Decoding the nature of Dark Matter at current and future experiments

Alexander Belyaev

Southampton University & Rutherford Appleton Laboratory

Alexander Belyaev

Decoding the nature of DM

Why Dark Matter (DM) is in the main focus after Higgs discovery?

Alexander Belyaev

Because while Higgs Discovery has finished the SM puzzle...

... it became obvious that the SM itself is the piece of some (more) complete and consistent BSM theory

... it became obvious that the SM itself is the piece of some (more) complete and consistent BSM theory

DM is strong and very appealing evidence for BSM!

Galactic rotation curves

DM is very appealing even though we know almost nothing about it!

How we can decode the fundamental nature of Dark Matter?

How we can decode the fundamental nature of Dark Matter? We need a DM signal first!

How we can decode the fundamental nature of **Dark Matter?** We need a DM signal first! But at the moment we can: understand what kind of DM is already excluded ⇒ explore theory space and prepare ourselves to discovery and decoding of DM

Collaborators & Projects

- I.Ginzburg, D.Locke, A. Freegard, T. Hosken, AB
- S.Prestel, F.Rojas-Abate, J.Zurita, AB
- S.Novaes, P.Mercadante, C.S. Moon, T.Tomei,
 S. Moretti, M.Tomas, L. Panizzi, AB
- G.Cacciapaglia, J.McKay, D. Marin, A.Zerwekh, AB
- E.Bertuzzo, C.Caniu, G. di Cortona, O.Eboli,
 F. locco, A.Pukhov, AB
- T. Flacke, B. Jain, P. Schaefers, AB
- G. Cacciapaglia, I. Ivanov, F. Rojas, M. Thomas, AB
- I. Shapiro, M. Thomas, AB
- L. Panizzi, A. Pukhov, M.Thomas, AB
- D. Barducci, A.Bharucha, W. Porod, V. Sanz, AB

arXiv: 2006.xxxxx
arXiv:2006.xxxxx

arXiv:**1809.00933** arXiv:**1808.10464**

arXiv:**1807.03817** arXiv:**1707.07000** arXiv:**1612.00511** arXiv:**1611.03651** arXiv:**1610.07545** arXiv:**1504.02472**

DM candidates: interaction vs mass

Planck mass BH remnants: tiny black holes protected by gravity effects [Chen '04] from decay via Hawking radiation Wimpzillas: very massive non-thermal WIMPs [Kolb,Chung,Riotto'98] Q-balls: topological solitons that occur in QFT [Coleman '86] EW scale WIMPs, protected by parity – LSP, LKP, LTP particles SuperWIMPs: electrically and color neutral DM interacting with much smaller strength (perhaps only gravitationally) Neutrinos: usual neutrinos are too light- HDM, subdominant component only (to be consistent with large scale structures); but heavier gauge singlet neutrinos can be CDM Axions: $heta_{QCD} F^{\mu
u} ilde{F}^{\mu
u}$ $heta_{QCD}$ is replaced by a quantum field, the potential energy allows the field to relax to near zero strength, axion as a

consequence

DM candidates: interaction vs mass

Planck mass BH remnants: tiny black holes protected by gravity effects [Chen '04] from decay via Hawking radiation Wimpzillas: very massive non-thermal WIMPs [Kolb,Chung,Riotto'98] Q-balls: topological solitons that occur in QFT [Coleman '86] EW scale WIMPs, protected by parity – LSP, LKP, LTP particles SuperWIMPs: electrically and color neutral DM interacting with much smaller strength (perhaps only gravitationally) Neutrinos: usual neutrinos are too light- HDM, subdominant component only (to be consistent with large scale structures); but heavier gauge singlet neutrinos can be CDM Axions: $heta_{QCD}\,F^{\mu
u} ilde{F}^{\mu
u}$ $heta_{QCD}$ is replaced by a quantum field,

the potential energy allows the field to relax to near zero strength, axion as a consequence

Mass range for thermal DM

Alexander Belyaev

Alexander Belyaev

Decoding the nature of DM

Complementarity of DM searches

Important: there is no 100%correlation between signatures above. E.g. the high rate of annihilation does not always guarantee high rate for DD!

Actually there is a great complementarity in this:

- In case of NO DM Signal we can efficiently exclude DM models
- In case of DM signal we have a way to determine the nature of DM

Alexander Belyaev

Direct Dark Matter Detection

Latest XENON 1T results

10⁻⁴⁶ cm² = 10⁻¹⁰ pb

NEXT

Power of DM DD to rule out theory space

Power of DM DD to rule out theory space Inert 2 Higgs Doublet Model

$$\phi_1 = \frac{1}{\sqrt{2}} \begin{pmatrix} 0\\ v+H \end{pmatrix} \qquad \phi_2 = \frac{1}{\sqrt{2}} \begin{pmatrix} \sqrt{2}h^+\\ h_1+ih_2 \end{pmatrix}$$

