

TRT qualification and the hunt of dark Higgs in Mono-H analysis

Eleni Skorda Supervisor : Ruth Pottgen

Lund University

December 17, 2018 Doktoranddagen

Qualification Task: ATLAS Transition Radiation Tracker (TRT)

ヘロン ヘロン ヘヨン ヘヨン

- **Qualification Task: ATLAS Transition Radiation Tracker (TRT)**
- **2** The mono-H(bb) Analysis (missing E_T and b-jets)

イロン イロン イヨン イヨン

- **Qualification Task: ATLAS Transition Radiation Tracker (TRT)**
- **2** The mono-H(bb) Analysis (missing E_T and b-jets)
- **③** Dark Higgs (missing E_T and b-jets ... again)

・ロト ・回ト ・ヨト ・ヨ

3

- **Qualification Task: ATLAS Transition Radiation Tracker (TRT)**
- **2** The mono-H(bb) Analysis (missing E_T and b-jets)
- **③** Dark Higgs (missing E_T and b-jets ... again)
- Background studies

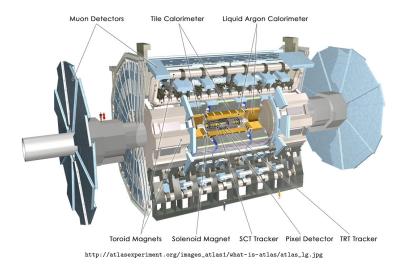
イロト イロト イヨト イヨト

э

- Qualification Task: ATLAS Transition Radiation Tracker (TRT)
- **2** The mono-H(bb) Analysis (missing E_T and b-jets)
- Oark Higgs (missing E_T and b-jets ... again)
- Background studies
- Outreach/Public engagement (have tons of fun while communicating science)

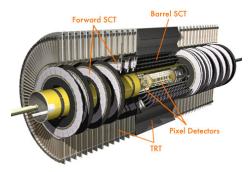
(a)

э


- Qualification Task: ATLAS Transition Radiation Tracker (TRT)
- **2** The mono-H(bb) Analysis (missing E_T and b-jets)
- Oark Higgs (missing E_T and b-jets ... again)
- Background studies
- Outreach/Public engagement (have tons of fun while communicating science)
- Ourses

(a)

Qualification task on Transition Radiation Tracker (TRT)


ヘロン ヘロン ヘヨン ヘヨン

The ATLAS detector, the Inner detector and TRT

イロト イヨト イヨト イヨト

Inner Detector

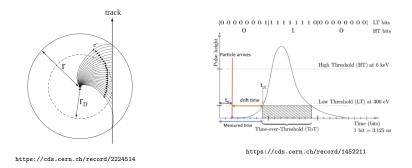
- length 6.2*m*, diameter 2.1*m*, coverage $: \eta < 2.5$
- embeded in 2T magnetic field
- consists of : Pixel detector , silicon microstrip detector and the transition radiation tracker
- determination of the momentum of charged particles

イロト イヨト イヨト イヨト

Transition Radiation Tracker

- Is the outermost part of the inner detctor and the largest
- It is made of thin layered straw drift tubes, between the straws, a radiator is placed
- Contributes to momentum measurement
- Particle identification : transition radiation produced by charged particles when they traverse material with different dielectric constant
- Consists of three parts : barrel and 2 end-caps

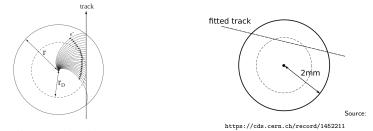
Barrel: $|\eta| < 1$, straws parallel to beam axis


End-caps: $0.8 < |\eta| < 2$, straws perpendicular to beam axis

イロン イロン イヨン イヨ

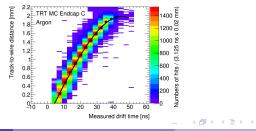
http://atlasexperiment.org/photos/inner-detector-combined.html

When a particle crosses a straw tube ...

