LHCb, CODEX-b, and the Quest for Longevity

Philip Ilten university@fbirmingham April 23, 2020

LUND SEMINAR

Widening the Net

Dark Sector Candidates, Anomalies, and Search Techniques

It's Complicated

arXiv:1903.04497 [hep-ex]

Detector

IJMPA 30 (2015)

- momentum resolution between 0.5% at 5 GeV to 1% at 200 GeV
- impact parameter resolution of $13 20 \ \mu m$ for tracks
- secondary vertex precision of 0.01 0.05(0.1 0.3) mm in xy(z)

- real-time calibration and full event reconstruction in Run 2
- inclusive dimuon from threshold and jet triggers in Run 2
- full detector readout in Run 3

Indirect Measurements

Supporting Measurements

PRL 121 (2018)

- use LHCb as fixed target with SMOG
- measurement of \bar{p} cross-section in p + He
- relevant to dark matter annihilation, see Geisen, et al.

Direct Searches

- don't judge a fish by its ability to climb a tree
- areas where LHCb cannot compete
 - luminosity: $10 \times$ less luminosity than ATLAS and CMS
 - acceptance: 10% for 100 GeV, 1% for 1 TeV, ...
- areas where LHCb does well
 - flavor: anything that requires PID other than pions/leptons
 - **displaced**: 50 fs lifetime resolution
 - **narrow**: 0.4% mass resolution (muons)
 - trigger: flexible with real time calibration and full reconstruction (tracks down to $p_{\rm T} > 0.5$ GeV)
- all results here are run 1 except dark photon

Massive Charged Particle

- search for heavy, charged, very long lived particles, e.g. $\tilde{\tau}$
- utilise absence of light in RICH in addition to minimal energy loss
- Drell-Yan production with SPS7 benchmark scenarios
- results not competitive (see backup) but idea interesting

Single Displaced Particle

- search for single long lived particle decaying into jet pair, e.g. π_V
- production from SM-like Higgs decay

Single Displaced Particle

EPJC 77 (2017)

Single Displaced Particle

LHCb-CONF-2018-006

Two Displaced Particles

EPJC 76 (2016)

- search for two long lived particles, e.g. χ_1^0
- SM-like Higgs decay with baryon number violation
- masses from 20 60 GeV and lifetimes from 5 100 ps

Two Displaced Particles

EPJC 76 (2016)

Displaced with Muon

- search for long lived particle decaying into di-quark and muon
- consider full PYTHIA model and four simplified models
- utilises excellent secondary vertex reconstruction

Displaced with Muon

EPJC 77 (2017)

*

Heavy Neutral Leptons

PRL 112 (2014)

- lepton violating $B^- \to \pi^+ \mu^- \mu^-$ search
- correction of mixing angle limits by Peskin and Shuve
- new analyses underway

Heavy Neutral Leptons

PRL 112 (2014)

Resonances in B Decays

PRD 95 (2017)

- $B^0 \to K^{*0} \mu \mu$ and $B^+ \to K^+ \mu \mu$
- perform both prompt and displaced search simultaneously
- model independent limits provided for re-casting

Resonances in B Decays

PRD 95 (2017)

Resonances in B Decays

$\overline{\text{PRD 95}}$ (2017)

Resonances on Resonances

JHEP 147 (2018)

• example of scalar resonance in plot, limits also for vectors and double scalar production (see backups)

Resonances on Resonances

JHEP 147 (2018)

Dimuon Spectrum

PRL 120 (2018)

- heavy flavour background $(\mu_Q \mu_Q)$, mis-ID background (hh), and mis-ID with heavy flavour background $(h\mu_Q)$
- jet isolation above $\phi\text{-mass}$ to remove QCD background (primarily Drell-Yan production)

Prompt Dark Photons

PRL 124 (2020)

 both prompt and displaced can be recast to general vector-like model (see backups)

Displaced Dark Photons

PRL 124 (2020)

Lifetime

JHEP 06 (2018)

Mind the Gap

PRD 100 (2019)

• para-true muonium is a $\mu^+\mu^-$ vector state, not yet observed!