 $V = -m_1^2(\phi_1^{\dagger}\phi_1) - m_2^2(\phi_2^{\dagger}\phi_2) + \lambda_1(\phi_1^{\dagger}\phi_1)^2 + \lambda_2(\phi_2^{\dagger}\phi_2)^2$ $+ \lambda_3(\phi_1^{\dagger}\phi_1)(\phi_2^{\dagger}\phi_2) + \lambda_4(\phi_2^{\dagger}\phi_1)(\phi_1^{\dagger}\phi_2) + \frac{\lambda_5}{2} \left[(\phi_1^{\dagger}\phi_2)^2 + (\phi_2^{\dagger}\phi_1)^2 \right]$

Power of DM DD to rule out theory space Inert 2 Higgs Doublet Model

Cacciapaglia, Ivanov, Rojas, Thomas, AB arXiv:**1610.07545** Novaes, Mercadante, Moon, Tomei, Moretti, Tomas, Panizzi, AB arXiv:**1809.00933**

Power of DM DD to rule out theory space Vector DM (VDM) Model

$$\mathcal{L} = \mathcal{L}_{SM} - Tr \{ D_{\mu} V_{\nu} D^{\mu} V^{\nu} \} + Tr \{ D_{\mu} V_{\nu} D^{\nu} V^{\mu} \}$$

$$- \frac{g^{2}}{2} Tr \{ [V_{\mu}, V_{\nu}] [V^{\mu}, V^{\nu}] \}$$

$$- igTr \{ W_{\mu\nu} [V^{\mu}, V^{\nu}] \} + \tilde{M}^{2} Tr \{ V_{\nu} V^{\nu} \}$$

$$+ a \left(\Phi^{\dagger} \Phi \right) Tr \{ V_{\nu} V^{\nu} \}$$

$$+ a \left(\Phi^{\dagger} \Phi \right) Tr \{ V_{\nu} V^{\nu} \}$$

$$H$$

$$- M$$

$$AB, Cacciapaglia, McKay, Martin, Zerwekh, arXiv: 1808.10464$$

The relic density map in M_{v} - a parameter space

The relic density map in M_{V} - a parameter space $R_{sr} < 1$

The relic density map in M_{v} - a parameter space

Alexander Belyaev

NEXT

The relic density map in M_{y} - a parameter space

Alexander Belyaev

NEXT

DM DD interplay with Collider Searches

Hunting for DM at Colliders

Hunting for DM at Colliders

Probing DM properties at the LHC

The idea is to probe DM operators with different DM spin using the shape missing transverse momentum **(MET)**

- we use the EFT approach: simplicity and model independence
- explore the complete set of DIM5/DIM6 operators involving two SM quarks (gluons) and two DM particles
- consider DM with spin=0, 1/2, 1
- use mono-jet signature at the LHC

Mapping EFT operators to simplified models

Mono-jet diagrams from EFT operators

Properties of MET distributions:

- MET distributions are the same for the fixed mass of DM pair [M(DM,DM)] & fixed SM operator
- With the increase of M(DM,DM), MET slope decreases (PDF effect)

[C1]

[D1]

[V1]
Properties of MET distributions for small and large M(DM,DM)

- MET distributions are the same for the fixed mass of DM pair [M(DM,DM)] & fixed SM operator
- With the increase of M(DM,DM), MET slope decreases (PDF effect)

Properties of MET distributions for small and large M(DM,DM)

- MET distributions are the same for the fixed mass of DM pair [M(DM,DM)] & fixed SM operator
- With the increase of M(DM,DM), MET slope decreases (PDF effect)

NEX

Distinguishing DM operators/theories

⇒ projection for 300 fb⁻¹: some operators C1-C2,C5-C6,D9-D10,V1-V2,V3-V4,V5-V6 and V11-12 can be distinguished from each other

⇒ Application beyond EFT: when the DM mediator is not produced on-the-mass-shell and M_{DMDM} is not fixed: t-channel mediator or mediators with mass below 2M_{DM}

Alexander Belyaev

LHC@13TeV reach projected 100 fb⁻¹

$LanHEP \rightarrow CalcHEP \rightarrow LHE \rightarrow CheckMATE$

Distinguishing the DM operators: χ^2 for pairs of DM operators

$$\chi_{k,l}^{2} = \min_{\kappa} \sum_{i=3}^{7} [(\frac{1}{2}N_{i}^{k} - \kappa \cdot N_{i}^{l})/(10^{-2}BG_{i})]^{2}$$
 : if χ^{2} >9.48 (95%CL for 4 DOF) - operators can be distinguished

			Сс 100	omplex S GeV	Scalar E 1000	${ m GeV}$	Di 100	irac Fer GeV	mion DM 1000 GeV	
÷			C1	C5	C1	C5	D1	D9	D1	D9
Complex Scalar DM	$\frac{100}{\text{GeV}}$	$ \begin{array}{c c} C1 \\ C5 \end{array} $	0.0 5.74	19.7 0.0	25.54 0.37	$\begin{array}{c} 74.63\\ 16.25\end{array}$	11.73 1.11	41.79 3.93	25.78 0.74	52.58 7.35
	$\frac{1000}{\text{GeV}}$	C1 1 C5 5	.9.89 0.86	0.36 13.86	0.0 10.34	11.82 0.0	2.33 21.03	$2.09 \\ 3.7$	0.27 11.18	$\begin{array}{c} 4.58 \\ 1.53 \end{array}$
Dirac Fermion DM	$\frac{100}{\text{GeV}}$	D1 D9 3	9.88 30.49	$1.17 \\ 3.59$	$\frac{2.52}{1.96}$	25.99 3.96	0.0 7.99	$\begin{array}{c} 9.23 \\ 0.0 \end{array}$	$2.4 \\ 2.71$	14.17 0.52
	$\frac{1000}{\text{GeV}}$	D1 2 D9 3	20.31 37.38	$\begin{array}{c} 0.73 \\ 6.54 \end{array}$	$\begin{array}{c} 0.27\\ 4.18\end{array}$	12.92 1.6	2.25 11.96	2.93 0.5	0.0 4.89	5.42 0.0

