Characterisation of the QGP with ALICE

Omar Vázquez

Doktoranddagen June 18, 2019

Outline

(1) Characterisation of the QGP with ALICE

- Introduction
- ALICE at the LHC
- Results on soft physics
- Results on hard physics
(2) Summary of activities during my first year and near future plans
- Summary

Introduction

History of AA collision

1. Initial collision

Nuclear collisions and the QGP expansion

- LQCD calculations predict a deconfinement transition from hadronic matter to QGP at an energy density of about $1 \mathrm{GeV} / \mathrm{fm}^{3}$ Let. Notes Phys. 583 209-249(2002)
- Currently calculation of LQCD set the transition temperature in the range between $155-160 \mathrm{MeV}$ Phys. Rev. D 90 094503(2014)

History of AA collision

1. Initial collision

Nuclear collisions and the QGP expansion

- LQCD calculations predict a deconfinement transition from hadronic matter to QGP at an energy density of about $1 \mathrm{GeV} / \mathrm{fm}^{3}$ Let. Notes Phys. 583 209-249(2002)
- Currently calculation of LQCD set the transition temperature in the range between $155-160 \mathrm{MeV}$ Phys. Rev. D 90 094503(2014)

2. Equilibrated QGP

- Measurements of direct photons at the LHC revealed a temperature of an equilibrated QGP of about 297 MeV
- Measurements of jets or high momentum hadrons can provide information about energy-loss in the QGP
Phys. Lett. B754 (2016)

History of AA collision

1. Initial collision

Nuclear collisions and the QGP expansion

- LQCD calculations predict a deconfinement transition from hadronic matter to QGP at an energy density of about $1 \mathrm{GeV} / \mathrm{fm}^{3}$ Let. Notes Phys. 583 209-249(2002)
- Currently calculation of LQCD set the transition temperature in the range between $155-160 \mathrm{MeV}$ Phys. Rev. D 90 094503(2014)

2. Equilibrated QGP

- Measurements of direct photons at the LHC revealed a temperature of an equilibrated QGP of about 297 MeV
- Measurements of jets or high momentum hadrons can provide information about energy-loss in the QGP
Phys. Lett. B754 (2016)

3. Chemical freeze-out

High multiplicity pp \& p-P

- Particle composition is fixed and ${ }^{\text {collisions }}$ inelastic interactions cease Phys. Lett. B673 (2009)

4. Kinetic freeze-out

- Final states decouple from the system

ALICE at the LHC

ALICE at the LHC

The dedicated experiment at the LHC for tracking and low-momentum particle identification in highmultiplicity environments

ALICE at the LHC

ALICE at the LHC

TPC

- Gas-filled cylindrical volume

- Vertex reconstruction, tracking, PID (d $E / \mathrm{d} x$)
- $|\eta|<0.9$

$\mathbf{0} 1$	3	10	20	$p_{\mathrm{T}}(\mathrm{GeV} / c)$

ALICE at the LHC

TOF

- Resistive plate chamber
- PID (time-of-flight)
- $|\eta|<0.9$

ALICE at the LHC

HMPID

- Seven identical proximity focusing RICH (Ring Imaging Cherenkov) counters
- PID (θ_{Ch})
- ~5\% of TPC acceptance

Results on soft physics

Identified particle spectra

- The p_{T} spectra is the result of the combination of independent analyses employing the ITS, TPC, TOF, and HMPID sub detectors
- From peripheral to central collisions, a flattening of the spectra is observed around $1 \mathrm{GeV} / c$. This effect follows a mass ordering
- Within the hydrodynamics picture, this effect is understood as a progressively stronger radial flow with increasing centrality that boosts low $-p_{\mathrm{T}}$ particles towards high- p_{T} values by a common velocity field
Omar Vázquez
Doktoranddagen

Identified particle spectra

 oraering

- Within the hydrodynamics picture, this effect is understood as a progressively stronger radial flow with increasing centrality that boosts low- p_{T} particles towards high $-p_{\mathrm{T}}$ values by a common velocity field

Blast-wave model

\square This hydrodynamical-based model is used to characterise the evolution of the spectral shapes with centrality at the kinetic freeze-out by performing a simultaneous fit of the spectra with a blast-wave function
Phys. Rev. C 48, 2462
\square Three free parameters:
D Freeze-out temperature: $T_{\text {kin }}$
\square Average transverse velocity: $\left\langle\beta_{\mathrm{T}}\right\rangle$Exponent of the velocity profile: n
$E \frac{d^{3} N}{d p^{3}} \propto \int_{0}^{R} m_{T} I_{0}\left(\frac{p_{T} \sinh \rho}{T_{k i n} / \mathrm{K}_{\mathrm{K} / \mathrm{p}}}\right) K_{1}\left(\frac{m_{T} \cosh \rho}{T_{k i n}}\right) r d r$
$m_{T}=\sqrt{m_{0}^{2}+p_{T}^{2}} \quad \rho=\tanh ^{-1} \beta_{T} \beta_{T}=\beta_{s}\left(\frac{r}{R}\right)^{n}$