CODEX-b

*

Expression of Interest for the CODEX-b Detector

Giulio Aielli,¹ Roberto Cardarelli,² Matthew John Charles,³ Xabier Cid Vidal,⁴ Victor Coco,⁵ Biplab Dey,⁶ Raphael Dumps,⁵ Jared A. Evans,⁷ George Gibbons,⁸ Olivier Le Dortz,³ Vladimir V. Gligorov,³ Eli Ben Haim,³ Philip Ilten,⁸ Simon Knapen,⁹ Jongho Lee,^{5,10} Saul López Soliño,⁴ Benjamin Nachman,¹¹ Michele Papucci,^{11,12} Francesco Polci,³ Robin Quessard,¹³ Harikrishnan Ramani,^{11,14} Dean J. Robinson,¹¹ Heinrich Schindler,⁵ Michael D. Sokoloff,⁷ Paul Swallow,⁸ Riccardo Vari,¹⁵ Nigel Watson,⁸ and Mike Williams¹⁶

- letter of interest released last November, arXiv:1911.00481 [hep-ex]
- letter of intent submitted
- collaboration growing: 28 contributors and 16 institutes

119

CODEX-b

CODEX-b in a Nutshell

• A **Co**mpact **D**etector for **Ex**otics at LHC**b**

Why CODEX-b?

- probes a wide range of LLP models; complementary or competitive with existing/proposed detectors
- 2 accessible zero background location with necessary services, DELPHI/UXA cavern
- **3** integration with LHCb trigger-less readout
- 4 compact size and modest cost with ability to extend

CODEX-b

A Picture is Worth ...

- ATLAS/CMS/LHCb: heavy LLPs with wide lifetime range
- **2** FASER/SHiP/NA62: light LLPs with medium/long $c\tau$ and low $\sqrt{\hat{s}}$
- **3** MATHUSLA/CODEX-b: light LLPs with long $c\tau$ and high $\sqrt{\hat{s}}$

Minimal Models

Model Overview

Vector (A')	hA'A'	F'F									
F'F	yes	no reach									
	Scalar (S	Scalar (S)		H	$S^2 H^{\dagger} H$						
	$SH^{\dagger}H$		yes		yes						
Production portal Decay portal UV operator			HN	HNL (N)) HLN					
			H	HLN		yes					
				ALP (a)		$\partial_{\mu}a\bar{q}\gamma^{\mu}\gamma^{5}q$		aĜG	$a\tilde{F}F$	$a(W\tilde{W}-B\tilde{E})$	Š)
						yes		yes	pending	pending	Γ

*
Dark Photon

- no sensitivity to inclusive production from EM currents
- sensitive to production from $H \to A'A'$ decays

Higgs Portal

Fermion Coupled <u>ALPs</u>

Gluon Coupled ALPs

Heavy Neutral Leptons

*

R-parity Violating Supersymmetry

study from Dercks, Vries, Dreiner, and Wang in PRD 99 055039 (2019)

R-parity Violating Supersymmetry

• study from Helo, Hirsch, and Wang in JHEP 07 056 (2018)

Neutral Naturalness

• consider fraternal twin Higgs model and search for glueball

Dark Matter Models

• a number of models considered including inelastic, co-scattering, co-annihilation, *etc.*

- 10^{14} neutrons and K_L^0 per 300 fb⁻¹
- this requires 32λ of shielding
- 7λ from UXA wall, 25λ from lead shield
- expect $\approx 10^9$ muons per 300 fb⁻¹ which can produce secondaries
- $10^3 K_L^0$ per 300 fb⁻¹ pass through the shield
- need active layer in shield for vetoing
- update of previous studies with detailed GEANT4 study

Shielding

Background Simulation

Background Measurement

Background Measurement

• 0.2 Hz hit rate at point 2 indicates GEANT4 prediction of 10 Hz is conservative