Distinguishing the DM operators: χ^2 for pairs of DM operators

$$\chi_{k,l}^2 = \min_{\kappa} \sum_{i=3}^7 \left[\frac{1}{2} N_i^k - \kappa \cdot N_i^l \right] / (10^{-2} B G_i)^2$$

: if χ^2 >9.48 (95%CL for 4 DOF) – operators can be distinguished!

		Complex Scalar DM				Dirac Fermion DM				Complex Vector DM								
		$100 \mathrm{GeV}$ $1000 \mathrm{GeV}$		GeV 100 GeV		${\rm GeV}$	1000 GeV		$100 \mathrm{GeV}$				$1000 { m GeV}$					
39 <u>.</u>			C1	C5	C1	C5	D1	D9	D1	D9	V1	V3	V5	V11	V1	V3	V5	V11
Complex Scalar DM100 GeV1000 GeV	$100 \\ GeV$	C1 C5	0.0 15.74	19.7 0.0	25.54 0.37	$\begin{array}{c} 74.63\\ 16.25\end{array}$	11.73 1.11	41.79 3.93	25.78 0.74	52.58 7.35	22.97 0.18	32.89 1.53	54.35 8.2	$\begin{array}{c} 73.34 \\ 15.73 \end{array}$	25.18 0.44	34.61 1.9	52.34 7.24	80.85 19.13
	C1 C5	19.89 50.86	0.36 13.86	0.0 10.34	11.82 0.0	2.33 21.03	2.09 3.7	0.27 11.18	4.58 1.53	0.06 11.57	0.45 6.82	5.29 1.26	11.41 0.01	0.06 10.84	$\begin{array}{c} 0.68\\ 6.1 \end{array}$	4.42 1.61	14.36 0.14	
Dirac Fermion	$100 \\ GeV$	D1 D9	9.88 30.49	$\frac{1.17}{3.59}$	2.52 1.96	25.99 3.96	0.0 7.99	9.23 0.0	2.4 2.71	14.17 0.52	$\begin{array}{c c} 1.85\\ 2.49\end{array}$	5.09 0.62	15.34 0.73	25.37 3.69	2.29 2.31	$5.85 \\ 0.39$	13.85 0.56	29.81 5.36
DM 10 Ge	1000 GeV	D1 D9	20.31 37.38	0.73 6.54	0.27 4.18	12.92 1.6	2.25 11.96	2.93 0.5	0.0 4.89	5.42 0.0	0.32 4.98	0.82 2.02	6.33 0.06	12.58 1.44	0.08 4.56	1.18 1.61	5.08 0.04	15.7 2.55
	$\frac{100}{{ m GeV}}$	V1 V3 V5 V11	$18.06 \\ 24.86 \\ 38.36 \\ 50.03$	0.17 1.45 7.24 13.43	0.06 0.44 4.79 10.0	13.34 7.57 1.3 0.01	1.72 4.57 12.86 20.55	$2.68 \\ 0.65 \\ 0.7 \\ 3.45$	0.32 0.79 5.67 10.89	5.5 2.14 0.06 1.39	0.0 0.74 5.61 11.2	$0.77 \\ 0.0 \\ 2.5 \\ 6.54$	$6.25 \\ 2.68 \\ 0.0 \\ 1.11$	12.9 7.25 1.14 0.0	0.1 0.57 5.24 10.52	$1.06 \\ 0.03 \\ 2.04 \\ 5.83$	5.34 2.04 0.13 1.49	16.03 9.59 2.13 0.16
Complex Vector DM	1000 GeV	V1 V3 V5 V11	$19.73 \\ 25.96 \\ 37.33 \\ 54.48$	0.43 1.78 6.47 16.14	0.06 0.65 4.04 12.42	12.46 6.72 1.68 0.13	2.13 5.21 11.72 23.85	2.48 0.4 0.55 4.95	0.08 1.12 4.59 13.43	5.02 1.7 0.04 2.41	0.1 1.01 4.84 13.74	0.59 0.03 1.93 8.55	5.83 2.17 0.14 2.03	12.09 6.41 1.55 0.16	0.0 0.85 4.34 13.01	0.89 0.0 1.57 7.73	$4.78 \\ 1.65 \\ 0.0 \\ 2.57$	15.14 8.6 2.72 0.0

Alexander Belvaev

NEX

Importance of the operator running in the DM DD ↔ Collider interplay

Z

X

b, t

X

Importance of the operator running in the DM DD ↔ Collider interplay

Importance of the operator running in the DM DD ↔ Collider interplay

DM DD \leftrightarrow **Collider interplay**

DM DD \leftrightarrow **Collider interplay**

Beyond the EFT

There is no limit on the LSP mass if the mass of strongly interacting SUSY particles above ~ 1.9 TeV

