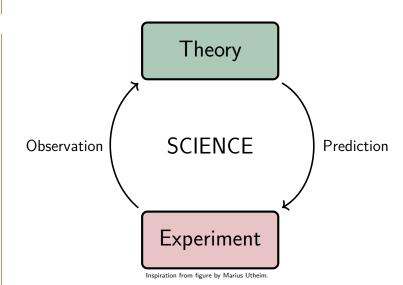


An introduction to event generators for pp and AA collisions

PhD TALK 2020 BY TORBJÖRN LUNDBERG SUPERVISED BY LEIF LÖNNBLAD

Introduction


Introduction

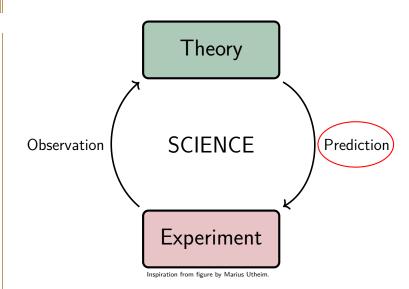
THE INIGGE

vent genera

Colliders

bservations

Introduction


Introduction

THE INIGACI

vent ceneral

Colliders

Observations

The Standard Model of particle physics

The Model

Event generators

Colliders

bservations

UNIVERSITY

Summary

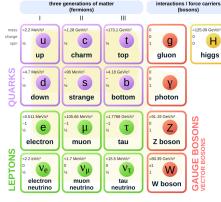


Figure from en.wikipedia.org/wiki/Standard_Model

Fundamenal Particles

Fermions (spin 1/2)

- Leptons (EM, weak)
- quarks (EM, weak, strong)Gauge Boson (spin 1)
- Photon: EM
- W, Z: Weak
- Gluon: Strong (QCD)
- Scalar Boson (spin 0)
- Higgs (gives mass)
- + antiparticles

Slide adapted from Andrew Lifson's talk last year which was adapted from Marius' talk the year before.

The Model

Event generate

Observations

Summary

Contains two very different limits:

Asymptotic Freedom

Confinement

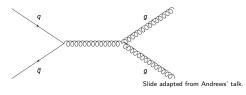
Slide adapted from Andrews' talk.

The Model

Event generato

Colliders

bservations


Summary

Contains two very different limits:

Asymptotic Freedom

Confinement

- $lap{1}{r}\lesssim 10^{-15}
 m m~(\it E \gtrsim 1~GeV)$
- Strong coupling α_S is small (i.e. < 1)
- Use Feynman diagrams to calculate scattering probabilities

Introduction
The Model

Event generate

Event generato

Observations

Summary

SIGNATURE STORY

UNIVERSITY

Contains two very different limits:

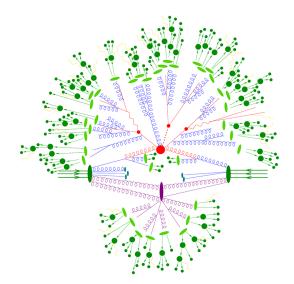
Asymptotic Freedom

- $ightharpoonup r \lesssim 10^{-15}
 m m \ (\it E \gtrsim 1 \
 m GeV)$
- Strong coupling α_S is small (i.e. < 1)
- Use Feynman diagrams to calculate scattering probabilities

Confinement

- $ightharpoonup r \gtrsim 10^{-15}
 m m \; (\it E \lesssim 1 \; GeV)$
- Strong coupling is large (i.e. > 1)
- Quarks and gluons confined into hadrons
 - Protons
 - Neutrons
 - Pions
 - Kaons
 - ... and more.

Slide adapted from Andrews' talk.

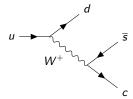

Purpose of Monte Carlo event generators

Introduction

Event generators

Colliders

Observation



Event generators

Hard processes

- Hard = highest high-energy...
- Asymptotic freedom is valid.
- Resonant decays:

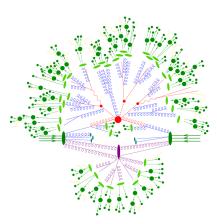


Figure from Stefan Hoeche, adapted from Andrew's talk.

Introduction

Event generators

.

Observations

DSERVALIONS

■ Hard processes

- Parton showers
 - Strong initial- and final-state radiation.

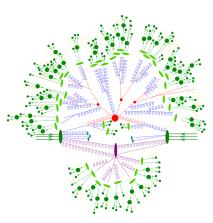


Figure from Stefan Hoeche, adapted from Andrew's talk.

Introduction

Event generators

Event generators

Comuers

)bservations ummary

- Hard processes
- Parton showers
- Hadronisation
 - Enter confinement (soft physics).
 - Form hadrons from hard partons.
 - Not yet fully understood in QCD
 - \Rightarrow model (with strings!)
 - Hadronisation of individual partons give jets.

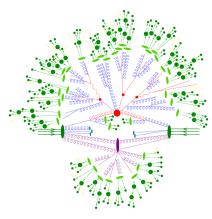


Figure from Stefan Hoeche, adapted from Andrew's talk.

Introduction

Event generators

Hard processes

■ Parton showers

■ Hadronisation

PDFs

- Parton content depends on probing energy.
- Characterise parton momentum fraction within the proton.
- Not calculable from QCD!
- Measure.

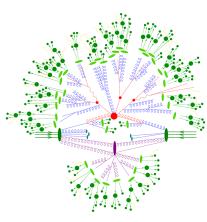


Figure from Stefan Hoeche, adapted from Andrew's talk.

Introduction

Event generators

Event generator

Comuers

Observations

- Hard processes
- Parton showers
- Hadronisation
- PDFs
- Multiparton interactions, MPIs
 - Pick > 1 parton from each proton in the collision.

