SEARCHING FOR (NON-)RESONANT SIGNALS WITH ATLAS

Trine Poulsen

Outline

ATLAS

- Dijet angular analysis
 - Intro on whiteboard
 - Ratio analysis
- Ttbar resonance search
 - Intro on whiteboard
 - Fitting a m_{jj} spectrum
- Other projects
- Recommendations

Dijet Angular Analysis - Whiteboard Intro

TRADITIONAL DIJET ANGULAR ANALYSIS

The angular distribution of the dijets is given by χ=e^{|y1-y2|}

- Divided into **different mjj-bins**.
- The data is compared to
 PYTHIA with next-to-leading
 order QCD and EW corrections
- Combined fit over all mjj-bins

DIJET ANGULAR ANALYSIS IDEA- RATIOS

DIJET ANGULAR ANALYSIS IDEA - CHAINED CORRELATIONS

- Instead of having one nuisance parameter for each uncertainty for all mjj bins
- Make several which are connected in a chain

ATLAS

- Each nuisance parameter affect only two bins
- This way the low-mjj region will
 not overconstrain the high-mjj
 (signal) region

Idea from Alex Read

TTBAR RESONANCE SEARCH - WHITEBOARD INTRO

ATLAS

TTBAR RESONANCE SEARCH

- All-hadronic ttbar resonance search: $X \rightarrow tt \rightarrow bqq+bqq$
 - Looking for bumps in the m(ttbar) spectrum at high mass
- Kinematic selection
 - Back-to-back jets: dphi(J1,J2) > 1.6
 - s-channel resonances: dy(J1,J2) < 1.8

TTBAR RESONANCE SEARCH - BACKGROUND FIT

- Instead of comparing data to MC
 - Fit smoothly falling m_{jj} distribution with

ATLAS

$$f(x) = p_0(1-x)^{p_1} x^{p_2+p_3\log x+p_4(\log x)^2+..}$$

- First find baseline function by fitting **datalike** histograms made from MC
- Then validate on background control region
 - Inverse cut: dy(J1,J2) > 1.8

Other Projects

- Theory paper with Johan Rathsman
- **Combined Performance paper** with Millie McDonald
- Heavy Resonance Combination of ATLAS analyses
- Top tagger development with Robin Newhouse (August)
- Angular ttbar analysis (Future)

ATLAS

HIGH-PT JET ENERGY SCALE UNCERTAINTY FROM E/P MEASUREMENTS

Recommendations

Schools/Courses:

ATLAS

- CTEQ/MCnet School
- Nordic Winter School
- Terascale Statistics School
- Dark Matter school
- Introduction to High Performance Computing
- Learning and Teaching in Higher Education
- Particle Physics Phenomenology
- CERN School of Computing

BACKUP

INTRODUCTION TO ANGULAR ANALYSIS

- What is an angular analysis?
 - Looking at the angle between two outgoing objects after a collision
 - In ATLAS we look at the rapidity difference between two leading objects
- Why do an angular analysis?
 - Rutherford gold foil experiment
 - Signal has a lower rapidity difference than SM interactions

Trine Poulsen

ATLAS

Possible Signal

- Non-resonant signal
 - Contact Interaction (CI)
 - Fermion compositeness
 - Introducing scale Λ
 - Axion-like Particles (ALP)
 - Pseudo Nambu Goldstone bosons
 - <u>New Probes for Axion-like Particles at Hadron Colliders</u>
 - Non-Resonant Searches for Axion-Like Particles at the LHC
- Resonances
 - Narrow: Complementary to bump hunting
 - Broad: Difficult to do model-independent bu

ATLAS

ALP signal compared to CMS angular dijet

Doktoranddagen, Lund, 18 June 2019

DIJET ANGULAR ANALYSIS - RECAST FOR DM

 The mjj threshold was lowered to study **Dark Matter Z' model**

ATLAS

- The *χ* range was reduced to avoid tensions due to
 - discrepancy in high stat. bins (low mjj)
 - assuming correlation over whole mjj range

 $Z'_{\rm V/A}$

Other Ideas For Dijet Angular Analysis

- Use NLO **PowhegPythia** samples
 - Include PowhegPythia weights for pdf/scales/tune systematic variations
- Performance work
 - Include high-pt single particle term in combination
- Use ratio information as a ShapeFactor in HistFactory
- Unfold angular distributions
- Data driven approach

TTBAR ANGULAR ANALYSIS

- Apply methods from dijet angular analysis to ttbar events
- 8 TeV study by Katharina Behr
 - Only feasible when looking at high mass resonances (>3TeV)
 - SM ttbar t-channel dominated
- Need to **redo study** with full
 Run 2 dataset

OTHER ANGULAR ANALYSES

- Di-lepton
 - LPX wants to see if angular di-lepton analysis can help the Contact Interaction search
 - No dedicated study in Run 2 so far
 - Different from dijet search since all backgrounds come from s-channel (large t-channel contribution in dijets)
- \bar{q} γ/Z $\ell^ \ell^+$

- Dibjet
 - **B-tagging** improve sensitivity for resonances
 - Never investigated
- Di-tau

DM SUMMARY PAPER

ATLAS

Trine Poulsen

"BY-HAND" CALCULATIONS

- Calculate expected significance in each bin
 - Signal / Total uncertainty
 - Total uncertainty is the quadrature sum of the statistical uncertainty on the data and the JES uncertainty (symmetrized)
 - Correlation between different bins is not accounted for
 - Result for two highest mjj bins:
 - Original: **1.25σ** (compared to 1.22σ (HistFactory))
 - Ratio: 1.08σ
 - Result for all mjj bins:
 - Original: 2.52σ
 - Ratio: 1.18σ
- Further tests: Include all uncertainties

PRE-FIT VS POST-FIT

