

UNIVERSITET

UNDS

Energy density and path-length dependence of the fractional momentum loss in heavy-ion collisions at $\sqrt{s_{\rm NN}}$ from 62.4 to 5020 GeV

Omar Vázquez¹ Antonio Ortiz² ¹Lund University, Sweden ²Instituto de Ciencias Nucleares, Mexico Phys. Rev. C 97, 014910 (2018)

Introduction

 At large transverse-momenta, yields are mainly suppressed by medium-induced gluon radiation accompanying multiple scattering [1]. To model these effects, a convolution of the vacuum (pp) production cross section of the particle with energy p_T + ε with the distribution D(ε) that describes the additional energy loss ε in the final state is used and the quenching effect can be modeled by the substitution: ^{d²σ_{AA}(p_T)}/_{dydp_T} = ^{d²σ_{pp}(p_T + δ_{pT})}/_{dydp_T}
 ^{d²σ_{AA}(p_T)}/_{dydp_T}
 <sup>d²σ_{AA}(p_T)</sub>
 ^{d²σ_{AA}(p_T)}/_{dydp_T}
 ^{d²σ_{AA}(p_T)}/_{dydp_T}
 ^{d²σ_{AA}(p_T)}/_{dydp_T}
 <sup>d²σ_{AA}(p_T)</sub>
 <sup>d²σ_A(p_T)/_{dydp_T}
 </sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup>

• δ_{p_T} can be related with the fractional momentum loss (S_{loss}) and that a linear relation between S_{loss} and $\epsilon^{3/8}L$ is required in order to describe the behavior of the R_{AA} at high P_T .

Methodology

Characteristic path length

- Glauber MC $\rightarrow N_{part}$ distributions.
- $\bullet A_{\mathrm{T}} \propto \sigma_{x} \sigma_{y}.$
- Scattering centers were generated randomly according to the N_{part} distributions.
- L ∝ σ, with σ being the RMS of the distance
 distribution that a parton travels from the scattering
 center to the edge of the area.

Fractional momentum loss

Bjorken energy density

- Mean transverse energy per unit rapidity.
 OProper time (model dependent) when the QGP is equilibrated.
- The values for $\epsilon_{Bj}\tau_0$ at $\sqrt{s_{NN}} = 62.4$ and 200 GeV are reported in [3].
- The corresponding value at $\sqrt{s_{NN}} = 5.02$ TeV is extrapolated using the fact that $\langle dE_T/d\eta \rangle / \langle N_{ch}/d\eta \rangle$ vs. $\langle N_{part} \rangle$ is nearly energy independent from RHIC to run I LHC energies [4].

Results

centrality class.

s_{loss}vs. ε_{Bj}τ₀ is linear only for p_T^{pp} > 10 GeV/c.
 s_{loss}vs. (ε_{Bj}τ₀)^{3/4}L² fails to reproduce a scaling. Furthermore, (ε_{Bj}τ₀)^{3/4}L² ≈ 0 does

not yield a fractional momentum loss equal to zero.

▶ A scaling is observed for $p_T^{pp} \ge 10 \text{ GeV}/c$.

► A decrease of around 20% from $p_T^{pp} \approx 10 \rightarrow 15 \text{ GeV}/c$ is consistent with the fact that at hight transverse-momentum $S_{loss} \propto 1/\sqrt{p_T}$.

Conclusions

- For all the transverse-momentum values which were explored, $5 < p_T < 10 \text{ GeV}/c$, the fractional momentum loss was found to increase linearly with $(\epsilon_{Bj}\tau_0)^{3/8}L$. Moreover,
- this behavior is not observed if the scaling variable is changed to $\epsilon_{Bj}\tau_0$ or $(\epsilon_{Bj}\tau_0)^{3/4}L^2$.
- A universal (linear) functional form was found to describe the data from the different colliding systems which were analyzed.
- The same linear behavior was also observed for identified charged particles (pions, kaons, and protons).
- [1] R. Baier, Y.L. Dokshitzer, A. H. Mueller, and D.Schiff, J. High Energy Phys. 09 (2001) 033.
 [2] R. Baier Nucl. Part. Phys. Proc. 289-290 30 (2017).
 [3] A. Adare *et al.* (PHENIX Collaboration), Phys.Rev. C 93, 024911(2016).
 [4] J. Adam *et al.* (ALICE Collaboration), Phys. Rev. C 94, 034903(2016).