Particle Interferometry for Hydrodynamics and Event Generators

Christopher J. Plumberg with Leif Lönnblad, Torbjörn Sjöstrand, and Gösta Gustafson COST Workshop, Lund University February 28, 2019

How do we know when we've created the QGP?

How do we know when we've created the QGP? Some broad options (not mutually exclusive):

- ► Look for collectivity
 - ▶ Anisotropic flow
 - ► The ridge

How do we know when we've created the QGP? Some broad options (not mutually exclusive):

- ► Look for collectivity
 - ▶ Anisotropic flow
 - ► The ridge
- ► Look for chemistry
 - ▶ J/ψ abundances
 - Strangeness enhancement

How do we know when we've created the QGP? Some broad options (not mutually exclusive):

- ► Look for collectivity
 - ▶ Anisotropic flow
 - ► The ridge
- ▶ Look for chemistry
 - ▶ J/ψ abundances
 - Strangeness enhancement
- ▶ Look for quenching

But why haven't we seen jet quenching in small systems?

How do we know when we've created the QGP? Some broad options (not mutually exclusive):

- ► Look for collectivity
 - ▶ Anisotropic flow
 - ► The ridge
- ▶ Look for chemistry
 - ▶ J/ψ abundances
 - Strangeness enhancement
- ► Look for quenching

But why haven't we seen jet quenching in small systems? Consider the space-time geometry!

Fig credit: Ulrich Heinz and Scott Moreland

Christopher J. Plumberg

Freeze-out volume constant, but space-time volume changes significantly!

Fig credit: Ulrich Heinz and Scott Moreland

Christopher J. Plumberg

How can we probe the space-time geometry?

¹HBT≡Hanbury Brown-Twiss

Christopher J. Plumberg

How can we probe the space-time geometry? \rightarrow HBT¹ particle interferometry is ideal for this

¹HBT≡Hanbury Brown-Twiss

Christopher J. Plumberg

How can we probe the space-time geometry? \rightarrow HBT¹ particle interferometry is ideal for this

Today:

- ▶ Particle interferometry: basics
- ▶ Particle interferometry with hydrodynamics
- ▶ Particle interferometry with Pythia 8

¹HBT≡Hanbury Brown-Twiss

$$C(\vec{p_1}, \vec{p_2}) \equiv E_{p_1} E_{p_2} \frac{d^6 N}{d^3 p_1 d^3 p_2} / \left(E_{p_1} \frac{d^3 N}{d^3 p_1} E_{p_2} \frac{d^3 N}{d^3 p_2} \right)$$

$$C(\vec{p}_{1}, \vec{p}_{2}) \equiv E_{p_{1}}E_{p_{2}}\frac{d^{6}N}{d^{3}p_{1}d^{3}p_{2}} / \left(E_{p_{1}}\frac{d^{3}N}{d^{3}p_{1}}E_{p_{2}}\frac{d^{3}N}{d^{3}p_{2}}\right)$$

$$\rightarrow C_{\text{fit}}(\vec{q}, \vec{K}) \equiv 1 + \lambda \exp\left(-\sum_{i,j=o,s,l}R_{ij}^{2}(\vec{K})q_{i}q_{j}\right)$$

$$\vec{q} \equiv \vec{p}_{1} - \vec{p}_{2}, \ \vec{K} \equiv \frac{1}{2}\left(\vec{p}_{1} + \vec{p}_{2}\right)$$

$$C(\vec{p}_{1}, \vec{p}_{2}) \equiv E_{p_{1}}E_{p_{2}}\frac{d^{6}N}{d^{3}p_{1}d^{3}p_{2}} / \left(E_{p_{1}}\frac{d^{3}N}{d^{3}p_{1}}E_{p_{2}}\frac{d^{3}N}{d^{3}p_{2}}\right)$$

$$\rightarrow C_{\text{fit}}(\vec{q}, \vec{K}) \equiv 1 + \lambda \exp\left(-\sum_{i,j=o,s,l}R_{ij}^{2}(\vec{K})q_{i}q_{j}\right)$$

$$\vec{q} \equiv \vec{p}_{1} - \vec{p}_{2}, \ \vec{K} \equiv \frac{1}{2}\left(\vec{p}_{1} + \vec{p}_{2}\right)$$

$$C_{\text{th}}(\vec{q}, \vec{K}) \approx 1 + \left|\frac{\int d^{4}x S(x, K)e^{iq \cdot x}}{\int d^{4}x S(x, K)}\right|^{2}$$

