Color Field Fluctuations... or Not An Open Discussion About Saturation Physics

Matthew D. Sievert

CLASH Seminar

June 24, 2020

M. Sievert

Color Field Fluctuations... or Not

The Goal

- What this talk is **not**:
 - > Comprehensive answers, finished stories, decisive conclusions

- What this talk aims to be:
 - An ongoing discussion to better understand the nature of saturation physics and assess the evidence for it

"Let us aim to be confused at a higher level"

Questions Offered for Discussion

• This Talk:

How essential are the color field degrees of freedom associated with the Color Glass Condensate in heavy ion collisions?

- Other Potential Topics:
- How is saturation related with unitarity in QCD and in other field theories?
 The CGC + Lund String model

Calculations in the CGC Framework

- Color Glass Condensate:
 - > Effective theory for QCD at high energies and high gluon densities
 - Resummation: \$\alpha_s \rho \sim 1\$ as \$\alpha \sim 1\$ as \$\alpha_s \lefta 1/3\$
 Emergent scale: \$Q_s^2 = \frac{\alpha_s \pi^2}{S_{\perp} 2C_F} xG(x, Q_s^2)\$ \$Q_s^2(\vec{b}_\perp) = \frac{\alpha_s \pi^2}{2N_c} T(\vec{b}_\perp) xG_N(x, Q_s^2)\$
 - Features: High gluon densities (semi-classical)
 Degrees of freedom are Wilson lines (gauge links)
- Types of calculations:
 - Initial conditions for hydrodynamics
 - Direct final-state particle production

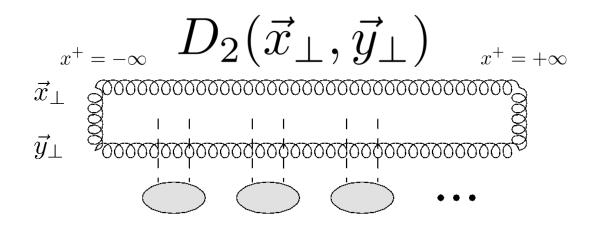
e.g.) IP-Glasma e.g) MSTV B. Schenke, P. Tribedy, R. Venugopalan, Phys.Rev.Lett. 108 (2012)

4/28

M. Mace, V. Skokov, P. Tribedy, R. Venugopalan, Phys.Rev.Lett. 121 (2018) , erratum ibid. 123 (2019)

M. Sievert

Dipole Operators



Wilson lines: line integrals of the

After color averaging: exponentiate a

$$D_2^{adj}(\vec{u}_{\perp}, \vec{b}_{\perp}) \equiv \frac{1}{N_c^2 - 1} \langle \operatorname{tr}[U_{\vec{u}_{\perp}} U_{\vec{b}_{\perp}}^{\dagger}] \rangle$$

$$U_{\vec{x}_{\perp}} = \mathcal{P} \exp\left[ig \int dz_{\mu} A^{\mu}\right]$$

$$D_2(\vec{x}_\perp, \vec{y}_\perp) \approx D_2(|x-y|_T)$$

$$D_2(\vec{x}_\perp, \vec{y}_\perp) \approx \exp\left[-\frac{1}{4}|x-y|_T^2 Q_s^2 \ln \frac{1}{|x-y|_T \Lambda}\right]$$

gluon fields

2-gluon block

•

•

Application: The MSTV Calculation for Small Systems

Hierarchy of azimuthal anisotropy harmonics in collisions of small systems from the Color Glass Condensate

Mark Mace,^{1,2} Vladimir V. Skokov,³ Prithwish Tribedy,¹ and Raju Venugopalan¹

¹Physics Department, Brookhaven National Laboratory, Upton, New York 11975 ²Department of Physics and Astronomy, Stony Brook University, Stony Brook, N ³RIKEN-BNL Research Center, Brookhaven National Laboratory, Upton, New York (Dated: August 8, 2018)

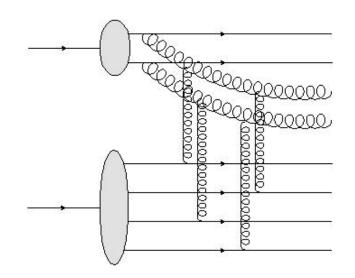
Systematics of azimuthal anisotropy harmonics in proton-nucleus collisions at the LHC from the Color Glass Condensate

Mark Mace,^{1,2} Vladimir V. Skokov,³ Prithwish Tribedy,¹ and Raju Venugopalan¹

¹Physics Department, Brookhaven National Laboratory, Upton, New York 11973-5000, USA ²Department of Physics and Astronomy, Stony Brook University, Stony Brook, NY 11794, USA ³RIKEN-BNL Research Center, Brookhaven National Laboratory, Upton, New York 11973-5000, USA (Dated: July 4, 2018)

$$\frac{dN^{\text{even}}(\mathbf{k}_{\perp})}{d^2kdy} \Big[\rho_p, \rho_t\Big] = \frac{2}{(2\pi)^3} \frac{\delta_{ij}\delta_{lm} + \epsilon_{ij}\epsilon_{lm}}{k^2} \Omega^a_{ij}(\mathbf{k}_{\perp}) \left[\Omega^a_{lm}(\mathbf{k}_{\perp})\right]^*$$

$$\Omega_{ij}^{a}(\mathbf{k}_{\perp}) = g \int \frac{d^{2}p}{(2\pi)^{2}} \frac{p_{i}(k-p)_{j}}{p^{2}} \rho_{p}^{b}(\mathbf{p}_{\perp}) U_{ab}(\mathbf{k}_{\perp} - \mathbf{p}_{\perp})$$



