UNIVERSITY OF COPENHAGEN

Charged-particle pseudorapidity density N_{part} versus N_{coll}

Christian Holm Christensen Niels Bohr Institute

COST Workshop on interplay of hard and soft QCD probes for collectivity in heavy-ion collisions - 27th of February, 2019

Disclaimer

I am an ALICE collaborator, so many results will be from the ALICE collaboration

Overview

1 Measurements of $\frac{dN_{ch}}{d\eta}$ Other measurements of interest Take-away

2 Scaling

Midrapidity $\frac{dN_{ch}}{d\eta}$ and total N_{ch} Natural Centrality Glauber modelling

Summary

AA at RHIC energies

- Au–Au & Cu–Cu
- From $\sqrt{s_{\rm NN}} = 20 \,{\rm GeV}$ to 200 GeV
- Mostly PHOBOS Also results from BRAHMS, STAR

PRC83(2011)024913

 $\sqrt{s_{
m NN}} = 2.76 \, {
m TeV}$

 $\sqrt{s_{\rm NN}} = 5.02 \, {\rm TeV}$

 $\frac{{\sf X}{\sf e}{\sf -}{\sf X}{\sf e},}{{\sf N}{\sf N}{\sf N}}=5.44\,{\rm TeV}$

PLB772(2017)567-577

PLB754(2016)373-38

AA at LHC energies

- Xe-Xe & Pb-Pb
- From $\sqrt{s_{\rm NN}} = 2.76 \,{\rm TeV}$ to 5.44 TeV
- Here ALICE
 -3.5 < η < 5
- Also ATLAS, CMS

d–Au & p–Pb results

- From $\sqrt{s_{\rm NN}} = 200 \,{\rm GeV}$ to 5.02 TeV
- Here, PHOBOS & ALICE |η| < 5.3
 -5 < η < 3.5, resp.
- Also BRAHMS, ALTAS, CMS

Models have room for improvement

- Generally OK near $\eta = 0$
- Most deviate for $|\eta| > 0$

Models have room for improvement

- Generally OK near $\eta = 0$
- Most deviate for $|\eta| > 0$
- Good news for Lund: Pythia/Angantyr not the worst

The (not-so) transparent glass

However . . .

λ

The (not-so) transparent glass

However . . .

• Sharp peak in $\frac{dN_{ch}}{dy}$ at y = 0Caveat: older paper, but mechanism the same AFAIK

Normality and transparency

BRAHMS Results:

- $\frac{\mathrm{d}N_{\pi,\mathrm{K}}}{\mathrm{d}y} \sim \mathrm{N}[0,\sigma]$ similar for $\overline{\mathrm{p}}$
- Small decrease in $\langle p_{\rm T} \rangle$ over ysimilar for p, $\overline{\rm p}$

Normality and transparency

BRAHMS Results:

- $\frac{\mathrm{d}N_{\pi,\mathrm{K}}}{\mathrm{d}y} \sim \mathrm{N}[0,\sigma]$ similar for $\overline{\mathrm{p}}$
- Small decrease in (p_T) over y similar for p,p
- Small rapidity loss $\langle \delta y \rangle$ over SPS energies Increased transparency for $\sqrt{s_{\rm NN}} \gtrsim 17 \,{\rm GeV}$

Normality and transparency

BRAHMS Results:

- $\frac{\mathrm{d}N_{\pi,\mathrm{K}}}{\mathrm{d}y} \sim \mathrm{N}[0,\sigma]$ similar for $\overline{\mathrm{p}}$
- Small decrease in (p_T) over y similar for p,p
- Small rapidity loss $\langle \delta y \rangle$ over SPS energies Increased transparency for $\sqrt{s_{\rm NN}} \gtrsim 17 \,{\rm GeV}$

CMS NSD | n | < 2.4

E735 NSD |η| < 3.25 ALICE INEL |η| < 0.8 ALICE INSD |η| < 0.8

√7 (GeV

• Slow $\langle p_{\rm T} \rangle$ increase with \sqrt{s}

PLB693(2010)53-68

Transforming to rapidity

ALICE Results:

• $\frac{\mathrm{d}N_{\mathrm{ch}}}{\mathrm{d}y} \sim \mathrm{N}[0,\sigma]$ in Pb–Pb

