Local Unitarity

A representation of differential cross-sections that is locally free of IR singularities at any order

First, allow me to point out a striking observation, might be inspiration for new physics...

Lund University

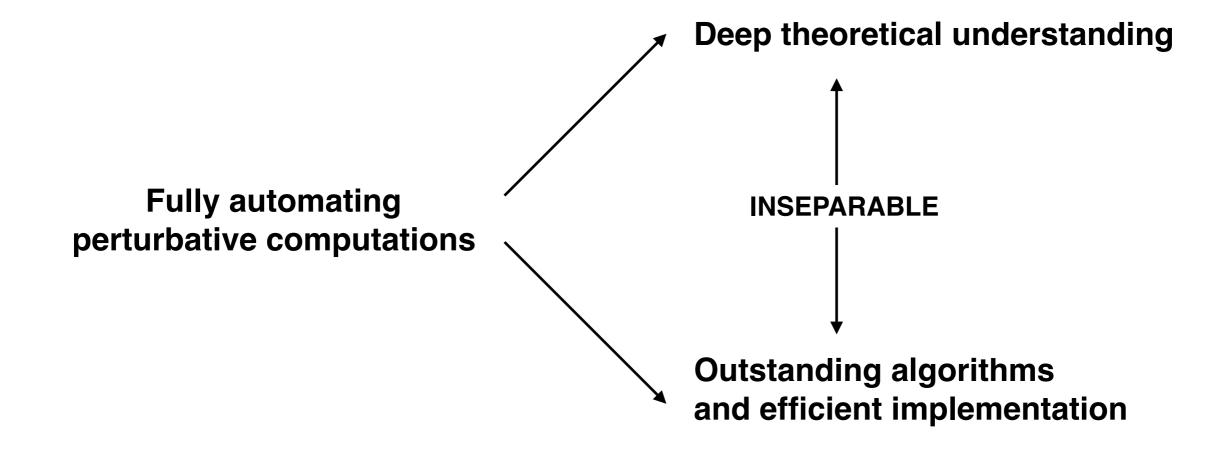
Local Unitarity

LU

This cannot be a coincidence!!

Our objective

Automating perturbative computations: provide a deterministic procedure (and code) that, given any process specific input, and given enough time and enough computational resources, outputs a reliable output with arbitrary precision



The hardest theoretical problem in full automation is that of **IR singularities**. It manifests itself in fixed order computations, PDFs, event generators.

LU forces to unify the treatment for all of its manifestations!

In contrast, the traditional way of computing cross-section usually divides the problem into

- Computing amplitudes analytically
- Computing the phase space integrals numerically with counter-terms

This asymmetric way of dealing with IR singularities hides an inherent simplicity

Some relevant pragmatic consequences...

- No counter-terms
- No dimensional regularisation
- Not process specific
- Fully numerical and automatable
- Differential

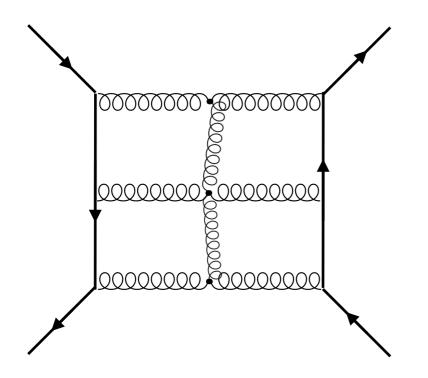
Some interesting theoretical consequences...

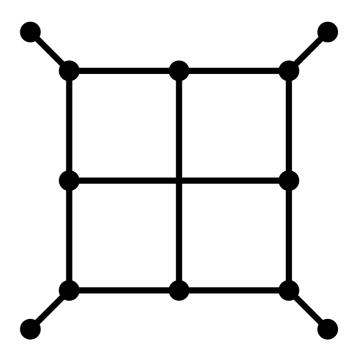
- Forward scattering diagrams are central, not amplitudes
- Initial states with higher multiplicities
- Beyond LSZ
- Infrared scales from theory
- Classification of singularities and the systematics of their cancellations
- No explicit reference to collinear mass factorisation

In computing perturbative cross section for physical processes in QFTs, one encounters diagrams, either in the form of amplitudes or forward scattering diagrams

