Precision calculation in high energy particle collisions

Timea Vitos Supervisor: Rikkert Frederix

Lund University Theoretical High Energy Physics

> PhD Talks 2020, February 5

Outline

1. Particles and interactions in the SM

2. Overview of particle collisions

3. Higher-order corrections

1. Particles and interactions in the SM

2. Overview of particle collisions

3. Higher-order corrections

Particles in the Standard Model

- Two types of particles: Fermions and bosons
- Fermions: spin- $\frac{1}{2}$ particles
 - Quarks: strong interaction (QCD), electromagnetic and weak interaction (EW)
 - Leptons: electromagnetic and weak interaction

Standard Model of Elementary Particles

- Bosons: integer spin particles
 - Gauge bosons:
 γ, W[±], Z (electroweak),
 g (strong)
 - Higgs boson: gives mass to particles

Energy scales

Mass of lightest quark (up):	$m_u \approx 2 { m MeV}$
Mass of lightest hadron (pion):	$m_\pi pprox$ 140 MeV
Breakdown of perturbative QCD:	$pprox 1 { m GeV}$
Mass of heaviest quark (top):	$m_t pprox 173 { m GeV}$
Energy of the LHC collisions:	7-13 TeV

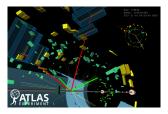


Figure: ATLAS detector image.

Energy scales

$m_u pprox 2 \mathrm{MeV}$
$m_\pi pprox$ 140 MeV
$pprox 1 { m GeV}$
$m_t pprox 173~{ m GeV}$
7-13 TeV

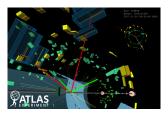


Figure: ATLAS detector image.

QCD coupling constant Asymptotic freedom

- QCD parametrized by quark masses and coupling constant α_S
- $\circ\,$ Upon renormalization, the coupling constant α_S becomes energy dependent
- At low energies (large distances), QCD is strong
- At large energies (short distances), QCD is weaker
- $\circ \ \rightarrow \ \mathsf{Asymptotic} \ \mathsf{freedom}$

¹S. Bethke. Prog. Part. Nucl. Phys., 58, (2007).

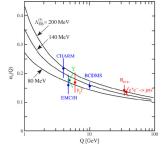


Figure: Figure from S. Bethke 1.

Timea Vitos

Precision at high energies

1. Particles and interactions in the SM

2. Overview of particle collisions

3. Higher-order corrections

Particle collisions at the LHC

A sea of events for pp collisions

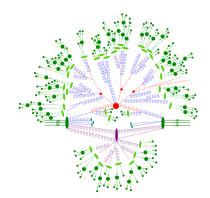


Figure: Schematic event generation with Sherpa.

¹E. Bothmann et al. SciPost Phys., 7, (2019).

The full process:

- Hard process (high energy)
- Parton shower (radiated quarks and gluons)
- Hadronization (low energy)
- High energy processes calculated with perturbation theory

Timea Vitos

Particle collisions at the LHC

A sea of events for pp collisions

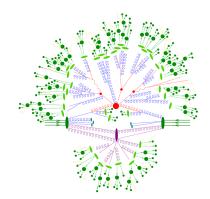
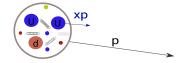


Figure: Schematic event generation with Sherpa.

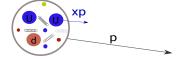
¹E. Bothmann et al. SciPost Phys., 7, (2019).

The full process:


- Hard process (high energy)
- Parton shower (radiated quarks and gluons)
- Hadronization (low energy)
- High energy processes calculated with perturbation theory
- Probability for reaction to occur \propto cross section σ

Timea Vitos

Cross section of the collision


The factorization formula

• Parton model of hadrons

Cross section of the collision

- Parton model of hadrons
- LHC collisions: $pp \rightarrow n$, where *n* is some final state
- Master formula for factorization of total cross section

$$\sigma(pp \rightarrow n) = \sum_{a,b} \int_0^1 \mathsf{d} x_1 \mathsf{d} x_2 f_{a/p}(x_1, \mu_F) f_{b/p}(x_2, \mu_F) \hat{\sigma}(ab \rightarrow n)$$

• $f_{a/p}(x_i, \mu_F)$: parton distribution function • $\hat{\sigma}(ab \rightarrow n)$: parton-level cross section

Cross section of the collision

xp d , p

- Parton model of hadrons
- LHC collisions: $pp \rightarrow n$, where *n* is some final state
- Master formula for factorization of total cross section

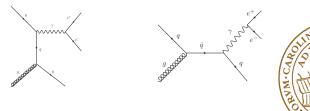
$$\sigma(pp \to n) = \sum_{a,b} \int_0^1 dx_1 dx_2 f_{a/p}(x_1, \mu_F) f_{b/p}(x_2, \mu_F) \hat{\sigma}(ab \to n)$$

$$f_{a/p}(x_i, \mu_F) : \text{ parton distribution function}$$

$$\hat{\sigma}(ab \to n): \text{ parton-level cross section}$$

Timea Vitos

0


Cross section of the collision

Parton-level cross section

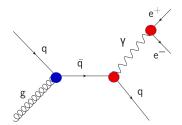
• The cross section is given by

$$\hat{\sigma}(ab
ightarrow n) = \int \mathrm{d} \Phi_n rac{1}{2 s x_a x_b} |\mathscr{M}|^2 (\Phi_n, \mu_R, \mu_F)$$