• For
$$\sqrt{s_{\rm NN}} = 2.76 \,{\rm TeV}$$

- and $\sqrt{s_{\rm NN}} = 5.02\,{\rm TeV}$
- Landau-like hydrodynamics not consistent "Extended longitudinal scaling"

- Landau-Carruthers: $\frac{dN_{ch}}{dy} \sim N \left[0, \log \sqrt{s_{NN}} / (2m_p)\right]$
- Landau-Wong: $\frac{dN_{ch}}{dy} \propto e^{\sqrt{y_{beam}^2 y^2}}$

Fill up phase-space

• $N_{\rm ch}$ production fill phase-space for $\sqrt{s_{\rm NN}} \gtrsim 17 \,{
m GeV}$

Take-away from these results

- Lots of $\frac{dN_{ch}}{d\eta}$ measurements
 - Au-Au, Pb-Pb, Xe-Xe
 - d–Au, p–Pb
 - pp, <u>p</u>p
 - $\sqrt{s}, \sqrt{s_{\text{NN}}} \in \{0.9, 2.76, 5.02, 5.44\}$ TeV
 - Challenge for theory

Take-away from these results

- Lots of $\frac{dN_{ch}}{d\eta}$ measurements
 - Au-Au, Pb-Pb, Xe-Xe
 - d–Au, p–Pb
 - pp, <u>p</u>p
 - $\sqrt{s}, \sqrt{s_{\text{NN}}} \in \{0.9, 2.76, 5.02, 5.44\}$ TeV
 - Challenge for theory
- Shift at end of SPS $(\sqrt{s_{
 m NN}}\gtrsim 17\,{
 m TeV})$
 - (Almost) Net-baryon free over extended rapidity does *not* imply flat $\frac{dN_{ch}}{dn}$
 - N_{ch} fill up phase-space Particles more spread-out
 - AFAICT: Easier for theory?

Power-law systematic of N_{ch} production

- Mid rapidity $\frac{\mathrm{d}N_{\mathrm{ch}}}{\mathrm{d}\eta}$ vs $\sqrt{S_{\mathrm{NN}}}$
- Total $N_{\rm ch}$ vs $\sqrt{s_{_{\rm NN}}}$
- $N_{
 m ch}^{
 m total}$ increase faster than $\left. \left< rac{{
 m d}N_{
 m ch}}{{
 m d}\eta} \right> \right|_{|\eta| < 0.5}$
- Both faster than pp(pp)

Per participant production

• Consistent increase from pp to most central ALICE: $\left\langle \frac{\mathrm{d}N_{\mathrm{ch}}}{\mathrm{d}\eta} \right\rangle \Big|_{|\eta|<0.5}$ and $N_{\mathrm{ch}}^{\mathrm{total}}$ scaled by $s^{0.155}$ and $s^{0.123} \log(s)$ to match Xe–Xe

Per participant production

- Consistent increase from pp to most central $ALICE: \left. \left\langle \frac{dN_{ch}}{d\eta} \right\rangle \right|_{|\eta|<0.5}$ and N_{ch}^{total} scaled by $s^{0.155}$ and $s^{0.123} \log(s)$ to match Xe–Xe
- However, "rapid" increase for most central $(N_{\rm part} \approx 2A).$
- Also "up-tick" in total N_{ch}

Production versus "natural centrality"

PHOBOS Result:

- Constant N_{part} show deviations
- Constant $N_{\text{part}}/(2A)$ show scaling

PHOBOS Result:

- Constant N_{part} show deviations
- Constant $N_{\text{part}}/(2A)$ show scaling

How can that be?

participants do not know "natural centrality"

PHOBOS Result:

- Constant N_{part} show deviations
- Constant $N_{\text{part}}/(2A)$ show scaling

How can that be?

participants do not know "natural centrality" Important: $N_{\rm part}$ from Glauber i.e., Model

Glauber and Glauber-Gribov

Glauber:

- Inputs:
 - Charge-distribution (e.g., 3pF or 3pG)
 - Nucleon–nucleon cross-section $\sigma_{\rm NN}$
 - Black-disc: $P(b_{NN}) = \Theta(2r - b_{NN})$
 - Impact parameter b
- Outputs:
 - N_{part} , N_{coll} , . . .
 - Nucleon distribution

Glauber–Gribov

• Colour-state fluctuations Fluctuation of $\sigma_{\rm NN}~(\delta\sigma_{\rm NN})$

Normal Gribov:

