To equilibrate or not to equilibrate: Hydrodynamics meets PYTHIA Angantyr

A. Silva, W. Serenone, M. Hippert, C. Bierlich, D.D. Chinellato, J. Takahashi

(from the MADAI collaboration)

Meet the first contender: Hybrid model configuration

Pb-Pb 5.02 TeV

- ← TRENTo + Free Streaming + VISH2+1 + FRZOUT + UrQMD (by the Duke group [1]): obtained optimal a posteriori parameters
- We utilize these parameters but with a different overall normalization
- Minor differences in the two approaches under study

Meet the second contender: PYTHIA with hadron positions

15r

- Space-time string breakup vertices from 4-momenta p, normalized string breakup positions x
- Hadron position v^h : average between vertices
- Formalism also extended to complex topologies •

Meet the second contender: Coupling PYTHIA to Angantyr

- Remaining 0.2%: heavy flavor, leptons, photons not treated by UrQMD
- Heavy flavor (~0.2%): decayed by PYTHIA;
- Leptons+photons (~0.01%): removed for now

Determining centrality

Particle abundances at beginning of UrQMD

- Hadrochemistry similar, but details differ:
 - PYTHIA produces more neutral particles, especially resonances
 - Hydro produces large variety of excited states

Hadron production vs time in the two cases

• **PYTHIA** creates particles with a peak at around 1-2 fm/c

- PYTHIA creates particles with a peak at around 1-2 fm/c,
- Hydro peaks at higher times: 10 fm/c (0-10%)
- Centrality dependence: hydro phase lasts longer, in PYTHIA: hadronic phase lasts longer

- **PYTHIA** creates particles with a peak at around 1-2 fm/c,
- Hydro peaks at higher times: 10 fm/c (0-10%)
- Centrality dependence: hydro phase lasts longer, in PYTHIA: hadronic phase lasts longer

- **PYTHIA** creates particles with a peak at around 1-2 fm/c,
- Hydro peaks at higher times: 10 fm/c (0-10%)
- Centrality dependence: hydro phase lasts longer, in PYTHIA: hadronic phase lasts longer

- **PYTHIA** creates particles with a peak at around 1-2 fm/c,
- Hydro peaks at higher times: 10 fm/c (0-10%)
- Centrality dependence: hydro phase lasts longer, in PYTHIA: hadronic phase lasts longer

- **PYTHIA** creates particles with a peak at around 1-2 fm/c,
- Hydro peaks at higher times: 10 fm/c (0-10%)
- Centrality dependence: hydro phase lasts longer, in PYTHIA: hadronic phase lasts longer

- **PYTHIA** creates particles with a peak at around 1-2 fm/c,
- Hydro peaks at higher times: 10 fm/c (0-10%)
- Centrality dependence: hydro phase lasts longer, in PYTHIA: hadronic phase lasts longer

- **PYTHIA** creates particles with a peak at around 1-2 fm/c,
- Hydro peaks at higher times: 10 fm/c (0-10%)
- Centrality dependence: hydro phase lasts longer, in PYTHIA: hadronic phase lasts longer

- **PYTHIA** creates particles with a peak at around 1-2 fm/c,
- Hydro peaks at higher times: 10 fm/c (0-10%)
- Centrality dependence: hydro phase lasts longer, in PYTHIA: hadronic phase lasts longer

- **PYTHIA** creates particles with a peak at around 1-2 fm/c,
- Hydro peaks at higher times: 10 fm/c (0-10%)
- Centrality dependence: hydro phase lasts longer, in PYTHIA: hadronic phase lasts longer

- **PYTHIA** creates particles with a peak at around 1-2 fm/c,
- Hydro peaks at higher times: 10 fm/c (0-10%)
- Centrality dependence: hydro phase lasts longer, in PYTHIA: hadronic phase lasts longer

Final-state observables

The basics: multiplicity

The basics: multiplicity

11

The basics: mean p_T

Collective behavior and flow

00000

Elliptic flow coefficient v₂{2} (2-particle cumulants)

(warning: no eta gap)

Elliptic flow coefficient v₂{2} (2-particle cumulants)

(warning: no eta gap)

Elliptic flow coefficient v₂{4} (4-particle cumulants)

PYTHIA+UrQMD: Flow from the hadronic phase?

• No hadronic interactions: no near-side Ridge

Hydrodynamics meets PYTHIA Angantyr

PYTHIA+UrQMD: Flow from the hadronic phase?