M. Sievert

Color Field Fluctuations... or Not

The Elephant in the Room

Patterns

Theory Paper Offers Alternate Explanation for Particle

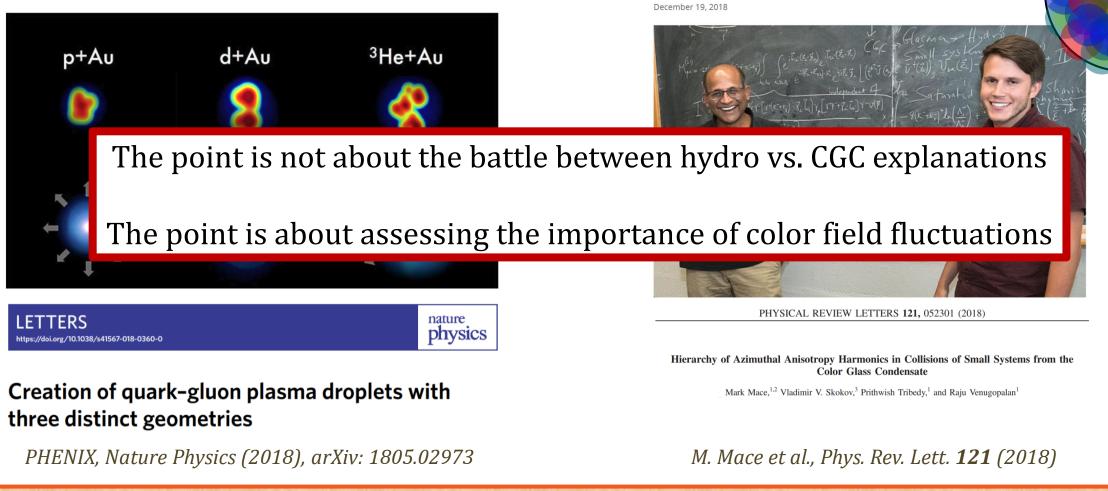
Quantum mechanical interactions among gluons may trigger patterns mimic formation of quark-gluon plasma in small-particle collisions at R

Compelling Evidence for Small Drops of Perfect Fluid

PHENIX publishes new particle-flow measurements to support their case that tiny projectiles create specks of quark-gluon plasma.

December 10, 2018

M. Sievert



Gluon Correlations in MSTSV

Mace et al., Phys. Rev. Lett. **121** (2018), and arXiv:1901.10506

$$\frac{dN}{d^2k_{\perp}} \Big[\rho_p, \rho_t\Big] \stackrel{L.O.}{=} \frac{2}{(2\pi)^3} \frac{\delta^{ij} \delta^{\ell m} + \epsilon_T^{ij} \epsilon_T^{\ell m}}{k_T^2} \,\Omega^{a\,ij}_{(\vec{k}_{\perp})} \Big[\rho_p, \rho_t\Big] \left(\Omega^{a\,\ell m}_{(\vec{k}_{\perp})} \Big[\rho_p, \rho_t\Big]\right)^*$$

$$\frac{dN}{d^2k_{\perp 1}\cdots d^2k_{\perp n}} = \int \left[\mathcal{D}\rho_p\right] \left[\mathcal{D}\rho_t\right] W[\rho_p] W[\rho_t] \ \frac{dN}{d^2k_{\perp 1}} \left[\rho_p, \rho_t\right] \cdots \frac{dN}{d^2k_{\perp n}} \left[\rho_p, \rho_t\right]$$

- Event-by-event fluctuations:
 - MC Glauber geometry
 - Event-by-event color fields: **operators** in ρ_p , ρ_t

Two-gluon correlations from semi-dilute / dense expressions
 Inherently factorized at operator level (density-enhanced)

M. Sievert

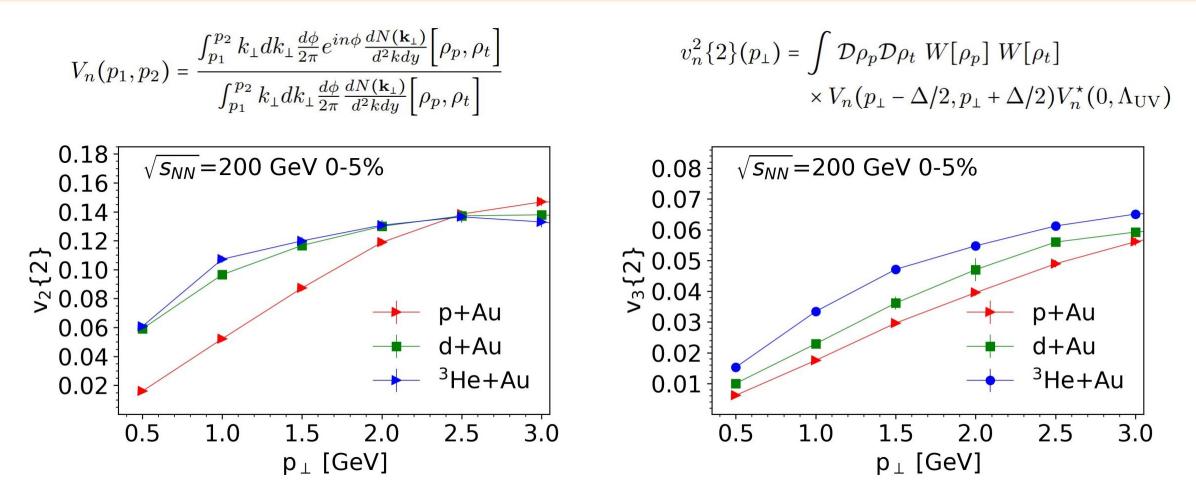
When is "Flow" not "Hydro"?

