Hadronization

Idea: what to follow up on and how?

Concrete plans for QM19

- Working on π , K, p (Omar), Λ , K0s (Oliver), Φ (Adrian), Ξ (Peter) as a function of transverse spherocity (pT=1) and R_{τ}
- Working on Ξ - π , Ξ -K, and Ξ -p (Jonatan) correlations
- After QM, plan to focus on Ф and Ξ (Jonatan, Adrian and Peter)

18/9-2019

Hadronization: How does the hadronization process depend on the properties of the hadronizing system?

How can we distinguish statistical hadronization and strings?

In the string model: ϕ comes with extra kaons (depending on original $q\overline{q}$ pair)

- 0.6 charged kaon per phi (+ 0.6 neutral kaon) ~ 1.2 kaons per phi
- Clear prediction
- Rapidity correlations give additional information

Creation of one ϕ in string or rope :

• Via 2 $s\bar{s}$ breakups: $P(1\phi) \propto P(s\bar{s})^2 \cong (1/7)^2$

Old measurement (thanks to Gösta)

Volume 163B, number 1,2,3,4

PHYSICS LETTERS

21 November 1985

EVIDENCE FOR POMERON SINGLE-QUARK INTERACTIONS IN PROTON DIFFRACTION AT THE ISR

R608 Collaboration

Fig. 2. Distributions in cosine of Gottfried-Jackson angles of individual particles in the forward systems; (a)-(c) Λ^0 , ϕ^0 , K^+ in reaction 1; (d)-(f) Λ^0 , $\bar{\Lambda}^0$, p in reaction 2. Solid lines are the results of Monte Carlo calculations for isotropic phase-space events passed through our apparatus acceptance.

18/9-2019 Hadronization

5

How can we distinguish statistical hadronization and strings?

Creation of one ϕ in string or rope :

• Via 2 $s\bar{s}$ breakups: $P(|\phi) \propto P(s\bar{s})^2 \cong (1/7)^2$

Creation of 2 **\phi**s in string or rope:

• Via 3 $s\bar{s}$ breakups: $P(2\phi) \propto P(s\bar{s})^3$

Creation of 2 decorrelated **\$\phi\$**s:

- Strings: via 4 s̄s̄ breakups: P(2φ) ∝ P(s̄s̄)⁴
- Stat. hadr. / other uncorrelated: P(2φ) ∝ P(1φ)²

Generally:

- String model: P(2φ) > P(Iφ)²
- Uncorrelated: $P(2\phi) = P(1\phi)^2$

How can we distinguish statistical hadronization and strings?

Creation of one ϕ in string or rope :

• Via 2 $s\bar{s}$ breakups: $P(|\phi) \propto P(s\bar{s})^2 \cong (1/7)^2$

Creation of 2 \$\phi\$s in string or rope:

• Via 3 $s\bar{s}$ breakups: $P(2\phi) \propto P(s\bar{s})^3$

Creation of 2 decorrelated **\$\phi\$**s:

- Strings: via $4 \, \mathbf{s} \, \bar{\mathbf{s}}$ breakups: $P(2\phi) \propto P(\mathbf{s} \, \bar{\mathbf{s}})^4$
- Stat. hadr. / other uncorrelated: P(2φ) ∝ P(1φ)²

Generally:

- String model: P(2φ) > P(Iφ)²
- Uncorrelated: $P(2\phi) = P(1\phi)^2$

Strangeness production: strings, junctions, ropes, ...

Creation in string or rope:

- Via diquark production
- Suppressed rate (high diquark mass)
- Accompanied by strange antibaryon nearby in rapidity
- → Flavour-baryon number correlated

Creation in junction-antijunction:

- Via 2 ss breakups
- Not that suppressed
- Accompanied by strange meson(s)
- Balancing baryon potentially further away in rapidity
- Flavour-baryon number decorrelated

Strangeness production: strings, junctions, ropes, ...

- In the string / rope case in PYTHIA: the antibaryon is at least single-strange
- With junctions: not so much
- Relevant observables:
 - E-K correlation
 - Ξ - \bar{p} correlation
 - Ξ-Ē correlation

Xi-Kaon correlations Stronger as predicted

Xi-antiXi correlations Weaker as predicted

But still very strong!!!!

Other things

- Rope
 - Does it just enhance high mass states and preserves correlations or can strangenes be exchanged between strings
- Stat. Hadronization
 - Can one get "predictions" →
 Decorrelations

Outlook

- Strangeness correlations seems to me an attractive way to pursue the origin of strangeness enhancement
 - More of the same? Strong local correlations
 - Or new channels/volume effects? Weaker local correlations → more heat bath (a la junction)