Christopher J. Plumberg

$$C(\vec{p}_{1}, \vec{p}_{2}) \equiv E_{p_{1}}E_{p_{2}}\frac{d^{6}N}{d^{3}p_{1}d^{3}p_{2}} / \left(E_{p_{1}}\frac{d^{3}N}{d^{3}p_{1}}E_{p_{2}}\frac{d^{3}N}{d^{3}p_{2}}\right)$$

$$\rightarrow C_{\text{fit}}(\vec{q}, \vec{K}) \equiv 1 + \lambda \exp\left(-\sum_{i,j=o,s,l}R_{ij}^{2}(\vec{K})q_{i}q_{j}\right)$$

$$\vec{q} \equiv \vec{p}_{1} - \vec{p}_{2}, \vec{K} \equiv \frac{1}{2}(\vec{p}_{1} + \vec{p}_{2})$$

$$C_{\text{th}}(\vec{q}, \vec{K}) \approx 1 + \left|\frac{\int d^{4}x S(x, K)e^{iq \cdot x}}{\int d^{4}x S(x, K)}\right|^{2}$$

For Gaussian sources:

$$\implies R_{ij}^2(\vec{K}) \equiv \langle (\tilde{x}_i - \beta_i \tilde{t}) (\tilde{x}_j - \beta_j \tilde{t}) \rangle_S,$$

$$\langle f(x) \rangle_S \equiv \frac{\int d^4 x f(x) S(x, K)}{\int d^4 x S(x, K)}$$

$$\tilde{x}_i \equiv x_i - \langle x_i \rangle_S, \ \tilde{t} \equiv t - \langle t \rangle_S, \ \vec{\beta} \equiv \vec{K} / K^0$$

Christopher J. Plumberg

Space-time evolution in Hydrodynamics

Steeper scaling at large K_T

Christopher J. Plumberg

Space-time evolution in Hydrodynamics

Steeper scaling at large K_T \implies pp has *more* flow than pPb or PbPb!

Christopher J. Plumberg

Conclusion: particle interferometry may help constrain the system's geometry in relation to jet quenching, but quantitative studies are still needed.

So how do we do this with event generators?

Method 1: momentum-space modifications

▶ The idea: modify pairwise correlations in particle momenta to emulate Bose-Einstein (BE) enhancement

²The precise form depends on the algorithm being used Christopher J. Plumberg Particle Interferometry from Hydrodynamics and Event Generators

Method 1: momentum-space modifications

- ▶ The idea: modify pairwise correlations in particle momenta to emulate Bose-Einstein (BE) enhancement
- ► Strategy: perturb final-state momenta of identical particle pairs by some amount δQ , where

$$\int_{0}^{Q} \frac{q^2 dq}{\sqrt{q^2 + 4m}} = \int_{0}^{Q + \delta Q} f_2(q) \frac{q^2 dq}{\sqrt{q^2 + 4m}}$$

and $f_2(Q) \sim 1 + \lambda \exp(-Q^2 R^2)$ is the Bose-Einstein enhancement factor,² and λ and R are (user-defined) coherence and radius parameters, respectively, and $Q^2 = -(p_1 - p_2)^2$

²The precise form depends on the algorithm being used

Method 1: momentum-space modifications

- ▶ The idea: modify pairwise correlations in particle momenta to emulate Bose-Einstein (BE) enhancement
- ▶ Strategy: perturb final-state momenta of identical particle pairs by some amount δQ , where

$$\int_{0}^{Q} \frac{q^2 dq}{\sqrt{q^2 + 4m}} = \int_{0}^{Q + \delta Q} f_2(q) \frac{q^2 dq}{\sqrt{q^2 + 4m}}$$

and $f_2(Q) \sim 1 + \lambda \exp(-Q^2 R^2)$ is the Bose-Einstein enhancement factor,² and λ and R are (user-defined) coherence and radius parameters, respectively, and $Q^2 = -(p_1 - p_2)^2$

- ▶ Net shift for a hadron is vector sum of shifts in all pairs it belongs to
- \blacktriangleright Implements BE correlations directly into spectra; all space-time information contained in R