SUSY Compressed Mass Spectrum scenario

- The most challenging case takes place when only $\chi^0_{1,2}$ and χ^{\pm} are accessible at the LHC, and the mass gap between them is not enough for leptonic signatures
- The only way to probe CHS is a mono-jet signature

 ["Where the Sidewalk Ends? ..." Alves, Izaguirre,Wacker '11],
 which has been used in studies on compressed SUSY spectra, e.g.
 Dreiner,Kramer,Tattersall '12; Han,Kobakhidze,Liu,Saavedra,Wu'13;
 Han,Kribs,Martin,Menon '14

Signal vs Background

but the difference in shapes is difference in rates encouraging: large DM mass \rightarrow biger is pessimistic ... $M(DM,DM) \rightarrow flatter MET$ pp $\rightarrow vvj$ vs. pp $\rightarrow \chi\chi j$ pp->vvj vs. pp->yyj events/bin Background Background u=93 GeV --- μ=93 GeV 107 10 S and BG u=500 GeV u=500 GeV 10-2 number of events for 10-3 _00 fb⁻¹ 10^{4} 10³ 10-4 10² 10-5 10 10⁻⁶ 10⁻⁷ normalised signal and Zj 10-1 10⁻⁸ 10-2 background distributions 10⁻³ 10⁻⁹ 2000 ō 200 2000 p^T(GeV) (GeV)

Signal and Zj background p_{τ}^{j} distributions for the 13 TeV LHC

LHC/DM direct detection sensitivity

AB, Barducci, Bharucha, Porod, Sanz JHEP, 1504.02472

- SUSY DM, can be around the corner (~100 GeV), but it is hard to detect it!
- Great complementarity of DD and LHC for small DM (natural)SUSY region

Beyond monojet signature

Beyond the mono-jet signature

Example of the vector resonance in the Composite Higgs model: $Z' \rightarrow TT \rightarrow t t DM DM$ signature

Alexander Belyaev

The role of Z' vs QCD for $pp \rightarrow TT \rightarrow t t DM DM$

 LHC is probing now DM and top partner masses up to about 0.9 and 1.5 TeV respectively
 bounds from QCD production alone are extended by ~ factor of two
 DM DD rates are loop-suppressed

Disappearing Charged Tracks (DCT): VDM as an example

$$\mathcal{L} = \mathcal{L}_{SM} - Tr \{ D_{\mu}V_{\nu}D^{\mu}V^{\nu} \} + Tr \{ D_{\mu}V_{\nu}D^{\nu}V^{\mu} \} - \frac{g^{2}}{2}Tr \{ [V_{\mu}, V_{\nu}] [V^{\mu}, V^{\nu}] \} - igTr \{ W_{\mu\nu} [V^{\mu}, V^{\nu}] \} + \tilde{M}^{2}Tr \{ V_{\nu}V^{\nu} \} + a \left(\Phi^{\dagger}\Phi \right) Tr \{ V_{\nu}V^{\nu} \}$$

The small mass gap (~ pion mass) between DM and its charged partner will lead to the disappearing charge tracks signatures

NEX

Alexander Belyaev

V⁰ and V⁺ which are degenerate at treelevel are split due to the quantum corrections

Collider sensitivity to VDM mass

LHC@13, @27TeV and FCC@100 TeV constraints from LLP searches

AB, Cacciapaglia, arXiv:1808.10464

Current bound from LHC on DM mass from the minimal vector triplet model: **1.3 TeV** !

100 TeV FCC will cover DM mass **beyond 4TeV**: will discover or close the model

Decoding the nature of DM at the ILC muon spectrum from the models with scalar and fermion DM

Decoding Problem: Data \rightarrow **Theory link**

- probably the most challenging problem to solve the inverse problem of decoding of the underlying theory from signal
 - requires database of models, database of signatures
 - requires smart procedure based on machine learning of matching signal from data with the pattern of the signal from data

Decoding Problem: Data \rightarrow **Theory link**

- probably the most challenging problem to solve the inverse problem of decoding of the underlying theory from signal
 - requires database of models, database of signatures
 - requires smart procedure based on machine learning of matching signal from data with the pattern of the signal from data
- HEPMDB (High Energy Physics Model Database) was created in 2011 hepmdb.soton.ac.uk
 - convenient centralized storage environment for HEP models
 - it allows to evaluate the LHC predictions and perform event generation using CalcHEP, Madgraph for any model stored in the database
 - you can upload their own model and perform simulation

Decoding Problem: Data \rightarrow **Theory link**

- probably the most challenging problem to solve the inverse problem of decoding of the underlying theory from signal
 - requires database of models, database of signatures
 - requires smart procedure based on machine learning of matching signal from data with the pattern of the signal from data
- HEPMDB (High Energy Physics Model Database) was created in 2011 hepmdb.soton.ac.uk
 - convenient centralized storage environment for HEP models
 - it allows to evaluate the LHC predictions and perform event generation using CalcHEP, Madgraph for any model stored in the database
 - you can upload there your own model and perform simulation
- As a HEPMDB spin-off the PhenoData project was created hepmdb.soton.ac.uk/phenodata
 - stores data (digitized curves from figures, tables etc) from those HEP papers which did not provide data in arXiv or HEPData
 - has an easy search interface and paper identification via arXiv, DOI or preprint numbers

DM DD detection provides a very powerful probe of DM theory space
 – in general provides DM mass probe beyond the collider reach

Colliders – provide DM detection power in the region "blind" for DM DD, typically below 1 TeV

Several ways to decode DM nature from the signal which we hope to observe soon (slopes of MET, cross sections, signatures, ...)

