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Why particle accelerators matter

Particle accelerators are essential tools of discovery for particle and
nuclear physics and for sciences that use x-rays and neutrons.

Medicine
Tens of millions of patients receive accelerator-based diagnoses and
therapy each year in hospitals and clinics around the world.

Industry

Worldwide, hundreds of industrial processes use particle accelerators
— from the manufacturing of computer chips to the cross-linking of
plastic for shrink wrap and beyond.

Particle accelerators play an important role in ensuring security,
including cargo inspection and materials characterization.



Linear particle accelerator
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Need for new acceleration techniques

LHC at CERN

Maximum electric field = few 10 MV/m (breakdown)

R >R, (synchrotron radiation)

Increased energy - Longer accelerator - Higher cost

Higher E-fields in: PLASMAS DIELECTRICS




Laser wakefield accelerator

Trapped electrons
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Laser drives a wake wave in plasma
Electrons can ‘surf’ the wake field Wave in wake of boat

Accelerated electron pulse has duration of few fs

3D PIC simulation with CALDER-Circ



Advanced accelerator concepts

Experimental results achieved in acceleration of e-

Energy Gain | AE/E | Length | Acc. field | Reference
42 GeV 100% 80 cm 53 GV/m Blumenfeld, Nature 445, 741-744 (2007)
1.6GeV 0.7% 36cm 4.4 GV/m Litos, Nature 515, 92 (2014)
7.8GeV 100% 20cm 39 GV/m Gonsalves, Phys Rev Lett 122, 084801 (2019)
4.2 GeV 3% 9cm 47 GV/m Leemans, Phys. Rev. Lett. 113, 245002 (2014)
30MeV 0.7% 9cm 320 MV/m 0’Shea, Nat. Comm. 7, 12763 (2016)

24 keV 100% 35um 690 MV/m Wooton, Optics Letters 41, 2696 (2016)

“Towards a Proposal for an Advanced Linear Collider”, Alegro Collaboration, 2017



Acceleration at a dielectric structure

phase front
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Proposed topologies

3D photonic crystal
structure

Hollow-core photonic
bandgap fiber
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For a review and an extensive list of references, see

Phase-reset grating
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“Dielectric laser accelerators”, R J England et al, Rev Mod Phys 86, 1337 (2014)



DLA demonstration at SLAC

Dual-sided grating structure >250 MeV/m
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Dual pillar gratings

Yousefi et al., Opt Lett 44, 1520 (2019)

Achromatic lens
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266 nm UV pulse polarized
in the z direction for laser
triggering electron emission
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1930 nm drive laser pulse
polarized in the z direction

A SEM column with
all the electron optics

Dual pillar with DBR

Magnetic spectrometer

Distributed
Bragg reflector

200 MV/m

FDTD field
simulation



Laser damage limits the intensity

Before laser irradiation After laser irradiation

Surface treatment increases damage threshold

“Surface treatments of dielectric laser accelerators for increased laser-induced
damage threshold”, Optics Letters 45, 391 (2020)




On-chip integrated laser accelerator
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Sapra et al, Science 367, 79-83 (2020)
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On-chip integrated laser accelerator
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Attosecond electron pulses

In DLA, electron bunching within a fraction of the laser wavelength
-> Attosecond electron pulses!
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Schonenberger et al, Phys Rev Lett 123, 264803 (2019)




Concept for an all-optical accelerator
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Laser accelerator on a chipjgin Lund ?
o

Can the electron source be integrated with the accelerating structure?
Can the laser also be integrated on the chip?
Can one build structures for significant energy gain (MeV)?

Can one achieve small energy spread (%)?

-

Nanofabrication Femtosecond lasers Accelerator development (e- and p+)
Nanophotonics Plasma acceleration Beam dynamics and Beam instrumentation
Electron microscopy Attosecond science Accelerator facilities
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