- Sampled **one color field at a time**:
 - > The single-particle distribution is **anisotropic**
 - Many-body correlations arise only through **mutual correlation** to the direction of the color fields.

$$\frac{dN}{d^2k_{\perp 1}\cdots d^2k_{\perp n}} = \int \left[\mathcal{D}\rho_p\right] \left[\mathcal{D}\rho_t\right] W[\rho_p] W[\rho_t] \frac{dN}{d^2k_{\perp 1}} \left[\rho_p, \rho_t\right] \cdots \frac{dN}{d^2k_{\perp n}} \left[\rho_p, \rho_t\right]$$
$$v_n \equiv \frac{1}{N} \left| \int_p e^{in\phi} \frac{dN_1}{d^2p} \right|$$
$$\frac{dN_2}{d^2p_1 d^2p_2} \equiv \frac{dN_1}{d^2p_1} \frac{dN_1}{d^2p_2} + \delta_2(p_1, p_2) \qquad (v_n\{2\})^2 \stackrel{flow}{=} \langle v_n^2 \rangle \qquad (v_n\{4\})^4 \stackrel{flow}{=} 2\langle v_n^2 \rangle^2 - \langle v_n^4 \rangle$$
$$= (v_n\{2\})^4 - \operatorname{Var}\left(v_n^2\right)$$

M. Sievert

Similar Input, Similar Output

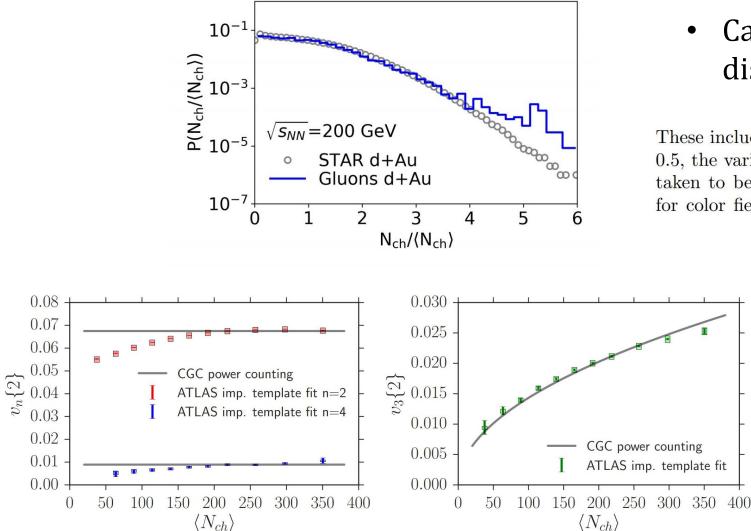


• The devil is certainly in the details, but: not surplising that MSTV gets systematics which resemble hydro (and hence the data)

M. Sievert

Color Field Fluctuations... or Not

Interesting Observations on Multiplicity Dependence



 Can fit gluon multiplicity distribution to data... with help

These include the mean of the ratio $Q_S/g^2\mu$ taken to be 0.5, the variance of Gaussian fluctuations of $\ln(Q_S^2)$ [42] taken to be $\sigma = 0.5$, as well as an infrared cutoff scale for color fields taken to be m = 0.3 GeV. The effect of

• Interesting characteristic scaling with multiplicity

$$v_{2}\{2\} \overset{T_{A}T_{B}}{\sim} \sqrt{\frac{\int d^{2}x_{\perp} \left(\frac{dN}{d^{2}x}\right)^{2}}{\left[\int d^{2}x_{\perp} \frac{dN}{d^{2}x}\right]^{2}}} \sim \text{const}$$

$$v_{3}\{2\} \overset{T_{A}T_{B}}{\sim} \sqrt{\frac{\int d^{2}x_{\perp} \left(\frac{dN}{d^{2}x}\right)^{3}}{\left[\int d^{2}x_{\perp} \frac{dN}{d^{2}x}\right]^{2}}} \sim \sqrt{\frac{dN}{d^{2}x}}$$

11/28

M. Sievert

...How Does this Single-Field Calculation Really Work?

$$\frac{dN}{d^2k_{\perp 1}\cdots d^2k_{\perp n}} = \int \left[\mathcal{D}\rho_p\right] \left[\mathcal{D}\rho_t\right] W[\rho_p] W[\rho_t] \ \frac{dN}{d^2k_{\perp 1}} \left[\rho_p, \rho_t\right] \cdots \frac{dN}{d^2k_{\perp n}} \left[\rho_p, \rho_t\right]$$

$$\left\langle \frac{d^m N}{d^2 \mathbf{p_1} \cdots d^2 \mathbf{p_m}} \right\rangle \equiv \left\langle \frac{dN}{d^2 \mathbf{p_1}} \cdots \frac{dN}{d^2 \mathbf{p_m}} \right\rangle \,, \tag{7}$$

where the expectation value denotes an average over classical configurations of the target in a single event and over all events. Since each of the single-particle distributions inside the average here is a gauge-dependent functional of the classical field, we caution the reader that these distributions are qualitatively different from the gauge invariant single-particle distributions employed in hydrodynamic computations. No such simple product of gauge invariant distributions can be written in our case; indeed, as discussed at length in the Appendix, the Feynman diagrams corresponding to Eq. (7) are quantum interference diagrams.