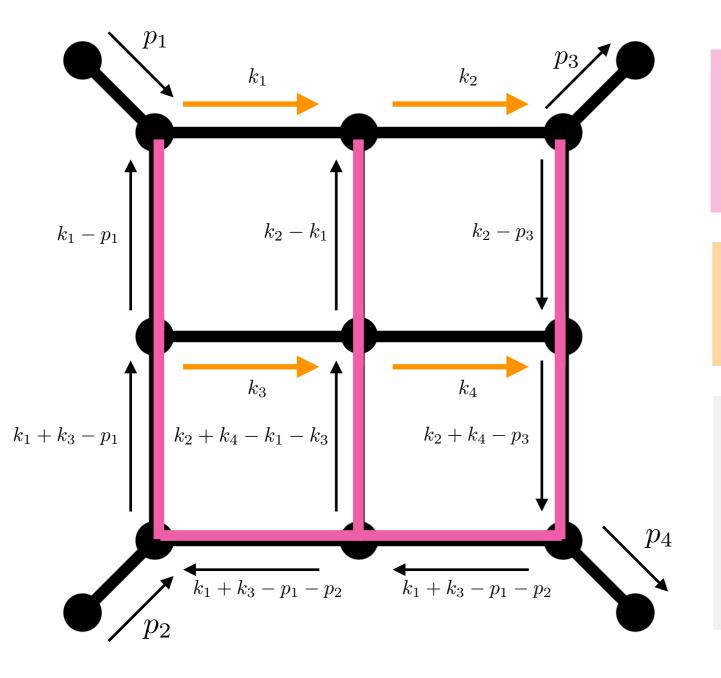
The properties of perturbative cross-sections are deeply entrenched with the diagrammatic technique

As a recurring example, one can consider a four-loop amplitude for ~qar q o qar q Or a forward-scattering diagram for N4LO ~qar q o X





Momentum conservation constraints



Choosing a **loop momentum** routing is equivalent to fixing a **spanning tree**

The edges not in the spanning tree are the loop variables!

Spanning trees contain info on the **connectivity structure** of the graph

Indeed a graph admits a spanning tree only if it is connected!

Momentum conservation completely determines the singular structure!!!

Loop-Tree Duality

Consider a loop integral in the Minkowski representation

$$I = \int \left(\prod_{i=1}^{L} \frac{d^4k}{(2\pi)^4} \right) \frac{N}{\prod_{j \in \mathbf{e}} (q_j^2 - m_j^2)}$$

The LTD representation using residue theorem to integrate the energy components

$$I = (-i)^L \int \left(\prod_{i=1}^L \frac{d^3 \vec{k}}{(2\pi)^3} \right) f_{\text{ltd}}$$

Our objective is to determine $f_{
m ltd}$ for any Feynman diagram

The interplay between momentum conservation conditions and the ${
m i}\epsilon$ prescription is key in deriving $f_{
m ltd}$

Choose the simplest non trivial example: the two-loop sunrise

$$f_{\text{ltd}} = -\int dk_1^0 dk_2^0 \frac{N}{(k_1^0 + E_1)(k_1^0 - E_1)(k_2^0 + E_2)(k_2^0 - E_2)(k_1^0 + k_2^0 + E_3)(k_1^0 + k_2^0 - E_3)}$$

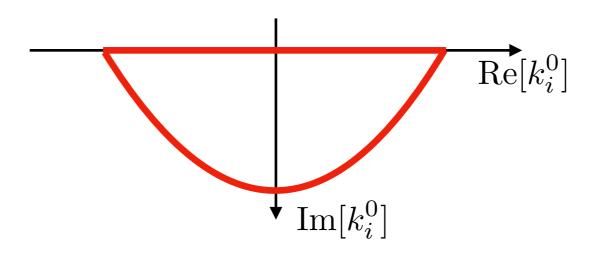
$$k_1^2 - m_1^2 + i\epsilon = (k_1^0 - E_1)(k_1^0 + E_1)$$

where

$$E_1 = \sqrt{|\vec{k}_1|^2 + m_1^2 - i\epsilon}, \quad E_2 = \sqrt{|\vec{k}_2|^2 + m_2^2 - i\epsilon}, \quad E_3 = \sqrt{|\vec{k}_1 + \vec{k}_2|^2 + m_3^2 - i\epsilon}$$

Due to the **Feynman prescription** ${
m Im}[E_i] < 0$

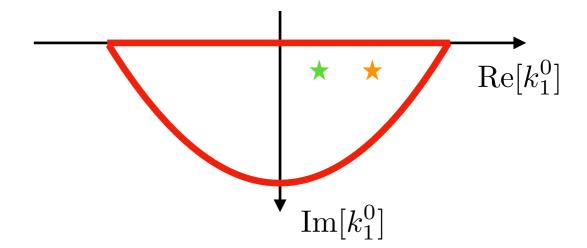
Analytically continue the integrand in k_1^0 first, and then k_2^0 . We choose to close the contour in the lower half of complex plane