- No hadronic interactions: no near-side Ridge
 - With hadronic interactions: long-range near-side Ridge

PYTHIA+UrQMD: Flow from the hadronic phase?

Elliptic flow coefficient v_2 {4} vs p_T

- Hydrodynamics:
 - low at low-p_T,
 - high at high-p_T
- PYTHIA+UrQMD:
 - Consistently at 60% of measurement

Elliptic flow coefficient v_2 {4} vs p_T

- Hydrodynamics:
 - low at low-p_T,
 - high at high-p_⊤
- PYTHIA+UrQMD:
 - Consistently at 60% of measurement

What if...

- PYTHIA Angantyr provided already some of the initial flow?
- How does UrQMD response work at PYTHIA densities?

Adding an initial hadronic flow to PYTHIA

- Rotate momenta immediately after hadronization $(\Delta \phi \text{ in figure})$
- obtain a specific, settable initial $v_2(p_T)$ wrt to event plane

...and then vary the initial v_2 by manually setting it to have the right p_T dependence (~ measured) times a parameter "A" that we change systematically to scale v_2 up.

Goal: check UrQMD hydro-like response in each case.

How to plot? Next slide...

Initial hadronic flow vs final flow

Initial hadronic flow vs final flow, low p_T

UNICAMP

At low-p_T:

- UrQMD response diminishes with initial flow
- If very high flow: UrQMD removes some of it (not shown)
- measured value: stable condition

20

Initial hadronic flow vs final flow, low p_T

At low-p_T:

- UrQMD response diminishes with initial flow
- If very high flow: UrQMD removes some of it (not shown)
- measured value: stable condition

At mid- p_T :

• measured value: not necessarily stable condition

High-transverse momentum physics

Transverse momentum spectra: PYTHIA+UrQMD

Unique to PYTHIA+UrQMD

- Hydrodynamics sampling usually goes to 3-5 GeV/*c*
- Our simulations: 4.5 GeV/c

Transverse momentum spectra: PYTHIA+UrQMD

Unique to PYTHIA+UrQMD

- Hydrodynamics sampling usually goes to 3-5 GeV/c
- Our simulations: 4.5 GeV/*c*
- PYTHIA: goes far...

Enabling hadronic interactions:

• Suppression at high p_T ?

Transverse momentum spectra modification

Low p_T:

Small radial-flow-like boost

Mid- and high p_T :

- Up to 60% suppression at 5 GeV/c
- High-p_T particles stopped by low-p_T
- Effect progressively smaller at high p_T

Nuclear modification factor R_{AA}

$$R_{AA} = \frac{dN^{AA}/dp_T}{N_{coll}dN^{pp}/dp_T}$$

RAA calculation:

• pp reference: PYTHIA Angantyr

Nuclear modification factor R_{AA}

$$R_{AA} = \frac{dN^{AA}/dp_T}{N_{coll}dN^{pp}/dp_T}$$

RAA calculation:

- pp reference: PYTHIA Angantyr
- N_{coll}: from ALICE (Glauber Model)

Low p_T:

• Data not described: radial flow missing?

Nuclear modification factor R_{AA}

$$R_{AA} = \frac{dN^{AA}/dp_T}{N_{coll}dN^{pp}/dp_T}$$

RAA calculation:

- pp reference: PYTHIA Angantyr
- N_{coll}: from ALICE (Glauber Model)

Low p_T:

• Data not described: radial flow missing?

Mid- and high p_T :

- Maximum suppression at ~5 GeV/c
- Tends towards no-interactions value at higher momenta

High- p_T particle positions at hadronization

- Position ∝ momentum
- System size (central): $x \cong 10$ fm

High- p_T particle positions at hadronization

- Position \propto momentum
- System size (central): $x \cong 10$ fm

Summary

- **PYTHIA Angantyr + UrQMD**: a complete, QGP-free alternative to hydro
- **Multiplicity**: reproduced within ~10% (similar to hydro)
- Average p_T: too low, missing radial flow / (string shoving?)
- Elliptic flow / collectivity: 60% of measured v₂!
 - Less room for QGP effects?...
 - ...but UrQMD response is not strictly additive!
- Hadrochemistry: significant effect for baryons, strangeness
- **High-pT spectra**: suppression of high-p_T yields
 - Jet quenching in the hadronic phase?
 - Hadron vertex model: high-p_T "escapes" without interacting

Further studies: relating v_2 {2}, v_2 {4} to the initial condition

Further studies: relating v_2 {2}, v_2 {4} to the initial condition

Spectra modification: identified particle species

Spectra modification: identified particle species