50 / 54

CODEX- β

- + $2\times2\times2$ m^3 with central layer, each layer with triplet of RPCs
- each layer made of $2\times1~\mathrm{m^2}$ RPC block, 42 such layers
- expected hardware cost of 150k EUR
- Demonstrate the ability to detect and reconstruct charged particles which penetrate into the DELPHI cavern as well as the decay products of neutral particles decaying within the DELPHI cavern.
- 2 Detect and reconstruct a reasonable rate of neutral particles decaying inside the hermetic detector volume.
- 3 Show that CODEX-b can be integrated into the LHCb DAQ and demonstrate an ability to give a trigger to LHCb to retain an event that looks interesting in CODEX-b.

Outlook

*

Outlook

Some Thoughts

- mature long-lived particle search program at LHCb
- flavor: anything that requires PID other than pions/leptons
- **displaced**: 50 fs lifetime resolution
- **narrow**: 0.4% mass resolution
- trigger: flexible with real time calibration and full reconstruction
- all LHCb results available here
- inclusive di-muon dataset not exhausted
- di-photons are possible, see SciPost Phys 7 (2019)
- electrons should also be possible!

Outlook

Timing is Key

	2020	2021	2022	2023	2024	2025	2026
	LS 2		Run 3				
$\text{CODEX-}\beta$		Production I	nstall da	ata taking	Removal		
CODEX-b						Production	Partial Install

	2027	2028	2029	2030	2031	2032	2033 -
	Run 4			LS 4		+	
CODEX-b		Production data taking		Remaining Install		data taking	→

- significant progress has been made
- priority is finalising CODEX- β design and plans
- Birmingham working on technical drawings
- more detailed design informed from CODEX- β

3

*

Massive Charged Particle

EPJC 75 (2015)

Higgs Decay into QQ

- search in association with W/Z
- utilise excellent heavy flavor tagging and b/c separation
- limits not competitive with SM, but important proof-of-concept

Higgs Decay into $Q\bar{Q}$

What Material?

Resonances on Resonances

JHEP 147 (2018)

Mind the Gap

Inclusive Production

Dissociation

Detector Effects: Case (i)

*

10 / 31

Detector Effects: Case (ii)

*

11 / 31

Discovery Potential

The Competition

New Physics in TM

DARKCAST

• recast to any general model, e.g. 15 free parameters

- available at gitlab.com/philten/darkcast
- accompanying paper Serendipity in dark photon searches

The Master Plan

- given (m, g_A) for model A, solve to find (m, g_B) for model B $\sigma_A(m, g_A)\mathcal{B}_A(m)\varepsilon(\tau_A(m, g_A)) = \sigma_B(m, g_B)\mathcal{B}_B(m)\varepsilon(\tau_B(m, g_B))$
- absolute cross-section can be tricky, ratios are easier

$$\frac{\sigma_A(m, g_A)}{\sigma_B(m, g_B)} \frac{\varepsilon(\tau_A(m, g_A))}{\varepsilon(\tau_B(m, g_B))} \frac{\mathcal{B}_A(m)}{\mathcal{B}_B(m)} = 1$$

branching fraction ratio: hidden local symmetries
cross-section ratio: hidden local symmetries

 $V \in (\rho, \omega, \phi, K^*, \bar{K}^*)$ generated from $U(3)_V$

3 efficiency ratio: define proper time fiducial region with t_0 and t_1

$$\varepsilon(\tau) = e^{-t_0/\tau} - e^{-t_1/\tau}$$

Widths

• width can be calculated perturbatively for fermions

$$\Gamma_{ff}(\boldsymbol{m},\boldsymbol{g}) = \frac{g^2 c_f Q_f^2}{12\pi} \boldsymbol{m} \left(1 + \frac{m_f^2}{\boldsymbol{m}}\right) \sqrt{1 - 4\frac{m_f^2}{\boldsymbol{m}}}$$

- c_f is 1 for charged leptons, 3 for quarks, and 1/2 for neutrinos
- Q_f is the model coupling for that fermion
- but ... below 2 GeV this prediction is no longer reliable
- use data instead!

$$\Gamma_{\rm hadrons}(\boldsymbol{m}, \boldsymbol{g}) = \Gamma_{\mu\mu}(\boldsymbol{m}, \boldsymbol{g}) \mathcal{R}(\boldsymbol{m})$$

•
$$\mathcal{R}(\mathbf{m})$$
 is $\sigma(ee \to \text{hadrons})/\sigma(ee \to \mu\mu)$

17 / 31

The Data!