 $V_n(p_1, p_2) = \frac{\int_{p_1}^{p_2} k_{\perp} dk_{\perp} \frac{d\phi}{2\pi} e^{in\phi} \frac{dN(\mathbf{k}_{\perp})}{d^2 k dy} \Big[\rho_p, \rho_t \Big]}{\int_{p_1}^{p_2} k_{\perp} dk_{\perp} \frac{d\phi}{2\pi} \frac{dN(\mathbf{k}_{\perp})}{d^2 k dy} \Big[\rho_p, \rho_t \Big]}$

K. Dusling, M. Mace, R. Venugopalan Phys.Rev.D 97 (2018)

• Is this quantity well defined...?

 $\left\langle \rho^{a}\rho^{b}\rho^{c}\rho^{d}\right\rangle = \left\langle \rho^{a}\rho^{b}\right\rangle \left\langle \rho^{c}\rho^{d}\right\rangle + \left\langle \rho^{a}\rho^{c}\right\rangle \left\langle \rho^{b}\rho^{d}\right\rangle + \left\langle \rho^{a}\rho^{d}\right\rangle \left\langle \rho^{b}\rho^{c}\right\rangle$

M. Sievert

 $v_n \equiv \frac{1}{N} \left| \int_{\mathcal{D}} e^{in\phi} \frac{dN_1}{d^2 p} \right|$



The Alternative: Keeping vs. Smearing the Color Fields

• The operators in a calculation like MSTV are factorizing (flow-like) at the level of a single color field, but not after averaging the color fields out:

$$\left\langle \hat{D}_2(\vec{x}_\perp, \vec{y}_\perp) \, \hat{D}_2(\vec{z}_\perp, \vec{w}_\perp) \right\rangle_{\text{color}} \neq \left\langle \hat{D}_2(\vec{x}_\perp, \vec{y}_\perp) \right\rangle_{\text{color}} \left\langle \hat{D}_2(\vec{z}_\perp, \vec{w}_\perp) \right\rangle_{\text{color}}$$

- The picture before and after color averaging is very different:
 - Single-particle distribution $\frac{dN}{d^2k}$ directional vs isotropic
 - > Factorizable vs irreducible multiparticle correlations

Systematics of "Flow" versus "Non-Flow"

• **"Flow"** refers to any source of anisotropy in the **single-particle** distribution **in an event**

$$v_n \equiv \frac{1}{N} \left| \int_p e^{in\phi} \frac{dN_1}{d^2 p} \right|$$

 Multi-particle distributions arise both from independent production (flow) and dynamical correlations (non-flow) $\frac{dN_2}{d^2p_1 d^2p_2} \equiv \frac{dN_1}{d^2p_1} \frac{dN_1}{d^2p_2} + \delta_2(p_1, p_2)$

14 / 28

• **Cumulants** are observables that are **differently sensitive** to **flow** and **non-flow**

$$(v_n\{2\})^2 \equiv \left\langle \frac{1}{N^2} \int_{p_1 p_2} e^{in(\phi_1 - \phi_2)} \frac{dN_2}{d^2 p_1 d^2 p_2} \right\rangle$$

$$(v_n\{4\})^4 \equiv 2 \left\langle \frac{1}{N^2} \int_{p_1 p_2} e^{in(\phi_1 - \phi_2)} \frac{dN_2}{d^2 p_1 d^2 p_2} \right\rangle^2 - \left\langle \frac{1}{N^4} \int_{p_1 p_2 p_3 p_4} e^{in(\phi_1 + \phi_2 - \phi_3 - \phi_4)} \frac{dN_4}{d^2 p_1 \cdots d^2 p_4} \right\rangle$$

M. Sievert

Multiparticle Cumulants: Flow Scenario

• Usually: a **flow-only** scenario

- > No dynamical correlations $(\delta_2 = 0)$ $\frac{dN_2}{d^2p_1 d^2p_2} \equiv \frac{dN_1}{d^2p_1} \frac{dN_1}{d^2p_2}$
- Multiparticle production factorizes
- All cumulants due to single-particle anisotropy

 All cumulants describe the event-by-event distribution of the single-particle anisotropy v_n

$$(v_n\{2\})^2 \stackrel{flow}{=} \langle v_n^2 \rangle$$

$$(v_n \{4\})^4 \stackrel{flow}{=} 2\langle v_n^2 \rangle^2 - \langle v_n^4 \rangle$$

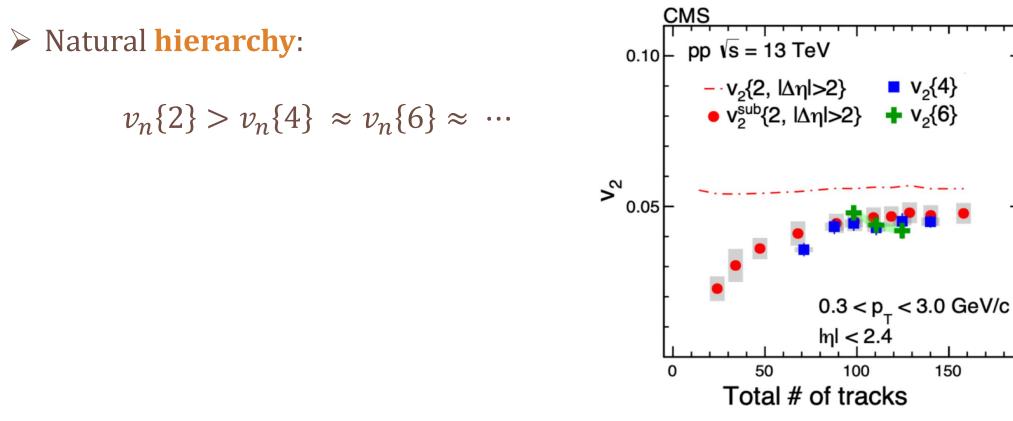
= $(v_n \{2\})^4 - \operatorname{Var}(v_n^2)$

