Introduction

Patrick Kirchgaeßer | 7.10.20 Department of Astronomy and Theoretical Physics - Lund University CLASH Meeting

Where I am from

Where I studied

Timeline

BSc.

2014

2016

PhD start Supervisor: Stefan Gieseke

2017

Bundesministerium für Bildung und Forschung

PhD end

2020

COSL

EUROPEAN COOPERATION IN SCIENCE AND TECHNOLOGY

Research, mainly focused on small systems

• Non-perturbative QCD:

Hadronization Colour reconnection Multiple parton interactions Diffraction Strangeness production mechanisms

- Perturbative aspects: Colour flow evolution **VBF/VBS**
- Quantification of non-perturbative corrections -> LHC & precision

https://herwig.hepforge.org

Current projects I am involved in

- Quantify non-perturbative corrections in VBF observables
- Colour flow evolution in VBF (within CVolver) (with Simon Plätzer)
- Diffractive cross-sections in Herwig 7 (with Mike Seymour and Stefan Gieseke)
- Development of Herwig 7

[Herwig 7.2 release note, Bellm et al., Eur.Phys.J.C 80 (2020)]

(with Simon Plätzer, Andreas Papaefstathiou, Carsten Bittrich (ATLAS), Stefanie Todt (ATLAS))

Plan to work on (CLASH related)

 Comparison between color reconnection and strangeness production models of Herwig and Pythia (with Christian Bierlich)

• Simulation of Heavy Ion Collisions in Herwig (can then CLASH with Angantyr)

Herwig space-time model and hadronic rescattering (distant future)

Plan to work on (CLASH related)

models of Herwig and Pythia (with Christian Bierlich)

Herwig space-time model and hadronic rescattering (distant future)

Comparison between color reconnection and strangeness production

Simulation of Heavy Ion Collisions in Herwig (can then CLASH with Angantyr)

Exploring strangeness enhancement with strings and clusters (with C. Bierlich)

String fragmentation

$$\begin{array}{cccc} q & \frac{q}{I} & K^0/K^+ \\ q & \frac{1}{S} & \Phi(s\bar{s}) & \mathbf{vs.} \\ \bar{q} & \frac{1}{S} & \Phi(s\bar{s}) & \mathbf{vs.} \\ & \frac{s}{I} & K^-/\bar{K}^0 \\ & \frac{1}{q} & K^-/\bar{K}^0 \end{array}$$

Idea

Two adjacent string breaking necessary to produce $\Phi(s\bar{s})$ Use $\Phi(s\bar{s})$ as trigger particle and study hadron species for different rapidity intervals in bins of centrality Study correlations between strange hadrons and quantify differences between string and cluster hadronization model

Exploring strangeness enhancement with strings and clusters (with C. Bierlich)

E.g. differences between string and cluster model visible for Kaons