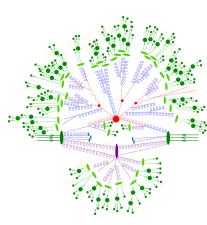


Figure from Stefan Hoeche, adapted from Andrew's talk.

Event generators

- Hard processes
- Parton showers
- Hadronisation
- **PDFs**
- Multiparton interactions, **MPIs**
- Hadronic rescattering
 - What if the dark green blobs interact?
 - Listen to Marius.

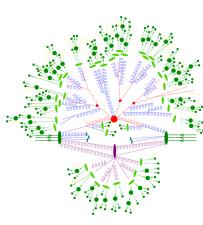


Figure from Stefan Hoeche, adapted from Andrew's talk.

Event generators

- Hard processes
- Parton showers
- Hadronisation
- PDFs
- Multiparton interactions, **MPIs**
- Hadronic rescattering
- Soft photon radiation
 - Bremsstrahlung from charged particles.

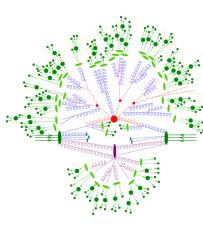
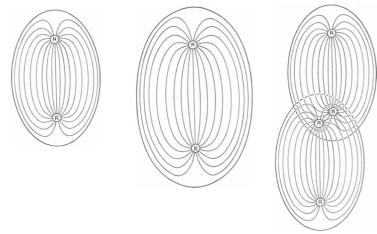


Figure from Stefan Hoeche, adapted from Andrew's talk.

Lund strings


Introduction

Event generators

Event generator

Comuers

Observations

Lund strings

Event generators

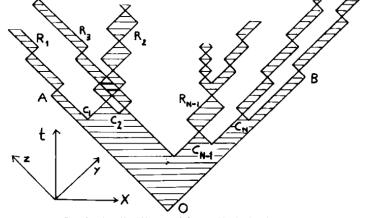


Figure from Artru, X and Mennessier, G, String model and multiproduction, 1973.

HIC: Aspects of modelling

Event generators

Everything from pp-collisions apply + more:

- Nuclei will overlap, use centrality parameter b.
- Pick suitable PDFs.
- QGP?
- Collective effects?

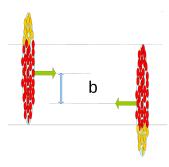


Figure from Jean-Philippe Lansberg, adapted from Andrews' talk.

Experiments: boom!

Introductio

i ne iviodei

Event generat

Colliders

)bservations

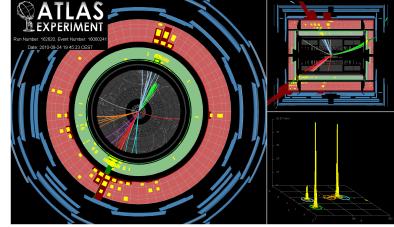
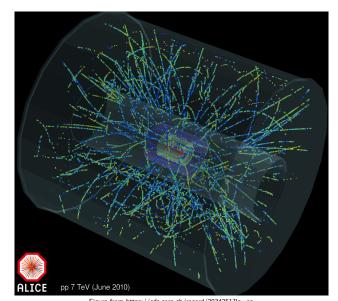


Figure from arxiv:1107.2092

Experiments: collisions in ALICE


Introduction

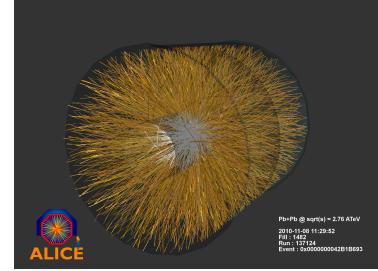
Colliders

Observations

Summary

 $Figure\ from\ https://cds.cern.ch/record/2034251?In{=}en$

Experiments: Pb-Pb-collision in ALICE


Introduction

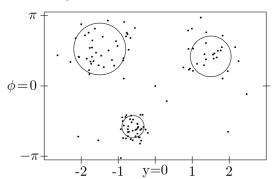
F

Event Senerati

Colliders

)bservations

What you get out: observables


Introduction

The Model

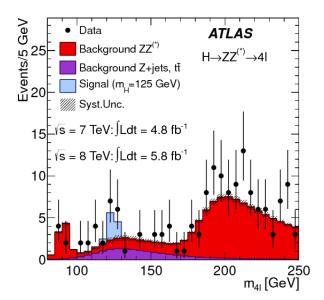
Event generator

Observations

- $d\Omega^2 = d\theta^2 + \sin^2\theta d\phi^2 = \frac{1}{\cosh y} (dy^2 + d\phi^2)$ $\Rightarrow (E, \mathbf{p}) \to (p_T, y, \phi, m).$
- Good coordinates since both p_T and Δ_y are invariant under boosts in beam direction.
- High p_T means large momentum transfer: hard stuff

Discovery

Introduction


Event concrete

Event generate

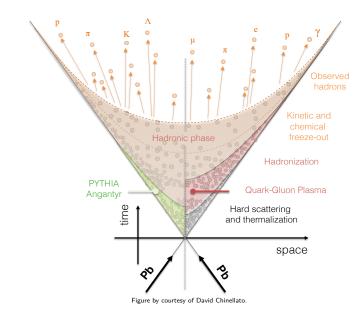
Colliders

Observations

Summary

- The Standard Model (SM) is great!
- Event generators are indispensable tools for particle physics phenomenology at hadron colliders.
- Hard physics → measurable hadrons.
- They simulate a lot of physics.
- Popular: PYTHIA 6.4 manual has been cited 10770 times.

My project


Introduction

Event concrete

Event Senerato
