

Digestible Dark Dijets and other Delicacies

Doktoranddagen, Lund, June 2019 Eva Brottmann Hansen

Project Overview

• Performance work: In-situ jet calibration

- In particular combination of in-situ methods for large-R jets
- Have done this since QT and been trying to get out of it for a year now

• Upgrade work: gFEX

- An electronics board that will be part of the current upgrade of the ATLAS Level-1 Calorimeter Trigger
- Lower granularity, but info from full calorimeter available
- Will improve triggering on
 - heavy, boosted objects
 - Missing transverse energy
 - Interesting heavy ion collisions
- I work on developing online control software for the board
- Analysis: Dark dijet resonance search
 - This is what I will talk about today!

School Recommendations

• CERN School of Computing

- Two weeks in Madrid
- Thorough introduction to many important concepts in (and outside of) HEP
- International School of Triggering and Data Acquisition (ISOTDAQ)
 - Ten day school in Vienna
 - Half lectures / half lab-work (e.g. FPGA-programming 😇)

GEANT 4 course

- One week here at Lund + project
- Learn to make a simple mock-up simulation of your favorite detector
- Nordic Detector School
 - One week in Copenhagen, one week in Helsinki, project work after
 - Fun, fun, fun
- Distributed Computing (COMPUTE)
 - 16 hours lectures/exercises over four weeks + cool project at the end
 - Good ECTS value for work hours

Eva Hansen

Analysis: Dark Jet Resonance Search

Eva Hansen

4

Motivation: Complex Dark Matter

LUND

- Direct and indirect WIMP searches have come up empty so far
- Some cosmological simulations point towards self-interacting dark matter (DM)
 - E.g. composite DM arising from hidden sector with confinement
- Combined with asymmetric DM production, could explain mass and number density of DM and Baryons
- Requires heavy mediator linking hidden sector to visible sector
 - → We might be able to **produce and detect dark jets**!

the Standard Model	Mediator	Dark sector
$\gamma, g, l, q \dots$ $\pi, \rho, p \dots$	$X, Z' \dots$	$\gamma', g', q' \dots$ $\pi_d, \rho_d, p_d \dots$
$SU(3) \times SU(2) \times U(1)$		SU(N)' or $SU(N)' \times U(1)'$ or

Eva Hansen

6/18/19

Eva Hansen

Life time

6

Motivation: Bench Mark Scenarios

- Different hidden sector models can lead to very different detector signatures
- Composition of **visible** and **invisible** partons in the jet dependent on parameter choice:
 - Exotic I: Displaced vertices, emerging jets
 - Exotic II: A fraction of dark mesons in a jet are stable and fraction decays promptly to Standard model particles
- We target Exotic II like models:
 - Idea: Look for dijet resonance using substructure
 - Based on arXiv:1712.09279
- Four models implemented in Pythia Hidden Valley process
 - Parameters chosen to be representative of different types of DM
 - Details in backup

Signal Selection Strategy

- Charged track multiplicity *ntrk* is strongest discriminating variable for a most models
 - Not true for all though depends on coupling constant and decay time
- No upper limits exist on cross section, coupling, sensitivity
- Two signal regions:
 - SR1: High sensitivity, very pure, based on strict ntrk cut
 - SR2: More inclusive, less sensitive based on softer cuts on *ntrk* and *Emfrac*

Generator-level results, no detector simulation:

Signal Region 1: Challenge

- Best sensitivity for a range of models obtained with very strict cut
- Strict *ntrk* cut significantly sculpts the background dijet mass spectrum
- Solution: Decorrelate *ntrk* from dijet mass!

Signal Region 1: Decorrelation method

- "kNN method" decorrelates a discriminating variable from other variables
 - Described and tested in for W-tagging in ATL-PHYS-PUB-2017-004
- Pinciple:
 - Choose a substructure variable with good clissification power (here ntrk)
 - Decide on a fixed background single jet efficiency (0.5%, giving a signal eff. of 30%)
 - Evaluate the cut value on *ntrk* that gives desired bkg. eff. in bins of p_{T} and m_{jj}
 - Fit the distribution using the *k-nearest neighbours* (kNN) algorithm
 - For each jet, the new decorrelated observable is computed as $ntrk_{KNN} = ntrk-ntrk^{(0.5\%)}$
- Here ntrk^{kNN} is defined from data in a control region with signal efficiency ~ 0.4 %

Signal Region 1: Results (preliminary)

- Gives a smoothly falling spectrum up to ~4 TeV in MC
- Breaks down at higher mjj because of too low statistics in data sample
- Cut: Leading and sub-leading jet $ntrk^{kNN} > 5$
 - Background efficiency: 0.008 %
 - Signal efficiency (all tested models): 25 %

Conclusion and Plans

• Loads of uncovered phase space in hidden sector models

- We can probe part of it by searching for dark jet
- Many fun challenges for jet substructure fans
- Analysis to-do list:
 - Evaluate systematics
 - Optimise background fit
 - Validate with signal injection
- Other plans:
 - Write gFEX software
 - Write thesis

Backup

• Table of benchmark models

arXiv:1712.09279

	N_d	n_f	$egin{array}{c} \Lambda_d \ ({ m GeV}) \end{array}$	$\widetilde{m}_{q'}$ (GeV)	$\begin{array}{c} m_{\pi_d} \\ (\text{GeV}) \end{array}$	$\begin{array}{c c} m_{\rho_d} \\ (\text{GeV}) \end{array}$	π_d Decay Mode	ρ_d Decay Mode
A	3	2	15	20	10	50	$\pi_d \to c\bar{c}$	$ \rho_d \to \pi_d \pi_d $
B	3	6	2	2	2	4.67	$\pi_d \to s\bar{s}$	$ \rho_d \to \pi_d \pi_d $
C	3	2	15	20	10	50	$\begin{array}{c} \pi_d \to \gamma' \gamma' \text{ with} \\ m_{\gamma'} = 4.0 \text{ GeV} \end{array}$	$ \rho_d \to \pi_d \pi_d $
D	3	6	2	2	2	4.67	$ \begin{array}{l} \pi_d \rightarrow \gamma' \gamma' \text{ with} \\ m_{\gamma'} = 0.7 \text{ GeV} \end{array} $	$ \rho_d \to \pi_d \pi_d $

Backup

- Sensitivity distribution of *ntrk*^{kNN}
- Cut at peak sensitivity does not leave enough background events to fit