Start by performing the integration in $\,k_1^0$. The poles contained in the contour are

$$\tilde{k}_1^0 = E_1$$

$$\tilde{k}_1^0 = -k_2^0 + E_3$$



Indeed

$$Im[E_1] < 0$$

$$Im[-k_2^0 + E_3] = Im[E_3] < 0$$

Using residue theorem we obtain two residue

$$f_{\text{ltd}} = 2\pi i \int dk_2^0 \frac{N(k_1^0 = E_1)}{2E_1(k_2^0 + E_2)(k_2^0 - E_2)(k_2^0 + E_1 + E_3)(k_2^0 + E_1 - E_3)}$$
$$+2\pi i \int dk_2^0 \frac{N(k_1^0 = -k_2^0 + E_3)}{2E_3(k_2^0 + E_2)(k_2^0 - E_2)(-k_2^0 - E_1 + E_3)(-k_2^0 + E_1 + E_3)}$$

We now perform the integration in $k_2^{
m 0}$

$$I_1 = 2\pi i \int dk_2^0 \frac{N(k_1^0 = E_1)}{2E_1(k_2^0 + E_2)(k_2^0 - E_2)(k_2^0 + E_1 + E_3)(k_2^0 + E_1 - E_3)}$$

The poles of this piece are located at

$$\tilde{k}_2^0 = E_2$$

$$\tilde{k}_2^0 = -E_1 + E_3$$

The first pole is always in the lower half of complex plane, the second is not!!!

$${
m Im}[-E_1+E_3]$$
 Does not have a well-defined negative sign!

Thus, after applying residue theorem, we write

$$I_1 = \frac{N(k_1^0 = E_1, k_2^0 = E_2)}{2E_1 2E_2 (E_2 + E_1 + E_3)(E_2 + E_1 - E_3)}$$
 Ensuring the pole is in the contour!
$$+ \frac{N(k_1^0 = E_1, k_2^0 = E_3 - E_1)}{2E_1 2E_2 (E_2 - E_1 + E_3)(-E_2 - E_1 + E_3)} \Theta(\operatorname{Im}[-E_3 + E_1])$$

$$I_2 = 2\pi i \int dk_2^0 \frac{N(k_1^0 = -k_2^0 + E_3)}{2E_3(k_2^0 + E_2)(k_2^0 - E_2)(-k_2^0 - E_1 + E_3)(-k_2^0 + E_1 + E_3)}$$

The poles of this piece are located at

$$k_2^0 = E_2$$

$$\tilde{k}_2^0 = E_3 - E_1$$

$$\tilde{k}_2^0 = E_1 + E_3$$

The **second pole** can be inside or outside the contour depending on $E_1,\ E_3$. After applying residue theorem

$$I_{2} = \frac{N(k_{1}^{0} = -E_{2} + E_{3}, k_{2}^{0} = E_{2})}{2E_{3}2E_{2}(-E_{2} - E_{1} + E_{3})(-E_{2} + E_{1} + E_{3})}$$

$$-\frac{N(k_{1}^{0} = E_{1}, k_{2}^{0} = E_{3} - E_{1})}{2E_{3}2E_{1}(E_{3} - E_{1} + E_{2})(E_{3} - E_{1} - E_{2})}\Theta(\operatorname{Im}[-E_{3} + E_{1}])$$

$$+\frac{N(k_{1}^{0} = -E_{1}, k_{2}^{0} = E_{1} + E_{3})}{2E_{3}2E_{1}(E_{1} + E_{2} + E_{3})(E_{1} + E_{3} - E_{2})}$$

Finally, we can combine the two contributions!

$$f_{\text{ltd}} = I_1 + I_2 = \frac{N(k_1^0 = E_1, k_2^0 = E_2)}{2E_1 2E_2 (E_2 + E_1 + E_3)(E_2 + E_1 - E_3)}$$

$$+ \frac{N(k_1^0 = E_1, k_2^0 = E_3 - E_1)}{2E_1 2E_2 (E_2 - E_1 + E_3)(-E_2 - E_1 + E_3)} \Theta(\text{Im}[-E_3 + E_1])$$

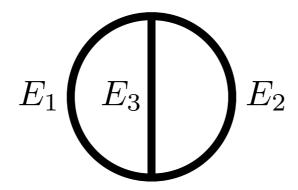
$$+ \frac{N(k_1^0 = -E_2 + E_3, k_2^0 = E_2)}{2E_3 2E_2 (-E_2 - E_1 + E_3)(-E_2 + E_1 + E_3)}$$

$$- \frac{N(k_1^0 = E_1, k_2^0 = E_3 - E_1)}{2E_3 2E_1 (E_3 - E_1 + E_2)(E_3 - E_1 - E_2)} \Theta(\text{Im}[-E_3 + E_1])$$

$$+ \frac{N(k_1^0 = -E_1, k_2^0 = E_1 + E_3)}{2E_3 2E_1 (E_1 + E_2 + E_3)(E_1 + E_3 - E_2)}$$

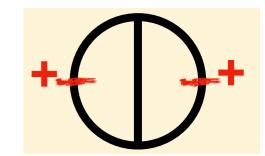
Same contribution, opposite sign!
Theta cancellation!

