When less than an hour of work changed everything (or kind of)

Jonatan Adolfsson

18 June 2019


Instead of sleeping during night. . .

... let's do some work instead

## Sending a summary of several weeks of work to my analysis group coordinators

## Slide 17:

## Correlation results

- So far, no differentiation in $p_{\mathrm{T}}$ or multiplicity
- NUA of associated particles is turned off (other efficiency corrections are still applied) to get rid of spikes in the data - did not seem to help completely $\Longrightarrow$ further measures necessary

Kaons, like-sign:
Correlation between $\Xi$ and K , like sign



Correlation between $\Xi$ and $K$, Ike sign, projection in $y$


Opposite sign:

Correlation between $\Xi$ and K , opposite sign


Correlation between $\bar{Z}$ and $K$, opposite sign, projection in $\$$


Correlation between E and K , opposite sign, projection in y


## Sending a summary of several weeks of work to my analysis group coordinators

## Slide 18:

Correlation results, cont'd
Pions, like-sign:


## Resubmitting three hours later (after changing four lines of code and waiting for it to finish)

## Slide 17:

## Correlation results

- So far, no differentiation in $p_{\mathrm{T}}$ or multiplicity
- NUA of associated particles is turned off, as well as efficiencies on trigger particles, to get rid of spikes in the data (p-dependent efficiencies on associated particles still applied)

Kaons, like-sign:

Correlation between $\mathrm{\Xi}$ and K , like sign


Opposite sign:
Correlation between $\Xi$ and $K$, opposite sign


Correlation between $\equiv$ and K , Ike sign, projection in $\phi$


Correlation between $\Xi$ and K , like sign, projection in y



## Resubmitting three hours later (after changing four lines of code and waiting for it to finish)

## Slide 18:

Correlation results, cont'd

Pions, like-sign:
Correlation between $\Xi$ and $\pi$, like sign


Opposite sign:




Wait, what is this?

## Let's move to the whiteboard

## Strangeness enhancement



## Measuring correlations

Same-event correlation between $\Xi$ and $\pi$, like sign



Mixed-event correlation between $\varepsilon$ and $\pi$, like sign


Correlation between $\Xi$ and $\pi$, like sign


Correlation between $\Sigma$ and $\pi$, opposite sign


## How do we find the 三:s?

After selecting cascades and applying a lot of cuts, we get something like this:


And the associated particles?

TPC:


TOF:


- Clean at low $p_{\mathrm{T}}$, at higher $p_{\mathrm{T}}$, the tracks mix quite a lot
- I developed a method to account for this without applying strong rejection cuts $\Longrightarrow$ still being evaluated
- If anyone is interested, I can show it to you later


## Results and their implications

$\left(\Xi^{-}-K^{-}\right)+\left(\Xi^{+}-K^{+}\right) / 2:$
Correlation between $\Xi$ and $K$, like sign



Correlation between $\Xi$ and K , like sign, projection in y

$\left(\Xi^{-}-K^{+}\right)+\left(\bar{\Xi}^{+}-K^{-}\right) / 2:$
Correlation between $\Xi$ and $K$, opposite sign


Correlation between $\mathrm{\Sigma}$ and K , opposite sign, projection in $\phi$


Correlation between $\Xi$ and K , opposite sign, projection in y


## Results and their implications

$\left(\Xi^{-}-\pi^{-}\right)+\left(\bar{\Xi}^{+}-\pi^{+}\right) / 2:$
Correlation between $\Xi$ and $\pi$ ，like sign


Correlation between $\Xi$ and $\pi$ ，like sign，projection in $y$

$\left(\right.$ 三一 $\left.-\pi^{+}\right)+\left(\overline{三 二}^{+}-\pi-\right) / 2$.
Correlation between $\Xi$ and $\pi$ ，opposite sign


Correlation between $\Xi$ and $\pi$ ，opposite sign，projection in $\phi$


Correlation between $\Xi$ and $\pi$ ，opposite sign，projection in $y$


## Results and their implications

$$
\left(\bar{三}^{-}-\underset{\text { Corelation between } \overline{\bar{\Sigma}}}{\bar{p})}+\left(\overline{\bar{A}}^{+}-p\right. \text { p, ikes sign }\right.
$$



Correlation between $\Xi$ and $p$, like sign, projection in $\phi$


Correlation between $\Xi$ and $p$, like sign, projection in $y$



## What happens next?

First things first:

- Cross-checks (this is partly a new method, after all)
- Apply efficiency corrections
- Run on more data
- Deeper collaboration with the Munich group
- And of course: get some physics out of this!


## What happens next?

Then bring this to the world:

## ALICE Physics Week

Prague, 22-26 July 2019
Faculty of Nuclear Sciences and Physical Engineering Czech Technical University in Prague



And possibly:


## Take home messages

Even small things may have a huge impact on the results, and possibly give you new opportunities!

So when you are struggling with your code and feel like the world hates you, don't give up - there is light at the other end of the tunnel!

Thank you for your attention!

