

INTRODUCTION: Sumit Basu

Lund University, Department of Physics, Division of Particle Physics, Box 118, SE-221 00, Lund, Sweden email: sumit.basu@cern.ch

• I am from India

- Ph.D (2016) (VECC & ALICE Expt. CERN)
- Post-Doctoral Fellow

 (Wayne State University, USA)
 (Dec 2016 Mar 2020)
 and Now,
- Post-Doctoral Fellow
 (Lund University, Sweden)

2018 → Sumit V2.0

Ph.D.: Multiplicity Fluctuations

Two-particle transverse momentum correlations

$$G_{2}(\eta_{1},\varphi_{1},\eta_{2},\varphi_{2}) = \frac{1}{\langle p_{\mathrm{T},1}\rangle\langle p_{\mathrm{T},2}\rangle} \left[\frac{\int_{\Omega} p_{\mathrm{T},1}p_{\mathrm{T},2}\,\rho_{2}(\vec{p}_{1},\vec{p}_{2})\,\mathrm{d}\,p_{\mathrm{T},1}\mathrm{d}\,p_{\mathrm{T},2}}{\int_{\Omega} \rho_{1}(\vec{p}_{1})\,\mathrm{d}\,p_{\mathrm{T},1}\otimes\int_{\Omega} \rho_{1}(\vec{p}_{2})\,\mathrm{d}\,p_{\mathrm{T},2}} - \langle p_{\mathrm{T},1}\rangle\langle \eta_{1},\varphi_{1}\rangle\langle p_{\mathrm{T},2}\rangle\langle \eta_{2},\varphi_{2}\rangle \right]$$

Experimentally

$$G_{2}(\eta_{1},\varphi_{1},\eta_{2},\varphi_{2}) = \frac{1}{\langle p_{T,1}\rangle\langle p_{T,2}\rangle} \left[\frac{\left\langle \sum_{i=j\neq i}^{n_{1,1}} p_{T,i} p_{T,i} p_{T,j} \right\rangle}{\langle n_{1,1}(\eta_{1},\varphi_{1})\rangle\langle n_{1,2}(\eta_{2},\varphi_{2})\rangle} - \langle p_{T,1}\rangle(\eta_{1},\varphi_{1})\langle p_{T,2}\rangle(\eta_{2},\varphi_{2}) \right]$$
Sean Gavin et. Al
PRL 97 162302 (2006)
PRC 94 024921 (2016)
ALICE Pb-Pb $\sqrt{s_{NN}} = 2.76 \text{ TeV}$

$$\int_{0}^{0} \sqrt{s_{NN}} \sqrt{s_{NN}} = 2.76 \text{ TeV}} \int_{0}^{1} \sqrt{s_{NN}} \sqrt{s_{NN}} \sqrt{s_{NN}} \sqrt{s_{NN}} \sqrt{s_{NN}} \sqrt{s_{NN}}} \sqrt{s_{NN}} \sqrt{s_{NN}} \sqrt{s_{NN}} \sqrt{s_{NN}} \sqrt{s_{NN}}} \sqrt{s_{NN}} \sqrt{s_{NN}} \sqrt{s_{NN}} \sqrt{s_{NN}}} \sqrt{s_{NN}} \sqrt{s_{NN}} \sqrt{s_{NN}} \sqrt{s_{NN}}} \sqrt{s_{NN}} \sqrt{s_{NN}} \sqrt{s_{NN}} \sqrt{s_{NN}}} \sqrt{s_{NN}} \sqrt{s_{NN}} \sqrt{s_{NN}} \sqrt{s_{NN}} \sqrt{s_{NN}}} \sqrt{s_{NN}} \sqrt{s$$

General Definition of Balance Functions

Cumulant
$$C_2(x_1, x_2) = \rho_2(x_1, x_2) - \rho_1(x_1)\rho_1(x_2)$$

Normalized Cumulant

$$R_2(x_1, x_2) = \frac{C_2(x_1, x_2)}{\rho_1(x_1)\rho_1(x_2)}$$

4 different charge combinations for R_2 : (+ -), (- +), (+ +), and (- -)

Charge Independent (CI) combinations

Charge Dependent (CD) combinations

$$CI = \frac{1}{2} \{ LS + US \}$$
$$CD = \frac{1}{2} \{ US - LS \}$$

1

 R_2^{CD} is proportional to the Balance Function

$$B(\Delta x) \approx \frac{dN_{ch}}{dx} R_2^{CD} = \frac{dN_{ch}}{dx} \frac{1}{2} \left[R_2^{+-} - R_2^{++} + R_2^{-+} - R_2^{--} \right]$$

$$x \equiv \{y, \varphi, p_T\}$$
 $\rho(x) = \frac{1}{\sigma} \frac{d\sigma}{dx}$

R₂ is a robust observable!
Single track efficiencies cancel out of the ratio

$$LS = \frac{1}{2} \{ (++) + (--) \}$$
$$US = \frac{1}{2} \{ (+-) + (-+) \}$$

For Charged particle, Signs (+) & (-) represents charge.