- Sample $\sigma_{_{
 m NN}}$ once per event
- OK for p–A, tricky for A–A

Individual nucleon fluctuations

- Allow each nucleon to fluctuate in "size" Simple approach, Angantyr/PYTHIA more evolved
- Calculate σ_{AB} for any two nucleons A and B
- Fix to reproduce $\langle \sigma_{\rm NN} \rangle = \langle \langle \sigma_{AB} \rangle \rangle$ not necessarily $P(\sigma_{\rm NN})$
- Nucleon "sizes" fixed throughout Frozen colour state
- Based on TGlauberMC

PRC97(2017)054910

Work-in-progress: Apply skepticism here

"Up-tick" in AA collisions Ansatz: Take N_{coll} as proxy for $\frac{dN_{ch}}{dn}$ or total N_{ch}

- Glauber–Gribov: "up-tick"
- individual nucleon fluctuation: More smooth increase
- "Up-tick" possible sign of $\sigma_{\rm NN}$ fluctuations Fluctuations a la p-A

- Lots of result on N_{ch} production
 - Cu–Cu,Xe–Xe,Au–Au,Pb–Pb,d–Au,p–Pb,pp
 - $\sqrt{s}, \sqrt{s_{\text{NN}}} \in \{0.9, 2.76, 5.02, 5.44, 7, 8, 13\}$ TeV

- Lots of result on $N_{\rm ch}$ production
 - Cu–Cu,Xe–Xe,Au–Au,Pb–Pb,d–Au,p–Pb,pp
 - $\sqrt{s}, \sqrt{s_{\text{NN}}} \in \{0.9, 2.76, 5.02, 5.44, 7, 8, 13\}$ TeV
- Above top SPS
 - Normal distributed in measured range
 - Fill up phase space (wide $\frac{dN_{ch}}{d\nu}$)
 - $\sqrt{s_{\rm NN}}$ -scaling pretty solid

- Lots of result on $N_{\rm ch}$ production
 - Cu–Cu,Xe–Xe,Au–Au,Pb–Pb,d–Au,p–Pb,pp
 - $\sqrt{s}, \sqrt{s_{\text{NN}}} \in \{0.9, 2.76, 5.02, 5.44, 7, 8, 13\}$ TeV
- Above top SPS
 - Normal distributed in measured range
 - Fill up phase space (wide $\frac{dN_{ch}}{du}$)
 - $\sqrt{s_{\rm NN}}$ -scaling pretty solid
- N_{ch} fluctuate up in central A-A
 - Significant $\sigma_{\rm NN}$ fluctuations at small b? Similar to p–Pb
 - "Up-tick" *not* centrality bias Probably need better Glauber or Core-Corona approach?
 - N_{part} "scaling" not necessarily broken But N_{coll} strongly dependent on N_{part} , so hard to tell

- Lots of result on $N_{\rm ch}$ production
 - Cu–Cu,Xe–Xe,Au–Au,Pb–Pb,d–Au,p–Pb,pp
 - $\sqrt{s}, \sqrt{s_{\text{NN}}} \in \{0.9, 2.76, 5.02, 5.44, 7, 8, 13\}$ TeV
- Above top SPS
 - Normal distributed in measured range
 - Fill up phase space (wide $\frac{dN_{ch}}{d\nu}$)
 - $\sqrt{s_{\rm NN}}$ -scaling pretty solid
- N_{ch} fluctuate up in central A-A
 - Significant $\sigma_{\rm NN}$ fluctuations at small b? Similar to p–Pb
 - "Up-tick" *not* centrality bias Probably need better Glauber or Core-Corona approach?
 - N_{part} "scaling" not necessarily broken But N_{coll} strongly dependent on N_{part} , so hard to tell

 $N_{\rm ch}$ production still a challenge

Back-ups

Limiting fragmentation

- $\frac{\mathrm{d}N_{\mathrm{ch}}}{\mathrm{d}\eta}$ at large $|\eta|$ independent of $\sqrt{s_{\mathrm{NN}}}$.
- Holds in pp and Cu-Cu
- Study not feasible for $\sqrt{s_{
 m NN}} > 2.76\,{
 m TeV}$

Comparing to pp

Pb–Pb

- $\times 10^2$ over pp
- Increase as $\eta
 ightarrow 0$

Comparing to pp

Pb–Pb

- $\times 10^2$ over pp
- Increase as $\eta
 ightarrow 0$
- Scale by $2/N_{\text{part}}$ (Glauber)
- Collimation near $\eta = 0$