Blast-wave model

Results on hard physics

- For $p_{\mathrm{T}} \lesssim 10 \mathrm{GeV} / c$ protons are less suppressed than pions or kaons, which is consistent with the mass ordering of radial flow effects
- Above $p_{\mathrm{T}} \approx 8 \mathrm{GeV} / c$ all particle species are equally suppressed

Summary of activities during my first year and near future plans

- CERN school of computing
- Detector school (Copenhagen-Helsinki)
- Indian-summer school of Physics 2018:Phenomenology of Hot and Dense Matter For Future Accelerators
- Poster presentation: Energy density and path-length dependence of the fractional momentum loss in heavy-ion collisions at $\sqrt{s_{\mathrm{NN}}}$ from 62.4 to 5020 GeV . Phys. Rev. C 97, 014910
ㅁ International school of subnuclear physics (Erice, Italy, 21/06/2019)
- Particle physics phenomenology
- CERN school of computing
- Detector school (Copenhagen-Helsinki)
- Indian-summer school of Physics 2018:Phenomenology of Hot and Dense Matter For Future Accelerators
- Poster presentation: Energy density and path-length dependence of the fractional momentum loss in heavy-ion collisions at $\sqrt{s_{\mathrm{NN}}}$ from 62.4 to 5020 GeV . Phys. Rev. C 97, 014910
- International school of subnuclear physics (Erice, Italy, 21/06/2019)
- Particle physics phenomenology
- Data analysis work
mamainanework
- Production of $\pi / \mathrm{K} / \mathrm{p}$ as a function of event multiplicity in the rTPC in pp collisions at $\sqrt{s}=13 \mathrm{TeV}$
- Recently discussed within the ALICE collaboration
- Production of $\pi / \mathrm{K} / \mathrm{p}$ as a function of event multiplicity and transverse spherocity in pp collisions at $\sqrt{s}=13 \mathrm{TeV}$
- CERN school of computing
- Detector school (Copenhagen-Helsinki)
- Indian-summer school of Physics 2018:Phenomenology of Hot and Dense Matter For Future Accelerators
- Poster presentation: Energy density and path-length dependence of the fractional momentum loss in heavy-ion collisions at $\sqrt{s_{\mathrm{NN}}}$ from 62.4 to 5020 GeV . Phys. Rev. C 97, 014910
- International school of subnuclear physics (Erice, Italy, 21/06/2019)
- Particle physics phenomenology
- Data analysis work
namanaly
- Production of $\pi / \mathrm{K} / \mathrm{p}$ as a function of event multiplicity in the rTPC in pp collisions at $\sqrt{s}=13 \mathrm{TeV}$
- Recently discussed within the ALICE collaboration
- Production of $\pi / \mathrm{K} / \mathrm{p}$ as a function of event multiplicity and transverse spherocity in pp collisions at $\sqrt{s}=13 \mathrm{TeV}$

- Participation on conferences

- LHCP2019 (Puebla, Mexico, 20/05/2019)
- Poster presentation: ALICE results on radial flow in small and large systems
- EPS-HEP (Ghent, Belgium, 10/07/2019)
- Parallel talk: Baryon production from small to large collision systems at ALICE
- ALICE physics week (Prague, Czech Republic, 22/07/2019)

EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH

Production of charged pions, kaons and (anti-)protons in $\mathrm{Pb}-\mathrm{Pb}$ and inelastic pp collisions at $\sqrt{s_{\mathrm{SN}}}=5.02 \mathrm{TeV}$

ALICE CollabarationE

2018 CERN Tor the benefíco the ALLCE Collaborai
 .Se Apmadix A forthe be of collinonion

EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH
\square

π, K and p production as a function of multiplicity in pp collisions $\sqrt{s}=13 \mathrm{TeV}$

ALICE CollaborationE

© 2018 CERN for the benefin of the ALICE Collaboration
Reproduction of this antide or parts of it is allowed as specififd in the CC.BY 4.0 license.

Soon to be published
In preparation

Summary

- The ALICE experiment has proven to make precise measurements of tracking and PID down to $p_{\mathrm{T}} \approx 100 \mathrm{MeV} / c$ allowing the exploration of the non-perturbative QCD regime
- By measuring the p_{T} spectra of identified particles in $\mathrm{Pb}-\mathrm{Pb}$ collisions at the unprecedented energy of $\sqrt{s_{\mathrm{NN}}}=5.02 \mathrm{TeV}$, the creation of the QGP with the largest radial flow (about 2% larger than in $\mathrm{Pb}-\mathrm{Pb}$ collisions at $\sqrt{s_{\mathrm{NN}}}=2.76 \mathrm{TeV}$) is confirmed
- Measurements of the R_{AA} revealed that pions, kaons and protons are equally suppressed. This suggest that jet quenching does not produce signatures that affect the particle composition
- The first year of my PhD has been a fruitful one (schools, conferences and analysis). In the near future my goal is to push for new ideas/measurements within ALICE and aim for publications

Thank you!

Avocados for guacamole and Agave for the tequila Pictures taken from the garden last time I was at home

Thank you!

Avocados for guacamole and Agave for the tequila Pictures taken from the garden last time I was at home