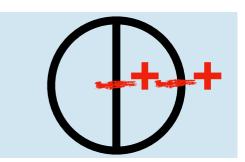
We can represent the final result graphically. Using the convention

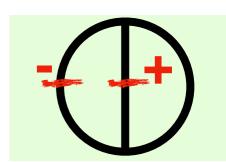


$$f_{\text{ltd}} = I_1 + I_2 = \frac{N(k_1^0 = E_1, k_2^0 = E_2)}{2E_1 2E_2 (E_2 + E_1 + E_3)(E_2 + E_1 - E_3)} + \frac{N(k_1^0 = -E_2 + E_3, k_2^0 = E_2)}{2E_3 2E_2 (-E_2 - E_1 + E_3)(-E_2 + E_1 + E_3)} + \frac{N(k_1^0 = -E_1, k_2^0 = E_1 + E_3)}{2E_3 2E_1 (E_1 + E_2 + E_3)(E_1 + E_3 - E_2)}$$

cut structure







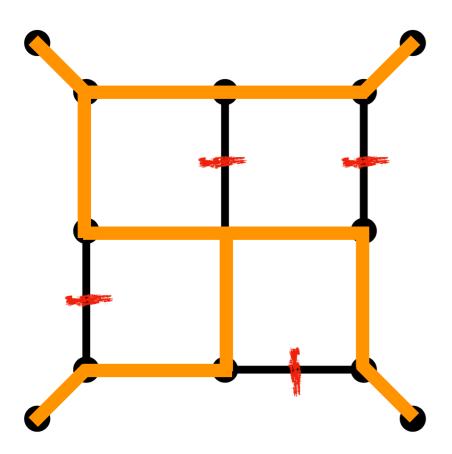
For a general amplitude

$$f_{\text{ltd}} = \sum_{\mathbf{b} \in \mathcal{B}} \int \left(\prod_{i=1}^{L} d^3 \vec{k}_i \right) N \frac{\prod_{j \in \mathbf{b}} \delta^{(\sigma_j^{\mathbf{b}})} (q_j^2 - m_j^2)}{\prod_{i \in \mathbf{e} \setminus \mathbf{b}} (q_i^2 - m_i^2)}$$

Each delta corresponds to a cut with an associated sign or energy flow.

Real and virtual particles?

LTD clarifies the distinction between real and virtual particles



A cut-structure corresponds to a unique spanning tree

Cut particles are "physical", i.e. on-shell.

Then the cut structure represents a **classical tree process**

LTD sums over all possible classical tree processes that can be embedded in the virtual loops

Singularities of the sunrise

$$f_{\text{ltd}} = \frac{N(k_1^0 = E_1, k_2^0 = E_2)}{2E_1 2E_2 (E_2 + E_1 + E_3)(E_2 + E_1 - E_3)}$$

$$+ \frac{N(k_1^0 = -E_2 + E_3, k_2^0 = E_2)}{2E_3 2E_2 (-E_2 - E_1 + E_3)(-E_2 + E_1 + E_3)}$$

$$+ \frac{N(k_1^0 = -E_1, k_2^0 = E_1 + E_3)}{2E_3 2E_1 (E_1 + E_2 + E_3)(E_1 + E_3 - E_2)}$$

Let's look at the denominators

$$E_1 = 0, E_2 = 0, E_3 = 0$$

 $E_1 + E_2 + E_3 = 0$

$$E_1 + E_3 - E_2 = 0$$

$$E_3 - E_2 - E_1 = 0$$

However, the last two singularities are singularities of single residues, but not of $f_{\rm ltd}$!!!

Using the identity
$$\frac{1}{(x+y)(x-y)} = \frac{1}{2y} \left(\frac{1}{x-y} - \frac{1}{x+y} \right)$$

we can rewrite

$$f_{
m ltd}=rac{N'}{2E_12E_22E_3(E_1+E_2+E_3)}$$
 Manifestly Causal LTD

where N' is a polynomial. This is the phenomenon of **dual cancellations**.

E-surfaces or physical thresholds

This can be generalised to **any arbitrary amplitude**. The general amplitude will be singular at zeros of on-shell energies and at the locations

$$\eta = \sum_{i} E_i - p_0 = 0$$

where p_0 is a linear combination of the energies of external particles.

 η is a positive linear combination of the on-shell energies of internal particles.