New prospects: new DD experiments, new ideas, prospects for directional DM detection, new signatures at colliders (VFB, LL, ...), future colliders (great potential of ILC and FCC)

Great synergy of collider and non-collider experiments (DD, CMB, relic density)

Thank you!

Backup Slides

DIM5/6 operators (spin 0,1/2,1)

Complex scalar D	M†	
$\frac{\frac{\tilde{m}}{\Lambda^2}\phi^{\dagger}\phi\bar{q}q}{\frac{\tilde{m}}{\tilde{m}}\phi^{\dagger}\phi\bar{a}i\gamma^5 q}$	[C1]* [C2]*	$\frac{\frac{\tilde{m}}{\Lambda^2}V_{\mu}^{\dagger}}{\frac{\tilde{m}}{\tilde{m}}V^{\dagger}}$
$\frac{1}{\Lambda^2} \phi^{\dagger} i \overleftrightarrow{\partial_{\mu}} \phi \bar{q} \gamma^{\mu} q$	[C3]	$\frac{\Lambda^2}{2\Lambda^2} \frac{\mu}{(V)}$
$\frac{\frac{1}{\Lambda^2}\phi^{\dagger}i\partial_{\mu}\phi\bar{q}\gamma^{\mu}\gamma^{3}q}{\frac{1}{\Lambda^2}\phi^{\dagger}\phi G^{\mu\nu}G_{\mu\nu}}$	[C4] [C5]*	$\frac{\overline{2\Lambda^2}}{\frac{\tilde{m}}{\Lambda^2}}V^{\dagger}_{\mu}$
$rac{\Lambda^2}{\Lambda^2} \phi^\dagger \phi \tilde{G}^{\mu u} G_{\mu u}$	[C6]*	$rac{rac{m}{\Lambda^2}V_{\mu}^{1}}{rac{1}{2\Lambda^2}}(V$
Dirac fermion D	Mţ	$\frac{\frac{1}{2\Lambda^2}(V)}{\frac{1}{2\Lambda^2}(V)}$
$\frac{1}{\Lambda^2} \bar{\chi} \chi \bar{q} q$	[D1]*	$\frac{1}{2\Lambda^2} (V$
$\frac{\frac{1}{\Lambda^2}\bar{\chi}i\gamma^5\chi\bar{q}q}{\frac{1}{\chi}\bar{\chi}\chi\bar{q}i\gamma^5q}$	[D2]*	$\frac{2\Lambda^2}{2\Lambda^2}\epsilon^{\mu}$
$\frac{\Lambda^2 \chi \chi q^4 \gamma q}{\Lambda^2 \bar{\chi} \gamma^5 \chi \bar{q} \gamma^5 q}$	[D3]*	$\frac{\frac{1}{2\Lambda^2}}{2\Lambda^2}\epsilon^{\mu}$
$\frac{\frac{1}{\Lambda^2}\bar{\chi}\gamma^{\mu}\chi\bar{q}\gamma_{\mu}q}{\frac{1}{\Lambda^2}\bar{\chi}\gamma^{\mu}\gamma^5\chi\bar{q}\gamma_{\mu}q}$	[D5] [D6]	$\frac{\frac{1}{2\Lambda^2}\epsilon}{\frac{1}{\Lambda^2}V_{\mu}^{\dagger}}$
$\frac{\Lambda^2}{\Lambda^2} \bar{\chi} \gamma^{\mu} \chi \bar{q} \gamma_{\mu} \gamma^5 q$	[D7]	$\frac{\Lambda^2}{\Lambda^2}V^{\dagger}_{\mu}$
$\frac{\overline{\Lambda^2}}{\Lambda^2} \bar{\chi} \overline{\sigma}^{\mu\nu} \chi \overline{q} \sigma_{\mu\nu} q$	[D8] [D9]*	* operators ap [†] Listed in J. G
$\frac{1}{\Lambda^2} \bar{\chi} \sigma^{\mu\nu} i \gamma^5 \chi \bar{q} \sigma_{\mu\nu} q$	[D10]*	D82 (2010) 110

