


demonstrates that the fragmentation fractions of charm quarks are independent of the production process and supports the hypothesis of the universality of heavy-quark fragmentation.

### Recent Belle results (PRD 97, 072005 (2018)):

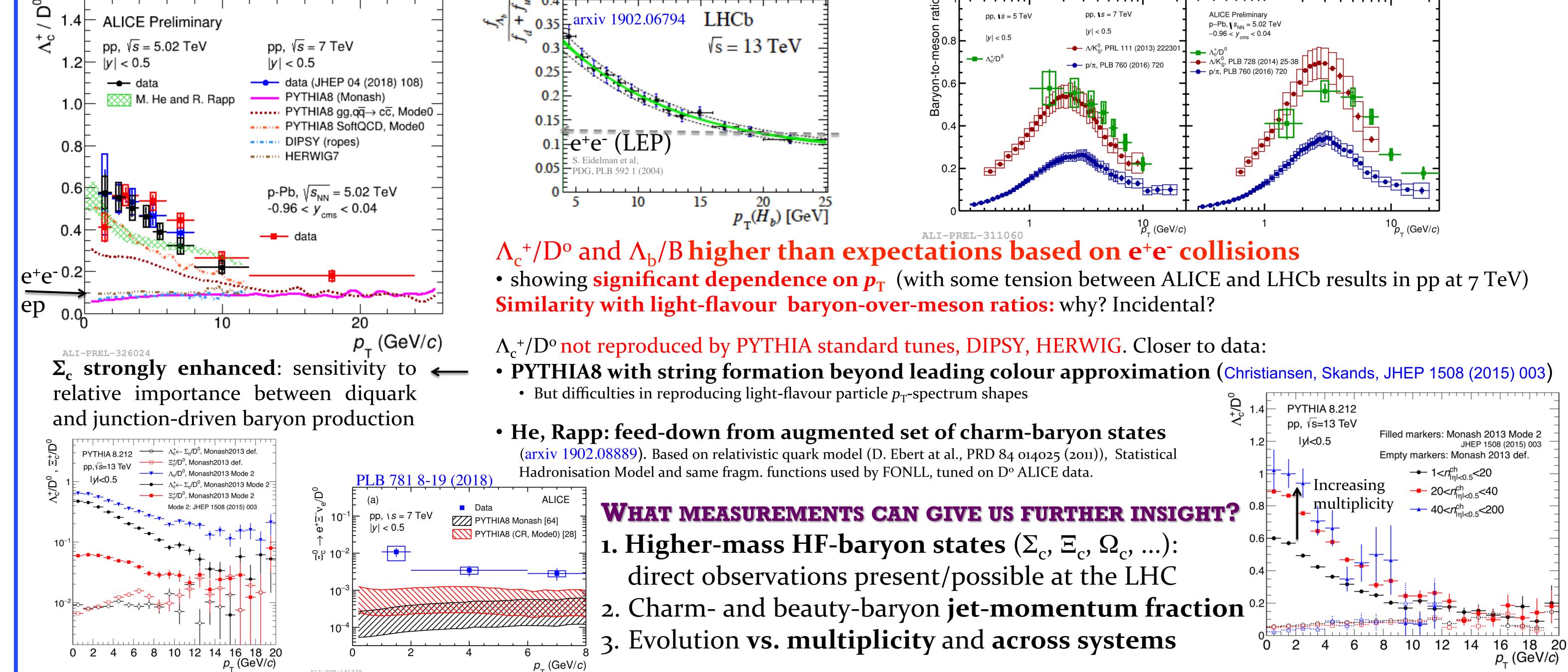
charm fragmentation to  $\Lambda_c^+$  described reasonably by PYTHIA6  $\Lambda_c$  and  $\Sigma_c$  states cross-sections support charm baryon production from diquark degrees of freedom and spin-0 diquark component for  $\Lambda_c$ 

 $\frac{\mathrm{d}\sigma^{\mathrm{D}}}{\mathrm{d}p_{\mathrm{T}}^{\mathrm{D}}}(p_{\mathrm{T}};\mu_{F},\mu_{R}) = PDF(x_{1},\mu_{F})PDF(x_{2},\mu_{F}) \otimes \frac{\mathrm{d}\sigma^{\mathrm{c}}}{\mathrm{d}p_{\mathrm{T}}^{c}}(x_{1},x_{2},\mu_{R},\mu_{F}) \otimes D_{c\to\mathrm{D}}(z=p_{\mathrm{D}}/p_{\mathrm{c}},\mu_{F})$ 

Phenomenological functions, no information/modelling of hadronisation dynamical aspects

HERA-B (pA) E653 (pA)

V E743 (pA) VA27 (pA) NA16 (pA)


E769 (pA)

√s (GeV)

# **RISING UP THE HADRONIC ENVIRONMENT: PP, (PP), AND P-PB "SMALL SYSTEMS"**

 $\mathrm{d}\sigma^\mathrm{D}$ 

... though **conclusion may need to be revisited** 



## **NUCLEUS-NUCLEUS: PROBING THE "FAMILIAR" COALESCENCE IDEA**



## **Difference between LHC and RHIC?**

- ALICE data described within uncertainties by
  - Catania model including **both coalescence and fragmentation**

What is the HF baryon-to-meson ratio "turn-on curve" from "vacuum" (e<sup>+</sup>e<sup>-</sup>) to richer **and denser hadronic environments?** Are central Pb-Pb and e<sup>+</sup>e<sup>-</sup> two "ideal" extremes?