As a consequence, it describes a **convex bounded surface**

Its imaginary part has a well-defined sign

$$\operatorname{Im}\left[\sum_{i} E_{i} - p_{0}\right] = \sum_{i} \operatorname{Im}[E_{i}] < 0$$

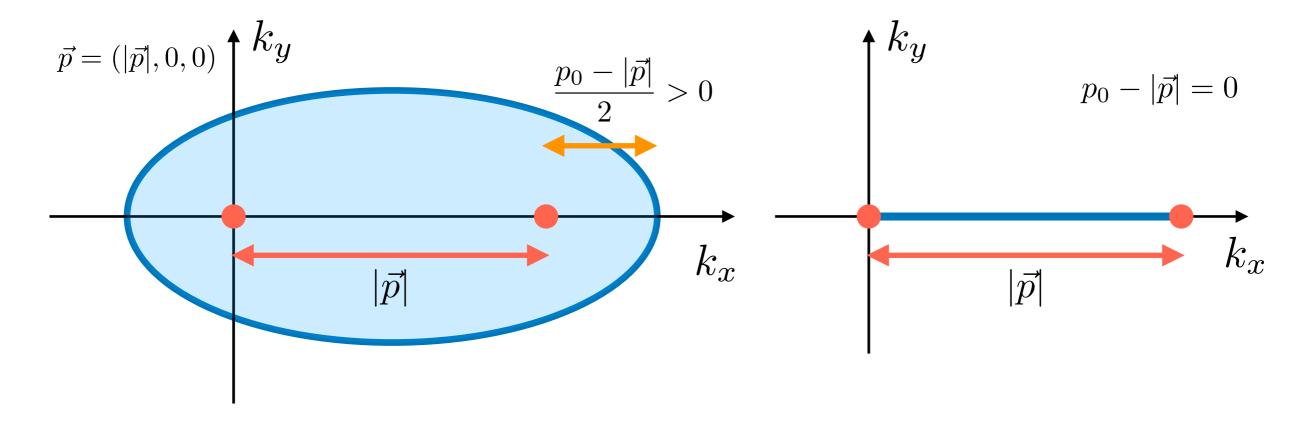
This is important to determine the constraints on the contour deformation

Ellipses and pinched singularities

At one loop, the physical thresholds take an especially simple form

$$E_1 + E_2 - p_0 = \sqrt{|\vec{k}|^2} + \sqrt{|\vec{k} + \vec{p}|^2} - p_0 = 0$$

It's the equation for an ellipse! It exists if $p^2 \ge 0$

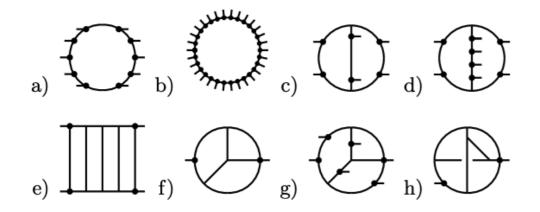


Pinched configuration is obtained by squeezing the ellipse

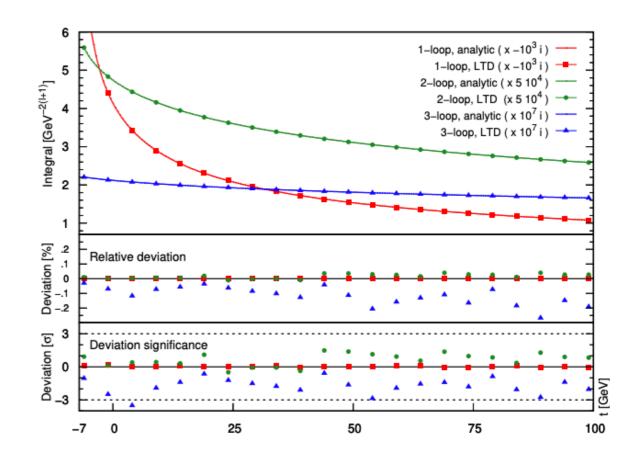
Numerically computing amplitudes within LTD

In the unphysical region $p_i^2 < 0$, $\left(\sum_j p_j\right)^2 < 0$ there are no physical thresholds!

