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Trigger object Level Analysis

* Purpose: TLA searches for low-mass dijet resonances (450-1800 GeV)
using ATLAS detector at LHC.

* Issue: LHC searches for lighter resonances with small cross-sections have
been hampered by restrictions in data-taking rate -> dijet events with an
Invariant mass below 1 TeV are largely discarded by the trigger system.

« Solution: implementation of a novel data technique -> data analysis uses
only a fraction of the full event that is saved in a dedicated data stream
and reconstructed within the software trigger system. These are the "trigger
objects".




Validate HistFitter framework for setting limits

» Task: switch to using HistFitter [1] (frequentist stats framework)
fo)r the limit calculation (instead of the Bayesian approach used until no
w).

» Bayesian (BAT) and Frequentist (HistFitter) approaches to limit setting
are a bit different:

* limits obtained in the Frequentist approach are tighter than the Bayesian one,

« HistFitter requires less resources to run.

[1] https://twiki.cern.ch/twiki/bin/viewauth/AtlasProtected/HistFitterTutorial



https://twiki.cern.ch/twiki/bin/viewauth/AtlasProtected/HistFitterTutorial

Methods

* In absence of any excess, the observed data and predicted background are
used to set model-independent limits on new phenomena.

« The analyzed dataset has an integrated luminosity of up to 29.3 fb-! and
a centre of mass of 13 TeV.

 For this validation, limits on the cross section are set on a generic model
where the signal is modeled as a gaussian contribution to
the observed mjj distribution:
e width = 7%;
« peak 800 GeV;
 mass range: from 531.0 to 2081.0 GeV.



Methods

 To validate BAT and HistFitter, a 95% credibility-level upper
limit on the cross section has been considered.

* The expected limits are calculated Iincluding systematic
uncertainties on both signal and background model:

« Background systematic uncertainties:
« Uncertainty for choice of fit function;
« Uncertainty for fit parameter values.

« Signal systematic uncertainties:

« Uncertainties on the jet energy scale (JES);
« Uncertainties on the luminosity.



Results

 Background systematic uncertainties:

Limits
Configuration
Bayesian HistFitter
No Systematic 6118.52 6117.71
Fit Function choice only 6118.54 6117.51
Fit parametervaluesonly 6257.82 6257.71

* The results from BAT and HistFitter are compatible within 1%.




Results

« Signal systematic uncertainties:

Configuration

Limits

Bayesian

Jet Energy Scale only

Luminosity only

6145.35

6333.07 6127.04
~

HistFitter

6117.71

* The two methods are compatible

The differenceis about 3%
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Motivation

eCurrently, Monte Carlo detector simulation at LHC can occupy up to 40 % of
World Wide LHC computing grid’s resources. This percentage is set to grow when
LHC luminosity will be further increased.

eIt is necessary to find a new approach for improving the execution time of
simulations without sacrificing the quality of simulated data.

eThe purpose of this preliminary study is to investigate how to reduce the Geant4
simulation execution time.

*This is achieved by running standalone Geant4 simulations, whose Ferformance
can then be evaluated independently from other libraries and control frameworks.



Method

Several factors can have an impact on the compilation process:

« Static linking is expected to lead to a faster execution, and will be compared here to the
traditional dynamic linking.

« Compiler optimization. Machine code can be optimized by:
1. avoiding redundancy (reuse instead of recompute data);
2. reducing amount of code to fit as much as possible into CPU cache;

3. preferring sequential code instead of many jumps, parallelizing as much as possible (e.qg.
loops), etc.

« Compiler version.



Method

» As a benchmark, standalone G4 simulation with two different geometries (from A. Dotti [1]) has been used. 50 GeV
pions are used as source particles. The number of simulated primaries varies according to the detector geometry.

» Compiled G4 (version 10.5) both statically and dynamically.
» Three versions of the GCC compiler, namely 4.8.5, 6.2.0 and 8.2.0, have been used for these investigations.

« A comparison between four GCC optimization levels (Os, 01, 02 and O3) have also been performed. The default
level used by most build systems is -0O2 and it will be used as reference.

» The computations were carried out on a standalone machine at CERN IT and on a university cluster in Lund.

» CPU and memory resources on both machines (standalone and cluster) were exclusively allocated to the
simulations and not shared with any concurrent process other than the minimum OS tasks.

[1] https://qitlab.cern.chiadotti/GeantdHepExpMTBenchmark
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Static vs dynamic performance with full detector geometry

Dynamic vs Static Geant4
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The computations were carried out on CERN
machine considering 5000 initial events and using
4 threads. The computation was repeated 3 times
for each configuration.

The static approach, for all the GCC versions,
reduces the execution time by more than 10% in
S0me cases.

Regardless of the build approach, switching from
GCC 4.8.5 to GCC 6.2.0 and GCC 8.2.0 results in
an average of 30% improvement in the execution
time.

A static build with GCC 8.2.0 leads to an
improvement of almost 34% with respect to the
default configuration {GCC 4.8.5, dynamic, O2).

The different GCC optimizations do not seem to
have visible effects on the execution time.
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Static vs dynamic performance with Inner Detector geometry

Dynamic vs Static Geant4
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The computations were carried cut on CERN
machine considering 50000 initial events and
using 4 threads. The computation was repeated
3 times for each configuration.

The static approach, for all the GCC versions,
reduces the execution time by more than 9% in
some cases.

The impact of different compilers is not relevant
as in the full geometry case.

The different GCC optimizations do not seem to
have visible effects on the execution time.
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The improvement between static and
dynamic linking is confirmed in all cases
on both machines.
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Conclusions

Execution time for simulations based on Geant4 can be significantly improved by changing
the default build method: linking Geant4 and its associated libraries statically can produce
binaries that run even 10% faster.

Switching from gcc 4.8.5 to 8.2.0 results in a reduction of the execution time up to 25%.

Static libraries are embedded into the executable, resulting in a much larger size (~700 MB)
than the corresponding dynamically-linked code (~ 2.5 MB).

The different GCC optimizations do not seem to have visible effects on the execution time.
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Courses & conference

« Computational Programming with Python | .

 Scientific Computing with Python and
Fortran

e CHEP 2019 - Adelaide




Thank you for your attention!



Backup

Computing resources

CERN standalone machine

» CPU: Intel Xeon E5-2630 v3 2.40GHz
* Architettura (?)
» 16 cores / 32 threads

+ 20 MB Cache (L1: 64 KB, L2: 256 KB, L3:

20 MB)
+ 64 GB RAM
+ Filesystem: XFS
* QOperating System: CentOS 7

Compute node on Lund University cluster

CPU: Intel Xeon E5-2650 v3 2.30GHz

10 cores / 20 threads

25 MB Cache (L1: 64 KB, L2: 256 KB, L3: 25 MB)
128 GB RAM

Filesystem: IBM General Parallel File System
(GPFS)

Operating System: CentOS 7
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execution code memory compile
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