M. Luzum, H. Petersen, J. Phys. G41 (2014)

15/28

M. Sievert

Multiparticle Cumulants: Flow Scenario



M. Sievert

16/28

Multiparticle Cumulants: Non-Flow Scenario

• Often in initial-state calculations:

Isotropic single-particle distribution

> Only dynamical correlations

M. Luzum, H. Petersen, J. Phys. G41 (2014)

$$\frac{dN_1}{d^2p} = \frac{1}{2\pi p_T} \frac{dN}{dp_T}$$

"Non-Flow" only $\frac{dN_2}{d^2p_1 d^2p_2} \equiv \delta_2(p_1, p_2)$

• Sequential **hierarchy** of correlations in **N**_c

 $\succ \delta_2 \gg \delta_4 \gg \cdots$

> Usually **imaginary** v_n {4}

 $(v_n\{2\})^2 \stackrel{nonflow}{=} \langle \delta_{2,(n)} \rangle$

 $(v_n = 0)$

$$\left(v_n\{4\}\right)^4 \stackrel{nonflow}{=} -2\operatorname{Var}\left(\delta_{2,(n)}\right) + \left<\delta_{4,(n)}\right>$$

M. Sievert

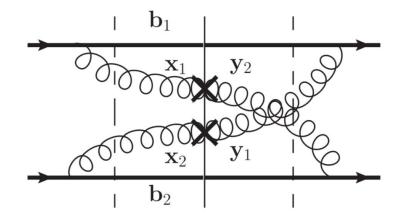
Color Field Fluctuations... or Not

Two-Gluon Correlations, After Color Averaging

Full semi-dilute / dense

Y. Kovchegov, D. Wertepny, Nucl. Phys. A906 (2013)

M. Sievert



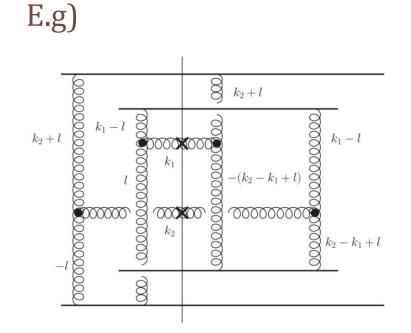
$$\begin{aligned} \frac{d\sigma_{crossed}}{d^2k_1dy_1d^2k_2dy_2} &= \frac{1}{[2(2\pi)^3]^2} \int d^2B \, d^2b_1 \, d^2b_2 \, T_1(B-b_1) \, T_1(B-b_2) \, d^2x_1 \, d^2y_1 \, d^2x_2 \, d^2y_2 \\ &\times \left[e^{-i \, \mathbf{k}_1 \cdot (\mathbf{x}_1 - \mathbf{y}_2) - i \, \mathbf{k}_2 \cdot (\mathbf{x}_2 - \mathbf{y}_1)} + e^{-i \, \mathbf{k}_1 \cdot (\mathbf{x}_1 - \mathbf{y}_2) + i \, \mathbf{k}_2 \cdot (\mathbf{x}_2 - \mathbf{y}_1)} \right] \\ &= \frac{16 \, \alpha_s^2}{\pi^2} \, \frac{C_F}{2N_c} \, \frac{\mathbf{x}_1 - \mathbf{b}_1}{|\mathbf{x}_1 - \mathbf{b}_1|^2} \cdot \frac{\mathbf{y}_2 - \mathbf{b}_2}{|\mathbf{y}_2 - \mathbf{b}_2|^2} \, \frac{\mathbf{x}_2 - \mathbf{b}_2}{|\mathbf{x}_2 - \mathbf{b}_2|^2} \cdot \frac{\mathbf{y}_1 - \mathbf{b}_1}{|\mathbf{y}_1 - \mathbf{b}_1|^2} \\ &\times \left[Q(\mathbf{x}_1, \mathbf{y}_1, \mathbf{x}_2, \mathbf{y}_2) - Q(\mathbf{x}_1, \mathbf{y}_1, \mathbf{x}_2, \mathbf{b}_2) - Q(\mathbf{x}_1, \mathbf{y}_1, \mathbf{b}_2, \mathbf{y}_2) + S_G(\mathbf{x}_1, \mathbf{y}_1) \right. \\ &\quad - Q(\mathbf{x}_1, \mathbf{b}_1, \mathbf{x}_2, \mathbf{y}_2) + Q(\mathbf{x}_1, \mathbf{b}_1, \mathbf{x}_2, \mathbf{b}_2) + Q(\mathbf{x}_1, \mathbf{b}_1, \mathbf{b}_2, \mathbf{y}_2) - S_G(\mathbf{x}_1, \mathbf{b}_1) \\ &\quad - Q(\mathbf{b}_1, \mathbf{y}_1, \mathbf{x}_2, \mathbf{y}_2) + Q(\mathbf{b}_1, \mathbf{y}_1, \mathbf{x}_2, \mathbf{b}_2) + Q(\mathbf{b}_1, \mathbf{y}_1, \mathbf{b}_2, \mathbf{y}_2) - S_G(\mathbf{b}_1, \mathbf{y}_1) \\ &\quad + S_G(\mathbf{x}_2, \mathbf{y}_2) - S_G(\mathbf{x}_2, \mathbf{b}_2) - S_G(\mathbf{b}_2, \mathbf{y}_2) + 1 \right] \end{aligned}$$