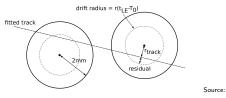


First electron drift time : $t = t_{LE} - (t_{collision} + t_{ToF} + t_{SP}) = t_{LE} - T_0$

- *t_{collision}*:time the collision took place (relative to LHC clock)
- t_{ToF} : the time that the particle travels from interaction point to te straw
- t_{SP} :time of signal propagation in both directions in the wire

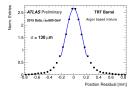

イロト イポト イヨト イヨト

Translating time to distance

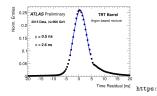

https://cds.cern.ch/record/2224514

Drift radius from r = r(t) called "r-t" relation, obtained by data and fitted to a third degree polynomial

-


Tracking with TRT

https://cds.cern.ch/record/1452211


 $rac{\sigma(p_T)}{p_T} \propto rac{\sigma(r)p_T}{BL^2}$

L: lever arm, $\sigma(r)$ the position resolution and B

PLOTS/TRT-2016-001/

//atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PLOTS/

TRT-2016-001/

Calibration: calculating T_0 and r-t

Highest position resolution, best momentum reconstruction

the field strength

Momentum relative uncertainty

Parabola Plots

There were two questions we had to answer:

• Does the T_0 from the calibration give the minimum σ_r ?

イロン イロン イヨン イヨン

Parabola Plots

There were two questions we had to answer:

- Does the T_0 from the calibration give the minimum σ_r ?
- Does the minimum σ_r depends on the transverse momentum of the reconstructed tracks?

イロト イヨト イヨト イヨト

э

Parabola Plots

There were two questions we had to answer:

- Does the T_0 from the calibration give the minimum σ_r ?
- Does the minimum σ_r depends on the transverse momentum of the reconstructed tracks?

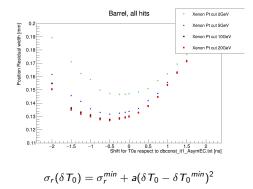


Image: A mathematical states and a mathem

After completing the study described above for MC simulated events I wrote a report a TWiki page (Only I read it \dots and maintain it) and got QUALIFIED !!!

イロト イヨト イヨト イヨト

After completing the study described above for MC simulated events I wrote a report a TWiki page (Only I read it ... and maintain it) and got QUALIFIED $\ref{eq:started}$

But ! There are many more questions to answer, more work to be done as we prepare for run 3

イロト イポト イヨト イヨト

After completing the study described above for MC simulated events I wrote a report a TWiki page (Only I read it ... and maintain it) and got QUALIFIED !!!

But ! There are many more questions to answer, more work to be done as we prepare for run 3

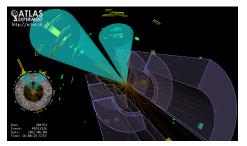
picture from: Dominik Derendarz

A = A = A = A = A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

After completing the study described above for MC simulated events I wrote a report a TWiki page (Only I read it ... and maintain it) and got QUALIFIED !!!

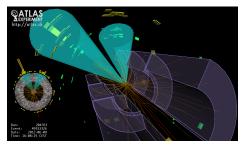
But ! There are many more questions to answer, more work to be done as we prepare for run 3

picture from: Dominik Derendarz


I will try to keep my promise of less time dedicated to TRT work...

A B > A B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A

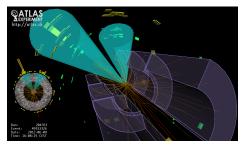
Mono-H(bb) Search and Dark Higgs


ヘロン ヘロン ヘヨン ヘヨン

2

https://atlas.cern/updates/atlas-blog/ what-happens-when-energy-goes-missing

ヘロン ヘロン ヘヨン ヘヨン

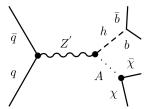


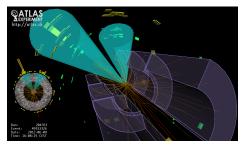
https://atlas.cern/updates/atlas-blog/ what-happens-when-energy-goes-missing

- Signature for most of the DM searches : $E_T^{miss} + X$, where X is γ, W, Z, h , jet
- $E_T^{miss} + h$, h initial state radiation is Yukawa suppressed \rightarrow direct probe the hard interaction with DM

https://cds.cern.ch/record/2301321

イロト イヨト イヨト イヨト

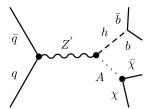


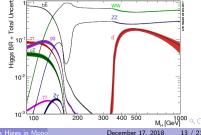

https://atlas.cern/updates/atlas-blog/ what-happens-when-energy-goes-missing

- Signature for most of the DM searches : $E_T^{miss} + X$, where X is γ, W, Z, h , jet
- $E_T^{miss} + h$, h initial state radiation is Yukawa suppressed \rightarrow direct probe the hard interaction with DM

https://cds.cern.ch/record/2301321

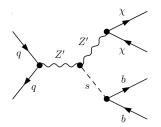
イロト イヨト イヨト イヨト




https://atlas.cern/updates/atlas-blog/ what-happens-when-energy-goes-missing

- Signature for most of the DM searches : $E_T^{miss} + X$, where X is γ, W, Z, h, jet
- $E_T^{miss} + h$, h initial state radiation is Yukawa suppressed \rightarrow direct probe the hard interaction with DM

https://cds.cern.ch/record/2301321



Dark Higgs production

"Hunting the dark Higgs" : https://arxiv.org/abs/1701.08780

- Higgs mechanism that generates DM mass in the dark sector $(m_{DH} < m_{DM})$
- $\bullet\,$ Couplings within dark sector large \to DH strahlung \to DH lightest in dark sector \to decays to SM