NEXT

Complex vector DM [‡]							
$\frac{\tilde{m}}{\Lambda^2} V^{\dagger}_{\mu} V^{\mu} \bar{q} q$	[V1]*						
$\frac{1}{m}V^{\dagger}_{\mu}V^{\mu}\bar{q}i\gamma^{5}q$	[V2]*						
$\frac{\Lambda_1}{2\Lambda^2} (V^{\dagger}_{\nu} \partial_{\mu} V^{\nu} - V^{\nu} \partial_{\mu} V^{\dagger}_{\nu}) \bar{q} \gamma^{\mu} q$	[V3]						
$\frac{2\Lambda^{-}}{2\Lambda^{2}}(V^{\dagger}_{\nu}\partial_{\mu}V^{\nu}-V^{\nu}\partial_{\mu}V^{\dagger}_{\nu})\bar{q}i\gamma^{\mu}\gamma^{5}q$	[V4]						
$\frac{2\Lambda^2}{m}V^{\dagger}_{\mu}V_{\nu}\bar{q}i\sigma^{\mu\nu}q$	[V5]						
$\frac{\Lambda}{m} V^{\dagger}_{\mu} V_{\nu} \bar{q} \sigma^{\mu\nu} \gamma^5 q$	[V6]						
$\frac{\Lambda^{-}_{1}}{2\Lambda^{2}} (V^{\dagger}_{\nu} \partial^{\nu} V_{\mu} + V^{\nu} \partial^{\nu} V^{\dagger}_{\mu}) \bar{q} \gamma^{\mu} q$	[V7P]						
$\frac{2\Lambda^{-}}{2\Lambda^{2}}(V^{\dagger}_{\nu}\partial^{\nu}V_{\mu}-V^{\nu}\partial^{\nu}V^{\dagger}_{\mu})\bar{q}i\gamma^{\mu}q$	[V7M]						
$\frac{2\Lambda}{2\Lambda^2} (V_{\nu}^{\dagger} \partial^{\nu} V_{\mu} + V^{\nu} \partial^{\nu} V_{\mu}^{\dagger}) \bar{q} \gamma^{\mu} \gamma^5 q$	[V8P]						
$\frac{2\Lambda}{2\Lambda^2} (V_{\nu}^{\dagger} \partial^{\nu} V_{\mu} - V^{\nu} \partial^{\nu} V_{\mu}^{\dagger}) \bar{q} i \gamma^{\mu} \gamma^5 q$	[V8M]						
$\frac{2\Lambda^{-}}{2\Lambda^{2}}\epsilon^{\mu\nu\rho\sigma}(V^{\dagger}_{\nu}\partial_{\rho}V_{\sigma}+V_{\nu}\partial_{\rho}V^{\dagger}_{\sigma})\bar{q}\gamma_{\mu}q$	[V9P]						
$\frac{2\Lambda^{2}}{2\Lambda^{2}}\epsilon^{\mu\nu\rho\sigma}(V^{\dagger}_{\nu}\partial^{\nu}V_{\mu}-V^{\nu}\partial^{\nu}V^{\dagger}_{\mu})\bar{q}i\gamma_{\mu}q$	[V9M]						
$\frac{2\Lambda}{2\Lambda^2} \epsilon^{\mu\nu\rho\sigma} (V_{\nu}^{\dagger}\partial_{\rho}V_{\sigma} + V_{\nu}\partial_{\rho}V_{\sigma}^{\dagger}) \bar{q}\gamma_{\mu}\gamma^5 q$	[V10P]						
$\frac{\frac{2\Lambda}{2\Lambda^2}}{2\Lambda^2}\epsilon^{\mu\nu\rho\sigma}(V^{\dagger}_{\nu}\partial^{\nu}V_{\mu} - V^{\nu}\partial^{\nu}V^{\dagger}_{\mu})\bar{q}i\gamma_{\mu}\gamma^5q$	[V10M]						
$\frac{1}{\Lambda^2} V^{\dagger}_{\mu} V^{\mu} G^{\rho\sigma} G_{\rho\sigma}$	[V11]*						
$rac{1}{\Lambda^2} V^{\dagger}_{\mu} V^{\mu} \tilde{G}^{ ho\sigma} G_{ ho\sigma}$	[V12]*						

operators applicable to real DM fields, modulo a factor 1/2

[†] Listed in J. Goodman *et al., Constraints on Dark Matter from Colliders*, Phys.Rev. **D82** (2010) 116010, [arXiv:1008.1783]

[‡] All but V11 and V12 listed in Kumar *et al.*, *Vector dark matter at the LHC*, Phys. Rev. **D92** (2015) 095027, [arXiv:1508.04466]

Decoding the nature of DM

Mapping EFT operators to simplified models

DM DD \leftrightarrow **Collider interplay**

DM DD: directional detection – going beyond the neutrino floor

- The idea is to measure both the energy and the direction of the recoil
- Most mature technology is the gaseous Time Projection Chamber (TPC) : DRIFT, MIMAC, DMTPC, NEWAGE, D3

- Detecting recoil tracks in nuclear emulsion (e.g. NEWS experiment) Aleksandrov et al. [1604.04199]
- Directional detection is HARD, But it is also very POWERFUL.