Two-Gluon Correlations, After Color Averaging

High pT: semi-dilute / semi-dilute

Y. Kovchegov, D. Wertepny, Nucl. Phys. A906 (2013)

 $T_A^2(ec{x}_\perp) ~~\propto T_B^2(ec{x}_\perp)$

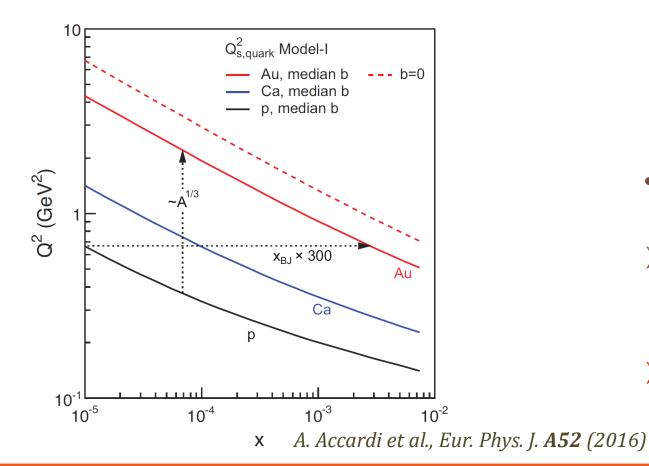


$$\frac{d\sigma_{crossed}^{(corr)}}{d^{2}k_{1}dy_{1}d^{2}k_{2}dy_{2}}\Big|_{LO} = \frac{\alpha_{s}^{2}}{32\pi^{4}} \int d^{2}B \, d^{2}b \left[T_{1}(B-b)\right]^{2} \frac{Q_{s0}^{4}(b)}{k_{1}^{2}k_{2}^{2}} \\
\int \frac{d^{2}l}{(l^{2})^{2} \left((l-k_{1}+k_{2})^{2}\right)^{2} \left((k_{1}-l)^{2}\right)^{2} \left((k_{2}+l)^{2}\right)^{2}} \\
\times \left\{ \left[l^{2} \left(k_{2}+l\right)^{2}+\left(k_{1}-l\right)^{2} \left(l-k_{1}+k_{2}\right)^{2}-k_{1}^{2} \left(k_{2}-k_{1}+2l\right)^{2}\right] \\
\times \left[l^{2} \left(k_{1}-l\right)^{2}+\left(k_{2}+l\right)^{2} \left(l-k_{1}+k_{2}\right)^{2}-k_{2}^{2} \left(k_{2}-k_{1}+2l\right)^{2}\right] \\
+ 4 l^{2} \left(l-k_{1}+k_{2}\right)^{2} \left[\left((k_{1}-l\right)^{2}\right)^{2}+\left((k_{2}+l\right)^{2}\right]\right\} + (k_{2} \rightarrow -k_{2})$$

M. Sievert

Two-Gluon Correlations, After Color Averaging

High pT: semi-dilute / semi-dilute



M.D.S. et al., in preparation

$$\delta_2(p_1, p_2) \stackrel{\text{L.O.}}{=} \left(\int d^2 x_\perp T_A^2(\vec{x}_\perp) T_B^2(\vec{x}_\perp) \right) f(p_1, p_2)$$

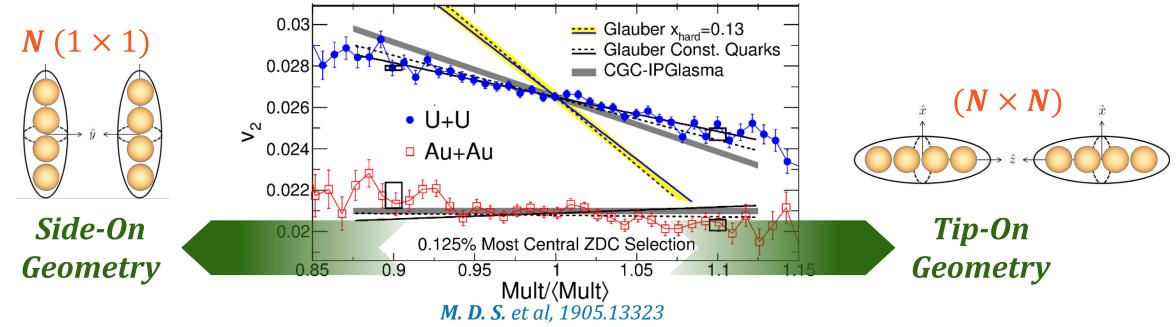
$$\delta_2(p_1, p_1) \stackrel{\text{N.L.O.}}{=} \left(\int d^2 x_\perp T_A^3(\vec{x}_\perp) T_B^3(\vec{x}_\perp) \right) g(p_1, p_2)$$

- Two-gluon correlations at high-pT
- Momentum dependent coefficients cancel in ratios
- Can compare apples to apples between hydro and CGC