The integrand is finite and can be easily Monte Carlo integrated



G	Reference	Numerical LTD	$N [10^6]$	$[\mu \mathrm{s}]$
a)*	[33] $i4.31638 \cdot 10^{-7}$	$i4.31637(19)\cdot 10^{-7}$	110	1.1
b)	[33] i 0.358640	i0.358646(29)	210	5.9
c)	[7] $1.1339(5) \cdot 10^{-4}$	$1.133719(58) \cdot 10^{-4}$	5500	2.5
c)*	[7] $4.398(1) \cdot 10^{-8}$	$4.39825(17) \cdot 10^{-8}$	5500	2.5
d)*	[7] $2.409(1) \cdot 10^{-8}$	$2.40869(27) \cdot 10^{-8}$	5500	3.5
e)	$[34] -1.433521 \cdot 10^{-6}$	$-1.4338(18) \cdot 10^{-6}$	1500	27.4
f)	[35] i 5.26647 $\cdot 10^{-6}$	$i5.236(38) \cdot 10^{-6}$	7000	3.3
g)*	[7] $i 1.7790(6) \cdot 10^{-10}$	$i1.77648(48)\cdot 10^{-10}$	22000	11
h)	$[35] -8.36515 \cdot 10^{-8}$	$-8.309(31) \cdot 10^{-8}$	7000	15.8



In the physical region we need a deformation satisfying the causal constraint

$$ec{k}
ightarrow ec{k} - \mathrm{i} \kappa$$
 with $\kappa \cdot
abla \eta_i > 0$ if $\eta_i = 0$ (plus some magnitude constraints)

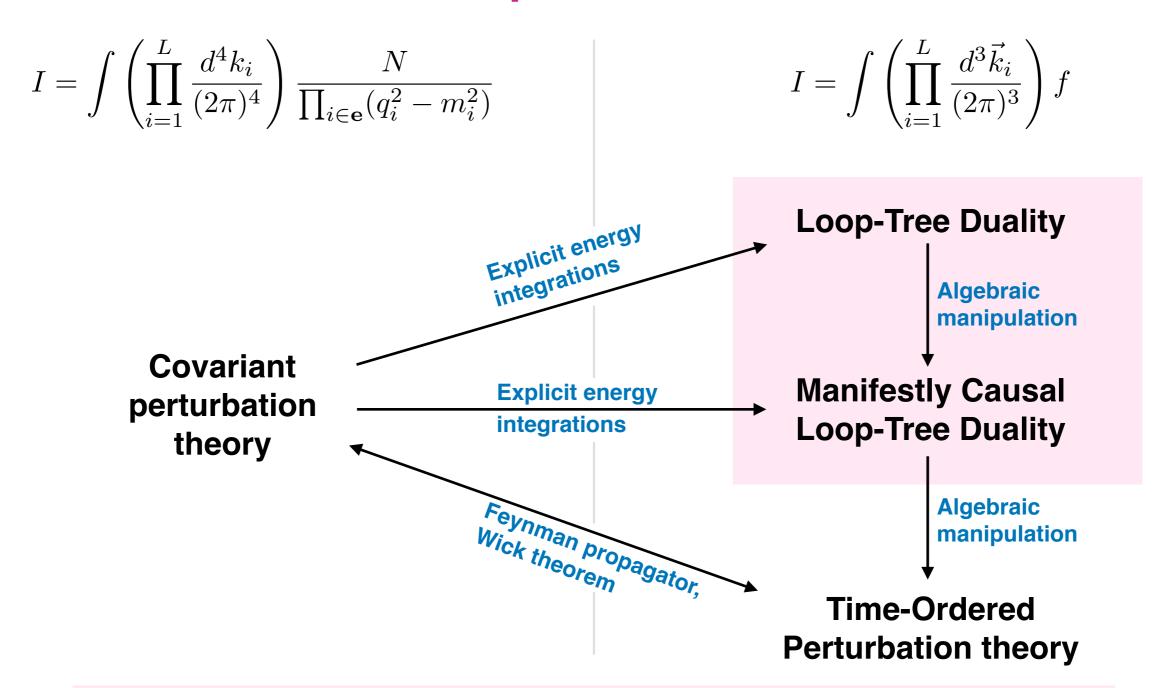
Topology	Numerical LTD	Topology	Numerical LTD
	-6.57637 +/- 0.00122		1.13123 +/- 0.00006
Box4E	-7.43805 +/- 0.00121		-0.55486 +/- 0.00005
	-3.44317 +/- 0.00045		5.71929 +/- 0.00055
	-2.56505 +/- 0.00046	_	-7.24055 +/- 0.00053
	-0.00036 +/- 0.00029		1.55376 +/- 0.00012
	5.97143 +/- 0.00029 -0.83888 +/- 0.00016	1	,
	-1.71325 +/- 0.00017	1L4P	-2.07005 +/- 0.00012
	-3.49044 +/- 0.00054		1.85214 +/- 0.00012
1L5P	-3.89965 +/- 0.00054		-2.18397 +/- 0.00012
	0.90036 +/- 0.00076		
	4.17823 +/- 0.00080		0.30272 +/- 0.00004
	0.04227 +/- 0.00068		-1.08130 +/- 0.00004
	-2.18118 +/- 0.00068	-	-0.17991 +/- 0.00005
	0.03046 +/- 0.00006		
	-1.17691 +/- 0.00008 -2.07392 +/- 0.00188		-2.27593 +/- 0.00008
	0.42593 +/- 0.00161		-1.90856 +/- 0.00074
	1.36950 +/- 0.00052		-6.45306 +/- 0.00077
	-2.25957 +/- 0.00053		
	1.29802 +/- 0.00038		-0.15137 +/- 0.00032
	-2.16555 +/- 0.00037		-1.80672 +/- 0.00033
	-0.27225 +/- 0.00010		-0.66271 +/- 0.00032
	-1.20895 +/- 0.00011 2.83777 +/- 0.00040	7 }	-1.23567 +/- 0.00032
1L6P	0.83144 +/- 0.00040	1	
	-3.01976 +/- 0.00040	1L5P	2.60394 +/- 0.00072
	-7.73280 +/- 0.00047	ILDF	-7.95017 +/- 0.00076
	2.13487 +/- 0.03230		-0.48305 +/- 0.00059
	0.65770 +/- 0.03145		-3.27664 +/- 0.00061
	0.00804 +/- 0.00014		
	-1.15278 +/- 0.00014		-1.21508 +/- 0.00020
	-2.81583 +/- 0.00060 2.47308 +/- 0.00061		-1.53126 +/- 0.00020
	2.4/300 +/- 0.00061		