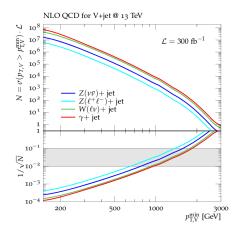
Promising way to probe at the LHC : via Z' mediator that radiates a dark Higgs boson

▲ @ ▶ ▲ ∃ ▶

Background Studies

<ロ> (四)、(四)、(日)、(日)、

2


Background studies

Missing energy production in standard model:

- neutrinos by Z, W decays
- SM particles that decay to Z and W

Modeling of V+jets background:

- Leading background $Z(\nu\nu)$ +jet production (followed by $W(\ell\nu)$ (particular for $\ell = \tau$))
- Most direct way to measure : $Z(\ell \ell)$ + jets , but statistically limited due to smaller br .

https://arxiv.org/pdf/1705.04664.pdf

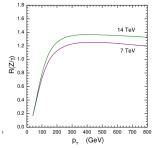
< 🗇 🕨

Estimate $Z(\nu\nu)$ +jets from γ +jets

Estimate $Z(\nu\nu)$ +jets from γ +jets

$$N^{estimate}(Z(
u
u) + jets) = rac{N(\gamma + jets)}{TF^{\gamma}_{Z o
u
u}}$$

where $TF_{Z \rightarrow \nu \nu}^{\gamma}$ transfer function

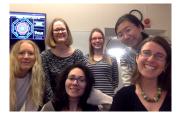

Ref: https://cds.cern.ch/record/1507150/

The Transfer function is the ratio :

$$R = \frac{d\sigma(\gamma + jets)/dp_T}{d\sigma(Z + jets)/dp_T}$$

used to translate between the two processes

$$R = R_0 \left(\frac{p_T^2}{p_T^2 + M_Z^2}\right)^n$$


Theoretical calculation of the ratio using GAMBOS $\langle \Box \rangle \langle \Box \rangle \langle \Box \rangle \langle \Xi \rangle \langle \Box \rangle \langle$

Master Classes

▲□→ ▲圖→ ▲温→ ▲温→

2

Master Classes 2018

SEKTIONEN FÖR ASTRO- OCH PARTIKELFYSIK

"Pröva på" forskning i partikelfysik

Bild från vårens internationella mästarklasser i Lund då deltagarna i slutet av dogen diskatorade och assoarbetade mod grupper som gjort samma ärning i Frankrike, Italien, Starbritsmisen, Tjechsen och forskare på platt på CERN.

Detta viljkile savonsavfoll med den av FN issuffade laternationella. Dagen för Kninner och Flichar isson Vetendag (http://www.un.reg/cs/ceesta/soven-raid/ gift-is-science-day), och ledde av knineliga forskning/filet.

från KTH och Stockholms universitet. Chalmers arrangerade regelbundet internationella möstarkkasser fram till 2016, och de vill gärna formätta traditionen och välkomnar lokala gymnasieskolor att ta kontakt om de är intresserade.

International Particle Physics Outreach Group (IPPOG) har organiserat mästarklasser i partikelfysik sedan 2005,

イロト イヨト イヨト イヨト

Courses

・ロト ・四ト ・ヨト ・ヨト

2

Courses

List of courses from the previous year :

- Scientific Writing 1.5 credits: 3 Days Long All the work is done during these days Very useful
- Geant 4 tutorial 3 credits: 1 week of lectures and Hand On More than 1 week project Very useful but time consuming
- Detector school in Copenhagen/Helsinki 10 credits
- Phenomenology 7.5 credits
 Full semester
 Lots of homework and studying
 Very useful → in understanding concepts around MC processes

Next semester :

• Learning and teaching in higher education-theory and practice(https://www.science.lu.se/internal/research-and-education/ training-in-higher-education-teaching-and-learning) 4.5 credits

イロト イポト イヨト イヨト