B Boson

*

Hidden Symmetries

- but what about flavour dependent couplings?
- use hidden local symmetries framework for VMD
- vector mesons $V\in(\rho,\omega,\phi,K^*,\bar{K}^*)$ are gauge bosons of hidden $U(3)_V$ symmetry
- vertices take the form PV_iV_j with P from the pseudoscalar nonet $P\in(\pi,\eta,\eta',K,\bar{K})$

$$\Gamma r(T_{V_i}, T_{V_j}, T_P)$$

- T are the meson generators, e.g. $T_{\omega} = \frac{1}{2}(1,1,0)$
- external gauge fields mix through V

 $\operatorname{Tr}(T_V, Q)$

• Q is the fermion coupling vector (Q_u, Q_d, Q_s)

Vector Decomposition

21 / 31

B-L Boson

B Boson

Protophobic Boson

24 / 31

Production Ratios

• electron-positron annihilation and electron bremsstrahlung

$$\frac{\sigma_A(m, g_A)}{\sigma_B(m, g_B)} = \frac{g_A{}^2 Q_A^{e\,2}}{g_B{}^2 Q_B^{e\,2}}$$

• proton bremsstrahlung

$$\frac{\sigma_A(m,g_A)}{\sigma_B(m,g_B)} = \frac{g_A{}^2(2Q_A^u + Q_A^d)^2}{g_B{}^2(2Q_A^u + Q_A^d)^2}$$

• hadron decays of the form $X \to YA$

$$\frac{\sigma_A(m, g_A)}{\sigma_B(m, g_B)} = \frac{g_A^2 \sum_V \operatorname{Tr}(T_X, T_Y, T_V) \operatorname{Tr}(T_V, Q_A) \operatorname{BW}_V(m)}{g_B^2 \sum_V \operatorname{Tr}(T_X, T_Y, T_V) \operatorname{Tr}(T_V, Q_B) \operatorname{BW}_V(m)}$$

LHCb Production Fractions

• templates taken from Monte Carlo and fit against LHCb result

Efficiencies

- define proper time fiducial region with t_0 and t_1

$$\varepsilon(\tau) = e^{-t_0/\tau} - e^{-t_1/\tau}$$

- for prompt limits, $t_0 = 0$ and t_1 depends on the boost

$$t_1 = \frac{L_{\max}}{\gamma}$$

- for displaced beam-dump limits, relate t_0 and t_1

$$t_1 = t_0 + \frac{L_{\text{detector}}}{L_{\text{shield}}}$$

 \rightarrow upper and lower limits are solutions, equate and solve for $t_0 :$

$$\sigma(m, g_{\max})\mathcal{B}(m)\varepsilon\left(\tau(m, g_{\max})\right) = \sigma(m, g_{\min})\mathcal{B}(m)\varepsilon\left(\tau(m, g_{\min})\right)$$

B-L Boson

B Boson

Protophobic Boson

CIMBA

• quickly generate single particles from minimum bias events

- available at gitlab.com/philten/cimba
- accompanying paper CIMBA: fast Monte Carlo generation using cubic interpolation

```
import cimba, random
# Create the random number generator.
rng = random.Random()
# Load the interpolation grid.
grid = cimba.grid("data/pp14TeV.pkl")
# Create the particle gun.
pgun = cimba.ParticleGun(grid, "all/211", rng.random, ptlim, etalim)
# Generate a particle.
pgun()
```