• Statistical Hadronisation Model

• **STAR** data better described by **pure coalescence models** 

 $\Lambda_{c}^{+}$ ,  $D_{s}^{+}$  and non-strange D  $R_{AA}$  and  $v_{2}$  data require coherent description Catania: EPJC (2018) 78:348: SHM: arxiv 1901.09200; TAMU: PLB 735,445-450(2014); arXiv:1905.09216; PHSD: PRC 92, 014910 (2015)

### What are the dynamical processes beyond HQ hadronisation?

not granted that  $\Lambda_c^+$  is "enhanced" by the same mechanism in Pb-Pb and pp (w.r.t. e<sup>+</sup>e<sup>-</sup>) interplay of coalescence and colour reconnection in Pb-Pb?

are diquarks important degrees of freedom in AA?

# **Multi-heavy-flavour** baryons: a future reality beyond $\Lambda_c$ and $\Lambda_{B}$ shining era in LHC run 3?

## **Yields in central Pb-Pb**

Yield/event at mid-rapidity in 0.5% Pb-Pb at 5.5 TeV:  $\Xi_{cc}$  : 0.019 ÷ 0.38 [Bec2005], also for  $\Omega_{cc}$ 0.013 ÷ 0.02 [YM2018], ~0.03 [ZHZ2017]  $\Omega_{ccc}$ : 0.001 ÷ 0.03 [Bec2005], 3·10<sup>-4</sup> [HLZ2015]  $\Xi_{\rm bc}, \, \Omega_{\rm bc}, \, B_{\rm c} : 3.10^{-4} \div 2.2.10^{-2}$ 

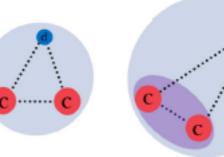
Typical overall BR of reconstructable decay chains:

- $\Xi_{\rm cc}$  : 0.1 ÷ 0.3%
- $\Omega_{\rm ccc}$ : 0.002% ÷ 0.01%

#### **References**:

Beccattini, PRL 95 022301 (2005) [Bec2005] He, Liu Zhuang PLB 746 (2015) 59-63 [HLZ2015] Zhao, He, Zhuang, PLB 771 (2017) 349-353 [ZHZ2017] Yao and Muller, PRD 97, 074003 (2018) [YM2018]

Pure coalescence particles in AA: primordial yield (from "vacuum"-like fragmentation) expected to be negligible in AA **Signature of a deconfined state...** another one, but what a wonderful one!


## **Test of coalescence and statistical-hadronisation models**

Similarities and differences with quarkonia recombination

- Statistical hadronisation [Bec2005]
- "Sudden" coalescence at hadronisation temperature, coalescence probability via Wigner function [HLZ2015], [ZHZ2017]
- Diquark formation with Potential NRQCD + Boltzmann transport of single heavy quark and bound diquark (not necessarily equilibrated) in QGP, accounting for their diffusion, regeneration and dissociation [YM2018]

## Sensitivity to diquarks and chiral symmetry restoration:

 $\Xi_{cc}^{++}$  yield sensitive to coalescence happening in a tri-quark state (more likely when chiral symmetry broken for light quarks) vs. heavy di-quark + "bare" light quark [ZHZ2017]



A sequential-formation thermometer? to probe (pre?)-hadronisation starting at different temperatures

Medium expansion  $\rightarrow$  decreasing temperature

Reduced colour screening Decreasing HQ density reduce recombination probability enhance recombination probability

Different "melting temperatures" of heavy diquarks (cc, bc, bb)  $\rightarrow$  What is the lever arm on the yields? •  $\Xi_{cc}^{++}$  rate from 0.02 (no melting) to 0.0125 ( $T_{melt}$ =250 MeV) [HLZ2015]

Low rates and branching ratios  $\rightarrow$  experimentally very challenging ... but might become accessible with future detectors (see arXiv: 1902.01211 and Musa's talk at SQM <a href="https://indico.cern.ch/event/755366/contributions/3428151/">https://indico.cern.ch/event/755366/contributions/3428151/</a>)  $\Xi_{cc}$  at the horizon already in run 3,4 at the LHC?