Topology	Numerical LTD						
E	4.58688 +/- 0.05132						
(量)	5.04144 +/- 0.05075						
OI CD	-1.04316 +/- 0.35247						
2L6P.a	-4.42468 +/- 0.35421						
(F)	1.17336 +/- 0.00888						
(E)	3.99809 +/- 0.00896						
	5.35217 +/- 0.00153						
2L6P.b	3.81579 +/- 0.00150						
	4.90974 +/- 0.01407						
()	-2.13974 +/- 0.01434						
	1.05934 +/- 0.15850						
2L6P.c	1.03698 +/- 0.15312						
	1.90487 +/- 0.05753						
+	-3.55267 +/- 0.05746						
D	-2.97419 +/- 0.00961						
2L6P.d	-2.18847 +/- 0.00957						
	2.87833 +/- 0.00951						
$+$ \downarrow	1.99937 +/- 0.00961						
	1.67332 +/- 0.00578						
2L6P.e	-0.21788 +/- 0.00571						
	-0.95486 +/- 0.00890						
$I \mid I$	3.28530 +/- 0.00889						
	2.55104 +/- 0.00208						
2L6P.f	-1.63019 +/- 0.00205						
	-5.15438 +/- 0.03310						
2L8P	6.78546 +/- 0.03243						

Topology	Numerical LTD
	3.82875 +/- 0.00015
【 }	-4.66843 +/- 0.00017
	2.83742 +/- 0.00072
2L4P.a	3.38163 +/- 0.00066
	-5.89794 +/- 0.00099
2L4P.b	0.00112 +/- 0.00095
	-8.64045 +/- 0.00392
2L6P.a	-0.00220 +/- 0.00393
	-1.19040 +/- 0.00092
2L6P.b	0.00147 +/- 0.00092
\bigcirc	-7.62856 +/- 0.00716
2L6P.c	-0.00052 +/- 0.00724
	-1.83639 +/- 0.00075
2L6P.d	-0.00042 +/- 0.00075
	-4.61094 +/- 0.00423
2L6P.e	0.00404 +/- 0.00430
	-1.02723 +/- 0.00111
2L6P.f	0.00165 +/- 0.00112