20 / 28

M. Sievert

Ultracentral Collisions of Deformed Ions



- Ultracentral (b ≈ 0) collisions are sensitive to nonspherical deformations of the nuclear structure
- Sensitive to the microscopic sub-nucleonic mechanisms of entropy deposition

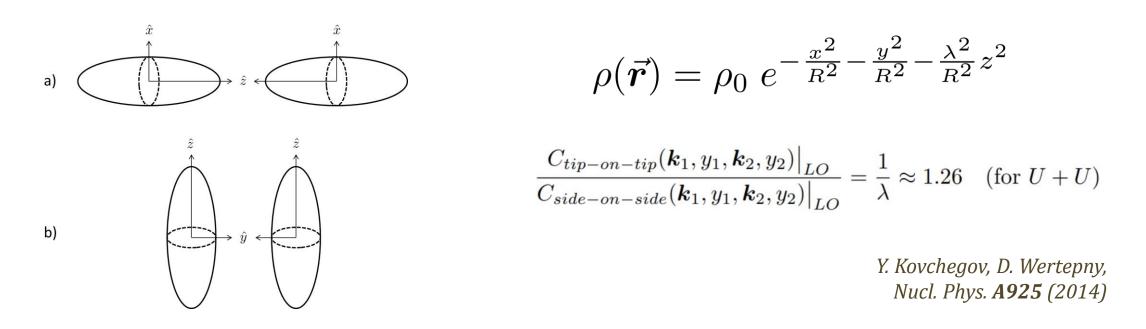
Model sensitivity

Binary collision: Same for all b Overlap region: b-dependent

21/28

M. Sievert

Deformed Ions as Model Discriminators



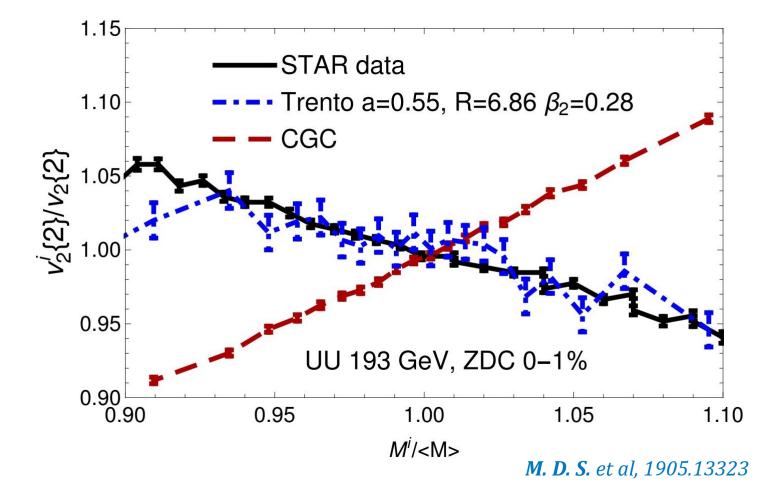
We conclude that, at least at the lowest order, the two-gluon correlations behave in an exactly opposite way from hydrodynamics: while hydrodynamic contribution to v_2 is ellipticity-driven, and is hence larger in the side-on-side

 For ultracentral collisions of ellipsoidal uranium, the multiplicity dependence is expected to be opposite from hydro
 CGC doesn't care about the geometry itself; only the multiplicity

M. Sievert

Color Field Fluctuations... or Not

Qualitatively Different Multiplicity Dependence

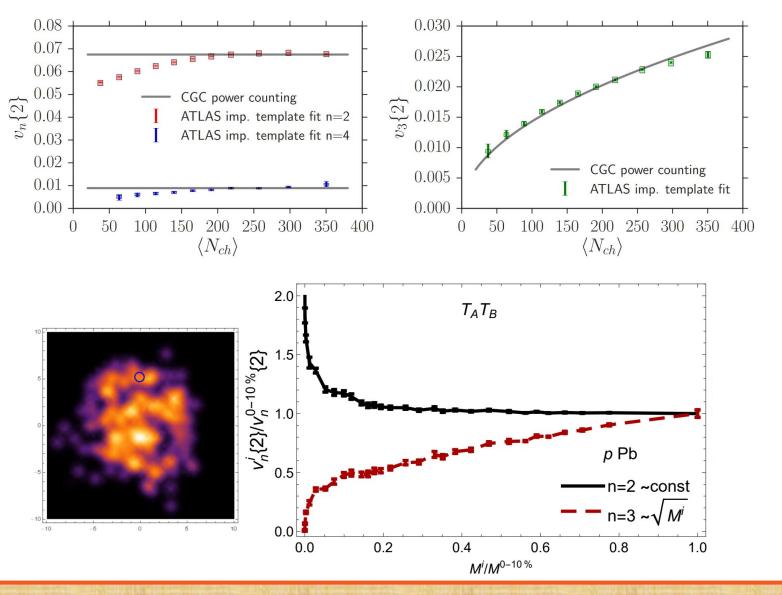


M. Sievert

Color Field Fluctuations... or Not

A Continuation of the MSTSV Multiplicity Story

- MSTV: Loose power counting based on gluon densities
- Even for a "lumpy" system, that scaling is seen in our simulations (here p Pb)