Relation of the actual dimension (D) and the naive one (d) for VDM operators

V_{DM} Operator	Λ_d	d	Λ_D	D	$\left \Delta_{\sigma}(\sigma_{2\rightarrow 2} \propto E^{\Delta_{\sigma}})\right $	Amplitude Enhancement
V1,V2,V5,V6	$\frac{1}{\Lambda}$	5	$\frac{M_{DM}^2}{\Lambda^3}$	7	4	$(E/M_{DM})^2$
V3,V4,V7M,V8M,V11,V12	$\frac{1}{\Lambda^2}$	6	$\frac{M_{DM}^2}{\Lambda^4}$	8	6	$(E/M_{DM})^2$
V7P,V8P,V9,V10	$\frac{1}{\Lambda^2}$	6	$\frac{M_{DM}}{\Lambda^3}$	7	4	E/M_{DM}

- we suggest a new parametrisation of VDM operators: since the energy E and the collider limit on L are of the same order, it is natural to use an additional M_{DM}/Λ factor for each power of E/M_{DM} enhancement, so collider limits are not artificially enhanced
 [~100 TeV !!! for MDM =1 GeV, see Kumar, Marfatia, Yaylali 1508.04466] and will be of the same order as limits for other operators
- Dictionary between limits on Λ in different parametrisations:

$$\Lambda_{D} = \left(\Lambda_{d}^{d-4} M_{DM}^{D-d}\right)^{\frac{1}{D-4}} \text{ and } \Lambda_{d} = (\Lambda^{D-4} M_{DM}^{d-D})^{\frac{1}{d-4}}$$

Distinguishing DM operators

operator energy dependence $\rightarrow M_{DMDM}$ shape $\rightarrow MET$ shape

Alexander Belyaev

On the BG uncertainty

• The BG is statistically driven, e.g. pp-> Zj \rightarrow nnj BG is defined from the pp \rightarrow Zj \rightarrow l⁺l⁻j one

CMS-PAS-EXO-16-013

E ^{miss} Range	$Z(\nu\nu)$ +jets	$W(\ell\nu)$ +jets	$Z(\ell\ell)$ +jets	γ +jets	Тор	Diboson	QCD	Total	Total	Data
(GeV)			30 30 5 .	100.000				(Pre-fit)	(Post-fit)	
200 - 230	14919 ± 221	11976 ± 196	207 ± 13	230 ± 14	564 ± 55	251 ± 41	508 ± 171	27761 ± 1464	28654 ± 171	28601
230 - 260	7974 ± 116	5776 ± 101	92.9 ± 5.7	101 ± 6	267 ± 26	157 ± 26	308 ± 104	14114 ± 757	14675 ± 97	14756
260 - 290	4467 ± 70	2867 ± 50	37.9 ± 2.3	63.7 ± 3.9	116 ± 11	77.3 ± 12.7	38.3 ± 21.0	7193 ± 351	7666 ± 68	7770
290 - 320	2518 ± 46	1520 ± 34	18.4 ± 1.1	29.6 ± 1.8	56.7 ± 5.6	42.9 ± 7.1	29.8 ± 10.5	4083 ± 204	4215 ± 48	4195
320 - 350	1496 ± 35	818 ± 20	10.0 ± 0.6	19.7 ± 1.2	33.6 ± 3.3	25.4 ± 4.2	9.0 ± 5.4	2385 ± 118	2407 ± 37	2364
350 - 390	1204 ± 31	555 ± 15	3.9 ± 0.2	12.7 ± 0.8	24.5 ± 2.4	22.1 ± 3.6	6.0 ± 3.5	1817 ± 87	1826 ± 32	1875
390 - 430	684 ± 20	275 ± 9	2.1 ± 0.1	8.3 ± 0.5	9.8 ± 1.0	13.9 ± 2.3	3.0 ± 1.6	978 ± 45	998 ± 23	1006
430 - 470	382 ± 14	155 ± 6	0.96 ± 0.06	4.9 ± 0.3	9.4 ± 0.9	6.6 ± 1.1	1.0 ± 0.8	589 ± 30	574 ± 17	543
470 - 510	248 ± 11	87.3 ± 3.8	0.47 ± 0.03	3.7 ± 0.2	0.22 ± 0.02	5.1 ± 0.8	0.65 ± 0.44	337 ± 15	344 ± 12	349
510 - 550	160 ± 8	52.2 ± 2.7	0.23 ± 0.01	2.0 ± 0.1	2.7 ± 0.3	2.2 ± 0.4	0.28 ± 0.19	211 ± 9	219 ± 9	216
550 - 590	99.5 ± 6.0	29.2 ± 1.9	0.12 ± 0.01	1.8 ± 0.1	0.94 ± 0.09	2.0 ± 0.3	0.19 ± 0.14	134 ± 6	134 ± 7	142
590 - 640	77.3 ± 4.9	18.9 ± 1.4	0.09 ± 0.01	0.46 ± 0.03	< 0.13	1.7 ± 0.3	0.11 ± 0.08	100 ± 4	98.5 ± 5.8	111
640 - 690	44.8 ± 3.5	11.2 ± 0.9	0.017 ± 0.001	0.19 ± 0.01	< 0.13	1.5 ± 0.2	0.06 ± 0.05	59.6 ± 2.6	58.0 ± 4.1	61
690 - 740	27.8 ± 2.5	6.1 ± 0.6	0.013 ± 0.0008	0.57 ± 0.04	< 0.13	0.69 ± 0.11	0.02 ± 0.02	36.6 ± 1.5	35.2 ± 2.9	32
740 - 790	21.8 ± 2.3	5.3 ± 0.6	< 0.005	0.28 ± 0.02	0.23 ± 0.02	0.11 ± 0.02	0.02 ± 0.02	23.8 ± 1.0	27.7 ± 2.7	28
790 - 840	13.5 ± 1.9	2.8 ± 0.4	< 0.005	0.18 ± 0.01	0.27 ± 0.03	0.010 ± 0.001	0.008 ± 0.007	15.3 ± 0.7	16.8 ± 2.2	14
840 - 900	9.5 ± 1.4	2.0 ± 0.3	< 0.005	0.28 ± 0.02	< 0.13	0.25 ± 0.04	< 0.008	12.2 ± 0.6	12.0 ± 1.6	13
900 - 960	5.4 ± 1.0	1.1 ± 0.2	< 0.005	< 0.08	< 0.13	0.37 ± 0.06	< 0.008	7.6 ± 0.3	6.9 ± 1.2	7
960 - 1020	3.3 ± 0.8	0.77 ± 0.21	< 0.005	0.12 ± 0.01	< 0.13	0.23 ± 0.04	< 0.008	5.2 ± 0.3	4.5 ± 1.0	3
1020 - 1160	2.5 ± 0.8	0.52 ± 0.16	< 0.005	< 0.08	< 0.13	0.16 ± 0.03	< 0.008	3.6 ± 0.2	3.2 ± 0.9	1
1160 - 1250	1.7 ± 0.6	0.3 ± 0.11	< 0.005	< 0.08	< 0.13	0.16 ± 0.03	< 0.008	2.3 ± 0.1	2.2 ± 0.7	2
> 1250	1.4 ± 0.5	0.19 ± 0.08	< 0.005	< 0.08	< 0.13	0.06 ± 0.01	< 0.008	1.6 ± 0.1	1.6 ± 0.6	3

