**Heavy Flavors** 

#### Part II - Quarkonium

A. Andronic

H. van Hees

R. Rapp

A. Rossi

D. Silvermyr



"3rd int. thing on QCD challenges from pp to AA" - Lund, Aug. 2019



Both SHM and TM reproduce the data ...d $\sigma_{c\bar{c}}/dy$  values rather different: Stat. Hadr.: 0.3-0.4 mb Transport: 0.5-0.75 mb (TAMU), 0.65-0.8 mb (Tsinghua) needs clarification important role of  $\Lambda_c$  (and excited states) T at generation: SHM: 156 MeV TM: 250 MeV (TAMU)

2

Discriminating the two pictures implies providing an answer to fundamental questions related to the fate of hadrons in a hot deconfined medium.

*Need*: experimentally: better uncertainty for  $d\sigma_{c\bar{c}}/dy$  (in Pb–Pb); access to excited startes and hopefully also exotic states, like X(3872)

3



Theoretical direction: quantum treatment (charmonium and bottomonium)

### $\Upsilon$ in Pb–Pb

A. Andronic

...allows extraction of in-medium (Cornell) potential



Transport Model (TAMU), Du, Liu, Rapp, Phys. Lett. B 796 (2019) 20

Substantial remnants of the long-range color confining force in QGP



5

ALICE, arXiv:1907.03169

## $\mathbf{J}/\psi$ and $\psi(2S)$ production in p–Pb collisions

A. Andronic



ALICE, JHEP 12 (2014) 073

(at least in first order) models give same result for  $\psi(2S)$  as for J/ $\psi$  difference predominant at low  $p_T$ ; final state effect? ...TM, TAMU: yes



Transport Model (TAMU), Du, Rapp, JHEP 1903 (2019) 015

*Need experimentally* (in reach for Run 3,4): better precision; also  $v_3$ ; separate B component;  $v_2$  of  $\psi(2S)$  ?

 $J/\psi$  vs. event activity



What is trivial here? (1st diagonal?) ...auto-correlation effects clearly there "Energy cost" similar for MB event ( $\Delta y=1$ ) and J/ $\psi$  ( $\simeq$ 6 GeV)

Similar behaviour measured for D mesons;  $\Upsilon$ ; charged part.  $p_T$ =5-6 GeV/c

What does this teach us about quarkonium (HF) production (hadronization)?



9

CMS, PRL 109 (2012) 222301

## Supplementary slides

A. Andronic

# $J/\psi$ (and D) mesons exhibit collective flow

A. Andronic



11

ALICE, PRL 119 (2017) 242301

Implies thermalization of charm quarks ...full thermalization? (high- $p_T$ ?)

#### Fractions primordial, (re)generated - energy dependence

A. Andronic



Rapp, Du, arXiv:1704.07923



Seen also with Run 1 data (5.02 TeV): ALICE, JHEP 02 (2014) 073, 06 (2015) 55

# $J/\psi$ and $\psi(2S)$ production in p–Pb collisions

A. Andronic



Du, Rapp, JHEP 1903 (2019) 015