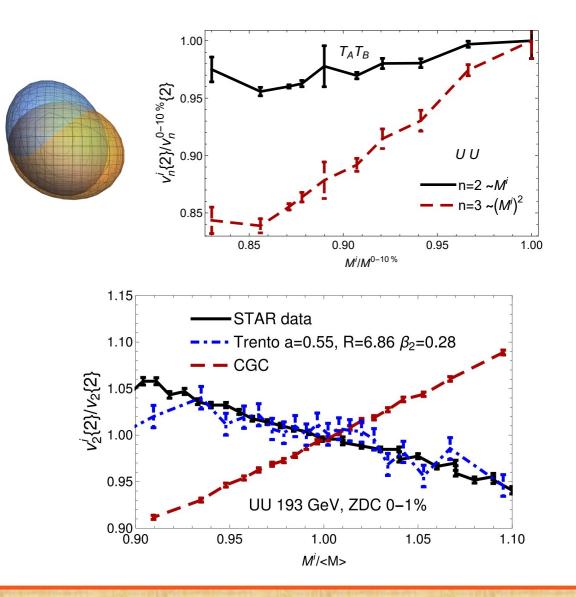


24 / 28

M. Sievert

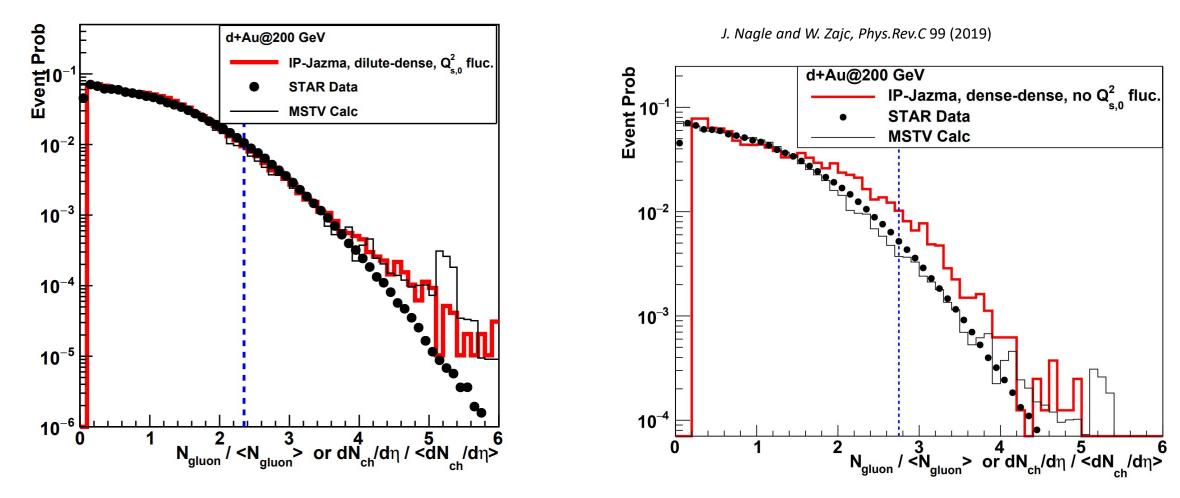
A Continuation of the MSTSV Multiplicity Story

- MSTV: Loose power counting based on gluon densities
- Even for a "lumpy" system, that scaling is seen in our simulations (here p Pb)
- Non-spherical deformations qualitatively change the multiplicity dependence



M. Sievert

IP-Jazma: The Null Hypothesis



• Many crucial features of the CGC calculations can be reproduced **without** event by event color field fluctuations

M. Sievert

Color Field Fluctuations... or Not

Initial Eccentricities Without Color Fields

 Flow harmonics from IP-Glasma are well approximated by an initial-state model with no color field fluctuations

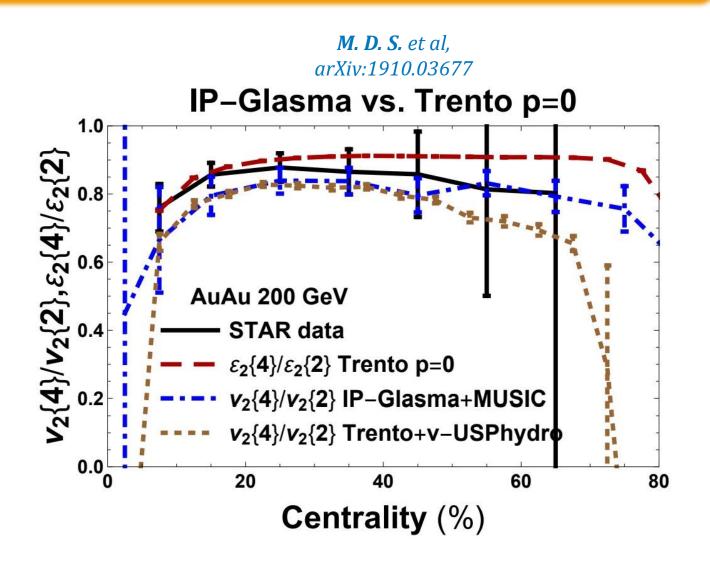
$$s_0 \sim \sqrt{T_A T_B}$$

J. E. Bernhard et al., Phys.Rev.C 94 (2016)

Closest allowed functional form to the initial energy density?

$$\epsilon_0 \sim T_A T_E$$

G. Chen et al., Phys.Rev.C 92 (2015)



M. Sievert

Color Field Fluctuations... or Not

Questions to Ponder...

- What are the implications for the many-body cumulants of keeping versus averaging over event-by event color fluctuations?
- Are individual color-field configurations well-defined "events"?
- Is the positive / negative slope of the multiplicity dependence $v_2(N_{ch})$ in ultracentral collisions of deformed ions a robust discriminator of hydro vs. non-hydro models?
- Are any color field fluctuations **required** to describe the gross features of the data?