for a given rapidity y.



Coherent photoproduction of J/1 in heavy ion collisions
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@ reasonable description of experimental data.
@ the highest YN energy at y = 0, about W = 100 GeV.
@ explicit higher Fock states, ccg, ccgg...?



Coherent photoproduction of J/1 in heavy ion collisions
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@ Preliminary data from ALICE & LHCb.



Isions

i-central colli

ion in semi

Dilepton product

probe of the QGP.

classic

@ Dileptons are a

thermal

9@ medium modifications of p,

dileptons

@ dileptons from ~~ fusion have peak at very

low pair transverse momentum.

@ can they be visible even in semi-central

collisions?




Dilepton production in semi-central collisions

doy 2p 2 <(2) do(yy = IT17;8)
= [ d“b1d“by 6 (b — b1 — bo)N b1)N —_—
TS / 1d°b2 6°( 1 — b2)N(ws, b)) N(w2, b2) T

where the phase space element is d§ = dy;dy_ dp% with y4, p: and m; the single-lepton rapidities,
transverse momentum and mass, respectively, and

pi+ mp VPt

wy = 2 (T +e7), wa= 2 (7" +e™), §=4duwws .

@ we adopt the impact parameter definition of centrality, of course...

dNy[c]
dM

doy
dgdb cuts

bmax
/ db/d{é M — 2 /wiwy)
fC 0’

bmin



Dilepton production: impact parameter distribution

— sqrt(s)=50 GeV
— saqri(s Gev
— sqri(s) = 5020 GeV

do /db [mb/fim]

0.05

0 20 40 60

80 100 120 140
b [fm]
@ semi-central collisions are situated on the left side of the distribution, below b < 15fm.

@ starting from RHIC energies, the contribution from coherent photons is practically
energy-independent.

9 also notice the long tails of the ultraperipheral part. Their importance rises with energy.



Dilepton production in semi-central collisions
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9o M. Ktusek-Gawenda, R. Rapp, W.S. & A. Szczurek, Phys.Lett. B790 (2019)

@ electron pair Pt < 150 MeV: dileptons from coherent photons dominate over a large range of
centralities.

@ other mechanisms: medium modified p, thermal dileptons, Dalitz-decays (“cocktail”).



From ultraperipheral to peripheral nuclear collisions

Recently, the ALICE collaboration has observed a large enhancement of J/1) mesons carrying very
small pr < 300 MeV in the centrality classes corresponding to peripheral collisions.

Centrality class 70 + 90%:
13fm < b < 15fm, photon fluxes by Contreras Phys. Rev. C 96 (2017)
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The ALICE measurement is [Phys. Rev. Lett. 116 (2016)]:

do(AA — VX|70 +90%; 2.5 < |y| < 4.0)
dy

=59+11+8ub.

For an estimate of the coherent contribution, see: M. Ktusek-Gawenda and A. Szczurek, Phys.
Rev. C 93 (2016), See talk by Antoni Szczurek on Friday.



Instead of a summary

@ Even when nuclei don't touch each other, they have very large inelastic cross sections. EM
dissociation ~ 200 barn at LHC.

@ Ultraperipheral heavy ion collisions give access to a lot of interesting processes.
Photoproduction of J/ tells us about interaction of small dipoles with nuclear medium,
potentially about the nuclear gluon distribution.

@ Certain properties/phenomena can even carry over into the semi-central domain. Their
exploration has just begun.
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