http://cms-results.web.cern.ch/cms-results/public-results/preliminary-results/EXO-16-013/#AddFig

Complementarity of LHC and non-LHC DM searches

for the model with Vector Resonances, Top Partners and Scalar DM $TT \rightarrow t t DM DM$

LHC@13TeV Reach for spin 0 and ½ DM

		Coefficient	Exclude	$d \Lambda (GeV)$	at 3.2 fb^{-1}	Excluded Λ (GeV) at 100 fb ⁻¹		
	Operators		DM Mass			DM Mass		
			$10 \mathrm{GeV}$	$100 \mathrm{GeV}$	$1000 \mathrm{GeV}$	$10 \mathrm{GeV}$	$100 { m GeV}$	$1000 {\rm GeV}$
Complex Scalar DM	C1 & C2	$1/\Lambda$	456	424	98	1168	1115	267
	C3 & C4	$1/\Lambda^2$	750	746	400	1134	1131	662
	C5 & C6	$1/\Lambda^2$	1621	1576	850	2656	2611	1398
Dirac Fermion DM	D1 & D3	$1/\Lambda^2$	931	940	522	1386	1405	861
	D2 & D4	$1/\Lambda^2$	952	936	620	1426	1399	1022
	D1T & D4T	$1/\Lambda^2$	735	729	476	1217	1199	780
	D2T	$1/\Lambda^2$	637	638	407	1053	1052	670
	D3T	$1/\Lambda^2$	586	625	391	969	938	644
	D5 & D7	$1/\Lambda^2$	1058	967	721	1580	1591	1190
	D6 & D8	$1/\Lambda^2$	978	1050	579	1608	1585	955
	D9 & D10	$1/\Lambda^2$	1587	1592	958	2613	2619	1580

LHC@13TeV Reach for spin 1 DM

		Coefficient	Exclude	$d \Lambda (GeV)$	at 3.2 fb^{-1}	Excluded Λ (GeV) at 100 fb ⁻¹		
	Operators		$10 \mathrm{GeV}$	DM Mass 100 GeV	$1000 { m GeV}$	$10 { m GeV}$	DM Mass 100 GeV	$1000 { m GeV}$
	V1 & V2	M_{DM}^2/Λ_D^3	831	833	714	1162	1161	997
Complex Vector DM	V3 & V4	M_{DM}^2/Λ_D^4	930	931	833	1196	1193	1070
	V5 & V6	M_{DM}^2/Λ_D^3	784	791	711	1095	1104	993
	V7M & V8M	M_{DM}^2/Λ_D^4	930	926	882	1195	1193	1130
	V7P & V8P	M_{DM}/Λ_D^3	796	791	652	1112	1102	911
	V9M & V10M	M_{DM}/Λ_D^3	796	799	737	1109	1114	1027
	V9P & V10P	M_{DM}/Λ_D^3	794	782	609	1110	1089	850
	V11 & V11A	M_{DM}^2/Λ_D^4	1435	1442	1309	1844	1850	1683

γ **Disappearing Charged Tracks from DM**

The small mass gap between (~ pion mass) DM and its charged partner will lead to the disappearing charge tracks

The life-time should be properly evaluated using W-pion mixing 0

$$\mathcal{L}_{\pi^- V^+ V^0} = \frac{g^2 f_\pi}{2\sqrt{2}M_W^2} [g_{\beta\gamma}(p_{V^+} - p_{V^0})_\alpha + g_{\alpha\gamma}(p_{V^+} - p_{V^0})_\beta] p_{\pi^-}^\alpha \pi^- V^{+\beta} V^{0\gamma}$$