For A's being neutral particle, we define (+) for baryon number & (-) for antibaryon number.

Similary, LS means same-type Baryonic number and US means opposite-type Baryonic number

Importance of Studying Balance Functions

Conservation of quantum numbers.

-> for each positive general charge, a negative balancing charge produced at approx. the same space-time.

The width of the BF was initially proposed to be related to the time of hadronization.

<u>Understand / Probe</u>

- **1.** Two-wave quark production model:
 - $\pi^{\pm} p(\overline{p})$: predominantly produced at late stage
 - K[±] : predominantly produced at early stage
- 2. Collision dynamics, e.g., radial flow

3. Hadro-chemistry – Charge / Strangeness / Baryon / Resonance production

Who is his partner?

Two-particle Number ($\Delta \eta, \Delta \phi$) Correlations

8

Motivation: π K p Balance Functions

Run I : Pb+Pb @ 2760 GeV

 $B(\Delta y)$ Projections & Widths

12

BF Widths and Integrals

At Lund:

- 1. Make a multiplicity dependent RT & SO analysis for $\Lambda\overline{\Lambda}$ analysis and make a connection Between Balance Function & Per Trigger Yield analysis
- 2. Extend Jonatan's study of $\Xi \equiv$ correlation to $\Omega \Omega$ Correlation
- 3. Grid MC: for Rope Tune CD based CR
- 4. Pythia ANTAGYR Study and Make a comparison with QCD-QGP(EPOS) approach to regular PYTHIA MPI model(Lund string model), Strange (Rope Hadronization framework/ Flavour Ropes) and Flow(Rope Hadronization framework/ String shoving)
- 5. ...

Thank You

Back-up Slides

Introduction: Relativistic Heavy Ion Collisions

Time:0

- These collisions
 produce "large" systems
 of *quarks* and *gluons* called the Quark-Gluon
 Plasma (our universe up
 to a few µs after BB)
 nearly perfect fluid
- nearly perfect fluid (surprise!)
- Briefly ~100,000 times hotter than the core of the Sun.
- Thousands of particles are produced in every event.

Correlation Variables

Two-particle Number ($\Delta \eta, \Delta \phi$) Correlations

Large Hadron Collider @ CERN

- Largest machinery ever built by human with the highest energy of collisions

84

27 kilometers (17 mi) in circumference ~ 100 meters (328 ft) underground Lead ions are accelerated to more than 99.9999% of the speed of light and collide.

ALICE (A Large Ion Collider Experiment)

Excellent particle

V0

T0

FMD

identification capability

B5

Analysis Details

Analysis done separately for ++ & -- magnetic field polarities, then averaged the BF results.

Event selection: 2.76 TeV Pb-Pb 2010 Production: LHC10h — AOD160 Accepted events: 14*10⁶, Trigger: Minimum Bias, Centrality selection: VZERO-M, Longitudinal event vertex position range: |Vz|<6 cm,

Common track selection: TPC Only Tracks (filterBit = 1), N_{TPCclusters} >70 out of a maximum of 159.

Track selection:

π[±]: 0.2<p_T<2.0 GeV/*c*, |y|<0.8 in π[±]−π[±]; |y|<0.7 in cross-species BF. **K**[±]: 0.2<p_T<2.0 GeV/*c*, |y|<0.7. **p(p)**: 0.5<p_T<2.5 GeV/*c*, |y|<0.6 in **p(p)**−**p(p)**; |y|<0.7 in cross-species BF.

			00
PID	π [±]	K±	p(p)
TPC 0.2 <p<sub>T, p<0.8 GeV</p<sub>	nσ _π <2, nσ _{κ,p} >3, nσ _e >1	nσ _K <2,nσ _{π,p} >3 , nσ _e >1	
TPC 0.5 <p<sub>T, p<1.0 GeV</p<sub>			nσ _p <2,nσ _{π,K} > 3, nσ _e >1
TOF 0.8 <p, p<sub="">T<2.5 GeV</p,>	nσ _π <2, nσ _{κ,p} >3		
TPC + TOF 0.8 <p, p<sub="">T<2.5 GeV</p,>		nσ _K <2, nσ _{π,p} >3	
TOF 1.0 <p, p<sub="">T<2.5 GeV</p,>			nσ _p <2, nσ _{π,K} >3
DCAz	< 2 cm	< 2 cm	< 2 cm
DCAxy	< 0.04 cm	< 2 cm	< 0.04 cm
MisID	~ 1.2%	~ 4.7%	< 1%
Secondaries from weak decays	~ 1.4%	< 0.1%	< 5%
Secondaries from material	~ 0	~ 0.2%	<1 %
Purity Primary Particles	>97 %	>95%	~ 94%

26

 $0 \leq \varphi \leq 2\pi$