Comparing to pp

Pb–Pb

- $\times 10^2$ over pp
- Increase as $\eta
 ightarrow 0$
- Scale by $2/N_{\text{part}}$ (Glauber)
- Collimation near $\eta = 0$

p–Pb

- Centrality: V0A
- ×10 over pp
- Near-linear increase from p- to Pb-going side

Nuclear modification

- N.B.: Centrality ZNA
- Independent proton-nucleon scattering

PRC72(2005)034907 PRL39(1977)1120

• Similar level in ion for most central Pb–Pb events. similar fluctuations in central Pb–Pb as in p–Pb?

Angantyr results

- Same trends as data for both $\langle {\rm d}N_{\rm ch}/{\rm d}\eta\rangle|_{|\eta|<0.5}$ and $N_{\rm ch}^{\rm total}$
- Sophisticated $\sigma_{\rm NN}$ fluctuations

"Up-tick" not centrality bias

Quark participants and component models

- N^α_{part} over-shoots, no "up-tick"
- N^β_{coll} over- and under-shoots, no "up-tick"
- $fN_{\text{part}} + (1 f)N_{\text{coll}}$ over- and under-shoots, no "up-tick"
- Core-Corona over-shoots, no "up-tick"

- Quark participant scaling not much clear than N_{part}
- Rise at low N_{part}?
- Still rise at high $N_{\rm part}$ $\sigma_{\rm qq}$ fluctuations?

UNIVERSITY OF COPENHAGEN

NIELS BOHR INSTITUTE

- Direct measurement of dN_{ch}/dy: Gaussian in measured region
- Via mean Jacobian: Gaussian in measured region

Fit
$$\frac{dN_{ch}}{d\eta}$$
 to extract σ , effective $p_{\rm T}/m$

$$\frac{\mathrm{d}N_{\mathrm{ch}}}{\mathrm{d}y} = \frac{1}{\langle\beta\rangle} \frac{\mathrm{d}N_{\mathrm{ch}}}{\mathrm{d}\eta}$$
$$y \approx \eta - \frac{\cos\vartheta}{2a^2}$$
$$\langle\beta\rangle \approx \frac{1}{\sqrt{1 + 1/(a^2\cosh^2\eta)}}$$

a: effective $p_{\rm T}/m$

- pp and Pb–Pb Ansatz: $dN_{ch}/d\eta = \langle \beta \rangle A/(\sqrt{2\pi}\sigma)e^{-y^2/(2\sigma)}$
- p-Pb Ansatz: $A \to (\alpha y + a)$ $dN_{ch}/d\eta = \langle \beta \rangle (\alpha y + A) / (\sqrt{2\pi}\sigma) e^{-y^2/(2\sigma)}$

$\sigma_{\!y}$ and effective $p_{_{\rm T}}/m$

- σ decrease Collimation of production
- Peripheral similar
 σ to pp
 Limiting
 fragmentation
- Effective p_T/m increase for Pb–Pb consistent with pp

Back-of-the-envelope initial energy density

• Bjorken formula:

$$\varepsilon_{\rm Bj}\tau = 1/S_{\rm T}\,{\rm d}E_{\rm T}/{\rm d}y$$

with

$$\frac{\mathrm{d}E_{\mathrm{T}}/\mathrm{d}y}{\gtrsim} 2\langle m_{\mathrm{T}}\rangle \mathrm{d}N_{\mathrm{ch}}/\mathrm{d}y$$
$$\gtrsim 2\langle m\rangle \sqrt{1+(p_{\mathrm{T}}/m)^{2}} \,\mathrm{d}N_{\mathrm{ch}}/\mathrm{d}y$$

• S_T from Glauber

- ∪ part. Full area
- ∩ part. Overlap

 $\varepsilon_{\rm Bj} \tau \gtrsim \varepsilon_{\rm LB} \tau \equiv 1/S_{\rm T}^{\cup,\cap} 2\sqrt{1 + (p_{\rm T}/m)^2} \, \mathrm{d}N_{\rm ch}/\mathrm{d}y$

The lower-bound of $\varepsilon_{\rm Bi}$

PRC94(2016)034903

- Fixed energy density at fixed N_{part} Except for central p-Pb
- For ∪ part, large increase over pp
- If same initial ε in systems, then similar final state effects?

