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The structure of a compiler
• A compiler is able to map a source program into a semantically equivalent target program;
• The mapping process involves two steps:

o The front end part: breaks up the source program into different constituent pieces 
imposing a grammatical structure in order to create an intermediate representation;

o The back end that constructs the desired target program from the intermediate 
representation.



The structure of a compiler

• Some compilers have a machine-independent optimization phase between the front end 
and the back end;

• The purpose of this optimization phase is to perform transformations on the intermediate 
representation, so that the back end can produce a better target program;

• There is a great variation in the amount of code optimization different compilers perform.

ASM	code



Optimization quick guide



void WasteTime() {

int UselessArray[500][1000];

for (int i = 0; i < 500; i++)
for (int j = 0; j < 1000; j++)
UselessArray[i][j] = 5;

}

• This function is completely
pointless:
o Creates a big array
o Sets all elements to a constant
o It’s void, hence no return

• Optimization is expected to:
o Foresee the uselessness;
o Minimize the effects of this

waste

A simple example (C++ front end)



-O0 (i.e. almost no optimization)
g++ -O0 -S wastetime.cc -o wastetime_O0.s

movl $0, -2000024(%rbp)
.L5:

cmpl $499, -2000024(%rbp)
jg .L7
movl $0, -2000020(%rbp)

.L4:
cmpl $999, -2000020(%rbp)
jg .L3

…
movl $5, -2000016(%rbp,%rax,4)
addl $1, -2000020(%rbp)
jmp .L4

.L3:
addl $1, -2000024(%rbp)
jmp .L5

.L7:

Loop	on	i
Counting up	(1	to	500)

Setting ij-th element	to	5Loop	on	j
Counting up	(1	to	1000)

This is just a straightforward translation from our C++ into ASM

A simple example (ASM back end)



-O1
g++ -O1 -S wastetime.cc -o wastetime_O1.s

…
movl $500, %edx

.L3:
movl $1000, %eax

.L2:
subl $1, %eax
jne .L2
subl $1, %edx
jne .L3
rep ret

…

Loop	on	i
Counting down (500	to	1)

Return

Loop	on	j
Counting down (1000	to	1)

The constant assignment is gone and loops are just countdowns.
Better, but it’s still taking time…

A simple example (ASM back end)



-O2
g++ -O2 -S wastetime.cc -o wastetime_O2.s

rep ret

Loops are gone as well: just returning.

Success!

We got rid of the useless function.

A simple example (ASM back end)



What should we take home?

• More efficient does not necessarily mean shorter

o The optimization process actually rewrites code to make it better for the computer;
o Optimized code may look much more verbose than unoptimized.

• Ther’s no such thing as -O∞

o In this case, -O3 looks the same as -O2, meaning that optimization can reach saturation;
o There are cases in which too aggressive optimizations lead to broken code.

• One size does not fit all

o Optimization depends on the actual code: different code with same flags will give different
outcomes;

o It’s not straightforward to adopt someone else’s successful optimization strategies.



Investigating possible CPU improvement in simulation job

• Simulations take up to 40% of the total CPU load
time. There is the necessity of an improvement in 
speed (without sacrificing the physics);

• A possible solution for running faster using less CPU 
resources is changing the compiler's optimization
options;

• The GNU gcc compiler allows for different
optimization settings: Os, O1, O2 (default one) and 
O3.



Preliminary results
• I obtained some reference results with Os, O1, O2 and O3;
• Build the AthSimulation release on Aurora cluster (Lund): 

o Each node has 64 GB and 20 cores;
o Default memory request: 3100 MB per core;
o Exclusive node access;
o Multicore execution with AthenaMP.

• Consider different samples for the simulation: ttbar, Z -> ee and di-jet;
• Run the jobs changing the compiler settings and keeping the RandomSeed

parameter unchanged;
• Evaluate for each compiler settings the average CPU time spent per event.



• The number of cores used for each set 
of initial number of events has been 
chosen in order to have an error 
around 2%;

• In all these cases O3 is the best 
optimization;

• The average improvement of O3 on 
O2 is 4.5%;

• The average improvement of O3 on 
Os is 3.75%.
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Preliminary results: ttbar sample



• The number of cores used for each 
set of initial number of events has 
been chosen in order to have an 
error around 2%;

• The average improvement of O3 on 
O2 is 2.25%;

• The average improvement of O3 on 
Os is 6.25%.

Preliminary results: Zee sample 

0 1000 2000 3000 4000 5000
Number of events

120

130

140

150

160

170

180

190
310×

cp
u 

ev
tlo

op
tim

e 
(m

s) Legend
O2 Opt.
O3 Opt.
O1 Opt.
Os Opt.

Cpu average time per event Z->ee



• The number of cores used for 
each set of initial number of 
events has been chosen in order 
to have an error around 2%;

• The average improvement of O3 
on O2 is 2%;

• The average improvement of O3 
on Os is 3%.

Preliminary results: di-jet sample 
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Conclusions

• O3 shows a tendency to be better than O2 in all the configurations considered;

• All the samples examined are affected by the different optimizations; this
makes it reasonable to try to run AthSimulation with other options (such as
AutoFDO).

• The gain with O3 is more pronounced when the number of initial events is
low. This would lead to the conclusion that it would be convenient to split the 
simulation files in some smaller jobs;



AutoFDO optimization

• TASK: use AutoFDO procedure to generate profiles and recompile ATLAS code and run
benchmark jobs. If this study shows at least 5% improvement -> use AutoFDO in nightly
build system.

• AutoFDO [1] is an optimization technique available in Linux which provides performance 
gains and is able to collect profile data on production system;

• A statistical analysis of the code flow allows the identification of the most called functions;
• Based on this picture, optimization is applied to the most relevant flows;
• The use of this tool has already been investigated in CMS simulation workflows and has

shown a 10% improvement; 

[1] https://gcc.gnu.org/wiki/AutoFDO/Tutorial



Future development

• Start with a proof of concept to optimize a specific physics workload: 
o Start with a simple and well understood G4 simulation in athena;
o Optimize the single simulation and assess the improvements;
o Broaden the range of optimizations.

• Breakdown of the ATLAS software backend library by library reconstructing how to 
control and optimize the workload:
o Instrument the execution flow of the various functions/libraries and investigate through

compiler optimizations;
o Currently, the mixed python/c++ framework cannot be instrumented or manipulated

directly using a compiler;
o Investigate a simpler compilable framework that replicates the execution code flow and 

use compiler-based optimizations to improve it.



Education

• Introductory work on TLA analysis

• Domain decomposition (pure mathematical approach, not really 

suited for a compute school)

• Particle Physics Phenomenology

• Publication methodology for PhD students

• GEANT4

• Detector school

• Teaching course