²The precise form depends on the algorithm being used

Method 1: momentum-space modifications

- ▶ The idea: modify pairwise correlations in particle momenta to emulate Bose-Einstein (BE) enhancement
- ▶ Strategy: perturb final-state momenta of identical particle pairs by some amount δQ , where

$$\int_{0}^{Q} \frac{q^2 dq}{\sqrt{q^2 + 4m}} = \int_{0}^{Q + \delta Q} f_2(q) \frac{q^2 dq}{\sqrt{q^2 + 4m}}$$

and $f_2(Q) \sim 1 + \lambda \exp(-Q^2 R^2)$ is the Bose-Einstein enhancement factor,² and λ and R are (user-defined) coherence and radius parameters, respectively, and $Q^2 = -(p_1 - p_2)^2$

- ▶ Net shift for a hadron is vector sum of shifts in all pairs it belongs to
- \blacktriangleright Implements BE correlations directly into spectra; all space-time information contained in R

Output: List of particle momenta with BE effects included

²The precise form depends on the algorithm being used

Method 2: space-time vertex tracking³

- ▶ Assume $q\bar{q}$ string with linear confinement potential, for simplicity
- ▶ Hadrons formed by multiple string breaks

³S. Ferreres-Solé and T. Sjöstrand, Eur. Phys. J. C **78**, 983 (2018). Christopher J. Plumberg Particle Interferometry from Hydrodynamics and Event Generators

Method 2: space-time vertex tracking³

- ▶ Assume $q\bar{q}$ string with linear confinement potential, for simplicity
- ▶ Hadrons formed by multiple string breaks
- ▶ For a *i*th break:
 - Longitudinal coordinates fixed by choosing momentum fraction z and requiring new system to have invariant mass $m_{h,\perp}$
 - Transverse coordinates x and y obtained from 2D Gaussian with width $\sigma\approx 0.5~{\rm fm}$

³S. Ferreres-Solé and T. Sjöstrand, Eur. Phys. J. C **78**, 983 (2018). Christopher J. Plumberg Particle Interferometry from Hydrodynamics and Event Generators

Method 2: space-time vertex tracking³

- ▶ Assume $q\bar{q}$ string with linear confinement potential, for simplicity
- ▶ Hadrons formed by multiple string breaks
- ▶ For a *i*th break:
 - Longitudinal coordinates fixed by choosing momentum fraction z and requiring new system to have invariant mass $m_{h,\perp}$
 - Transverse coordinates x and y obtained from 2D Gaussian with width $\sigma\approx 0.5~{\rm fm}$
- ▶ Hadron production vertex is average of string breaking vertices
- ▶ This process can be generalized to more complex string topologies
- Space-time information determined explicitly by string fragmentation geometry; spectra remain unperturbed

³S. Ferreres-Solé and T. Sjöstrand, Eur. Phys. J. C 78, 983 (2018).

Method 2: space-time vertex tracking³

- $\blacktriangleright\,$ Assume $q\bar{q}$ string with linear confinement potential, for simplicity
- ▶ Hadrons formed by multiple string breaks
- ▶ For a *i*th break:
 - Longitudinal coordinates fixed by choosing momentum fraction z and requiring new system to have invariant mass $m_{h,\perp}$
 - Transverse coordinates x and y obtained from 2D Gaussian with width $\sigma\approx 0.5~{\rm fm}$
- ▶ Hadron production vertex is average of string breaking vertices
- ▶ This process can be generalized to more complex string topologies
- Space-time information determined explicitly by string fragmentation geometry; spectra remain unperturbed

 ${\bf Output}:$ List of particle momenta with no BE effects, together with space-time locations of hadron production vertices

³S. Ferreres-Solé and T. Sjöstrand, Eur. Phys. J. C **78**, 983 (2018). Christopher J. Plumberg Particle Interferometry from Hydrodynamics and Event Generators

Conclusions

Existence of jet quenching in small systems remains an open question

- ▶ Could be a consequence of the collision geometry
- ▶ Or the lack of QGP formation
- ▶ Or something else...

Conclusions

Existence of jet quenching in small systems remains an open question

- ▶ Could be a consequence of the collision geometry
- ▶ Or the lack of QGP formation
- ▶ Or something else...

Particle interferometry provides valuable insight into space-time evolution and collision geometries relevant to jet-quenching models

- Already existing infrastructure for addressing this question within hydrodynamics
- ▶ Ongoing work to equip Pythia8 with same capability
- Explore effects related to string shoving, rope hadronization, and more
- ► Stay tuned!

Thanks for your attention!