- Φ_n : *n*-body phase space
- o *M*: invariant amplitude, obtained with perturbation theory
- Monte Carlo matrix-element generators: MADGRAPH5_aMC@NLO, POWHEG, ALPGEN
- Example: $pp \rightarrow e^+e^- + jet$ at tree-level:

1. Particles and interactions in the SM

2. Overview of particle collisions


3. Higher-order corrections

Perturbative QCD and QED+weak

Obtaining precise results

- Expansion in QCD coupling constant α_S and electromagnetic coupling constant α (and weak couplings)
- Cross section in powers of the coupling constants:

$$\sigma = \underbrace{\sigma^{(0,0)}}_{\text{LO}} + \underbrace{\alpha_{S}\sigma^{(0,1)}}_{\text{NLO QCD}} + \underbrace{\alpha\sigma^{(1,0)}}_{\text{NLO EW}} + \underbrace{\alpha_{S}^{2}\sigma^{(0,2)}}_{\text{NNLO QCD}} + \underbrace{\alpha\alpha_{S}\sigma^{(1,1)}}_{\text{mixed higher orders}} + O(\alpha_{S}^{2}\alpha)$$

Subtractions at NLO

Avoiding singularities

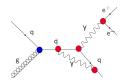
- LO gives accuracy of the result
- Higher order corrections give precision
- Why need precision?
 - \rightarrow Model verification
 - $\rightarrow\,$ Allow for new physics discoveries
 - $\rightarrow~$ Pin down parton distribution functions

Not Accurate Low Precision Accurate Low Precision

Not Accurate High Precision Accurate High Precision

Subtractions at NLO

Avoiding singularities


- LO gives accuracy of the result
- Higher order corrections give precision
- Why need precision?
 - \rightarrow Model verification
 - $\rightarrow\,$ Allow for new physics discoveries
 - $\rightarrow~$ Pin down parton distribution functions

Not Accurate High Precision Accurate High Precision

• Higher order diagrams obtained by adding further internal particles

Subtractions at NLO

Avoiding singularities

• Two types of corrections to tree-level diagrams: *virtual diagrams* and *real-emission diagrams*

- Two types of divergences: soft divergence and collinear divergence
- In the sum of all diagrams, the divergences cancel
- Subtract terms from both virtual and real-emission diagrams to make them finite separately
- Match the hard process final state to parton showers

Subtractions at NLO

Avoiding singularities

• Two types of corrections to tree-level diagrams: *virtual diagrams* and *real-emission diagrams*

- Two types of divergences: soft divergence and collinear divergence
- In the sum of all diagrams, the divergences cancel
- Subtract terms from both virtual and real-emission diagrams to make them finite separately
- · Match the hard process final state to parton showers

Present and future works

Angular coefficients

- Process $pp \rightarrow Z + jet \rightarrow I^+I^- + jet$
- Expand cross section into spherical harmonics and corresponding angular coefficients A_i
- QCD predicts at LO that A₀ = A₂ (Lam-Tung relation)
- $\circ\,$ At NLO QCD and NNLO QCD, violation of this relation has been shown 2
- Reproduced calculations at NLO QCD
- Outlook: calculate also the NLO EW corrections

²R. Gauld, A. Gehrmann-De Ridder, T. Gehrmann, *et al.* J. High Energ. Phys. 3 (2017).

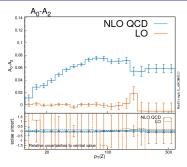


Figure: Violation of $A_0 = A_2$ at NLO QCD.

Precision at high energies

18 / 21

Timea Vitos

Present and future works

Inclusive NNLO predictions

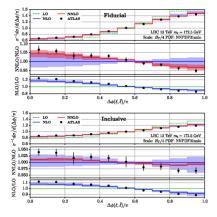
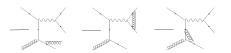


Figure: Figure from A. Behring et al.


³A. Behring, M. Czakon, A. Mitov, *et al. Phys. Rev. Lett.* 123, 082001 (2019).

- Process $pp \rightarrow t\bar{t}(+jet)$
- Theory predictions of NLO QCD and NNLO QCD for the top quark pair spin correlation ³
- ATLAS data unfolded from *fiducial* to *inclusive* region
- NNLO QCD has better fit in fiducial than in inclusive region
- Outlook: examine the unfolding procedure

Summary

- Simulate particle collisions based on SM and compare to data
- For high energy processes, use perturbation theory in the coupling constants to obtain higher precision
- Match the hard process to parton showers and then to hadronization to obtain full reaction cross section
- At higher orders in the perturbative expansion, one needs to be careful with virtual and real-emission contributions

Thank you for listening!

Timea Vitos

Precision at high energies