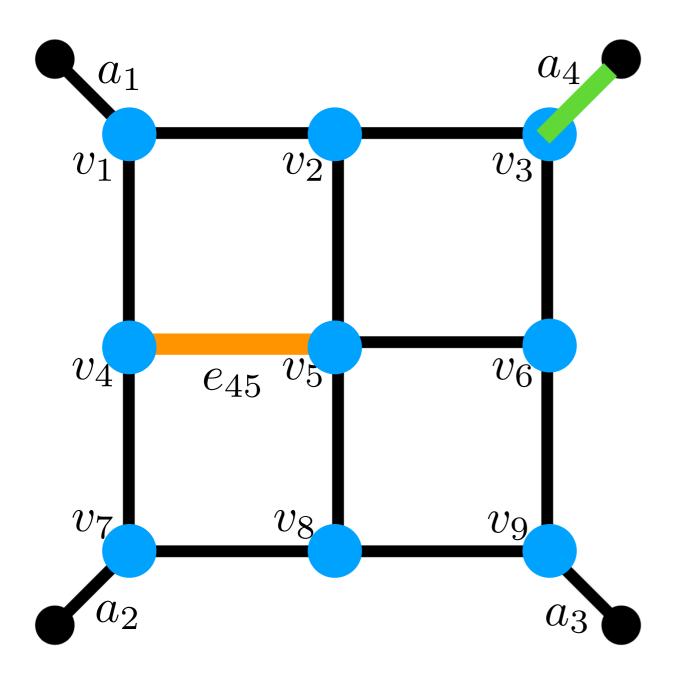
Topology	Numerical LTD	Topology	Numerical LTD	Topology	Numerical LTD	Topology	Numerical LTD
- 1 65	0.51018 +/- 0.00031		-1.08656 +/- 0.001	_ <u> </u>	Numerical Lib		-2.43299 +/- 0.03927
				1111			-3.41797 +/- 0.03956
	-1.54768 +/- 0.00032		2.86702 +/- 0.001	—	0.00796 +/- 0.00877	- - <u> </u>	-5.36759 +/- 0.14110
	0.60407 +/- 0.00216		3.09646 +/- 0.006	96			-1.05826 +/- 0.13399
	-6.96436 +/- 0.00213		9.53952 +/- 0.007	06 3L4P	-6.73786 +/- 0.00856		-4.46226 +/- 0.10022 -0.72941 +/- 0.09918
	0.40655 +/- 0.00152		1.70253 +/- 0.002	85 + +			-3.89588 +/- 0.00173
+ +	-2.51588 +/- 0.00157		4.56488 +/- 0.002	91	8.38828 +/- 0.07772	3L4P	3.89127 +/- 0.00165
	1.30529 +/- 0.00289	$\downarrow \downarrow \downarrow \downarrow$	2.80094 +/- 0.000	_			-3.15581 +/- 0.00639
1L6P	-2.27744 +/- 0.00284	2L4P.b	3.34866 +/- 0.000		-0.01028 +/- 0.07754	-	2.97368 +/- 0.00633
					-0.01020 1/- 0.01104		-0.10876 +/- 0.00096
	-2.20131 +/- 0.00241		8.15559 +/- 0.001	11111			1.86939 +/- 0.00095
	-6.37841 +/- 0.00254		6.10277 +/- 0.001	24	7.96654 +/- 0.11281		-1.06298 +/- 0.02843
	-1.28057 +/- 0.00088		3.10306 +/- 0.000	21			-0.88557 +/- 0.02875
	-2.21602 +/- 0.00088		0.09376 +/- 0.000	20 4L4P.b	0.07617 +/- 0.11858		-3.28794 +/- 0.07308 -0.29022 +/- 0.07635
	5.10300 +/- 0.00400		0.27368 +/- 0.001			3L5P	-1.61475 +/- 0.14277
	-1.62544 +/- 0.00373		1.44760 +/- 0.001	111111	3.28900 +/- 0.01964		0.25654 +/- 0.13621
	4.21309 +/- 0.00421		1.08568 +/- 0.003	— !!!!!!			-1.26220 +/- 0.00124
				ET 4D			1.06124 +/- 0.00123
	-1.95771 +/- 0.00394		1.78725 +/- 0.003		3.28900 +/- 0.01904		4.58640 +/- 0.00609
1	1.26931 +/- 0.00486	1	2.09848 +/- 0.006	48	8.36493 +/- 0.02167		1.80523 +/- 0.00645
$\exists f$	-0.84023 +/- 0.00503		2.04022 +/- 0.006	48			-1.05359 +/- 0.01706
	-0.35626 +/- 0.00057		1.51586 +/- 0.000	27			5.92117 +/- 0.01660
1L8P	-1.46911 +/- 0.00058	2L5P	1.31451 +/- 0.000	₂₇ <u>6L4P.a</u>	1.09968 +/- 0.41729		1.28725 +/- 0.00637
	-1.16905 +/- 0.00794		1.97798 +/- 0.013	94 111111		. +	0.05569 +/ 0.00640
	-2.72569 +/- 0.00967		1.13209 +/- 0.011	₇₃		4L4P.a	2.95568 +/- 0.00642
	-0.57605 +/- 0.00196		2.00638 +/- 0.000	— <u> </u>			-4.34119 +/- 0.01166
	-4.04047 +/- 0.00202		-0.08277 +/- 0.000	GI AD h		↓↓↓↓↓ 4L4P.b	-2.77244 +/- 0.01160

Other representations...



The Loop Tree duality offers the best understanding of IR singularities and their cancellations, other than being relatively efficient to evaluate

Just a bit of notation...



We give to each internal vertex a label

$$v_i, i = 1, ..., 9$$

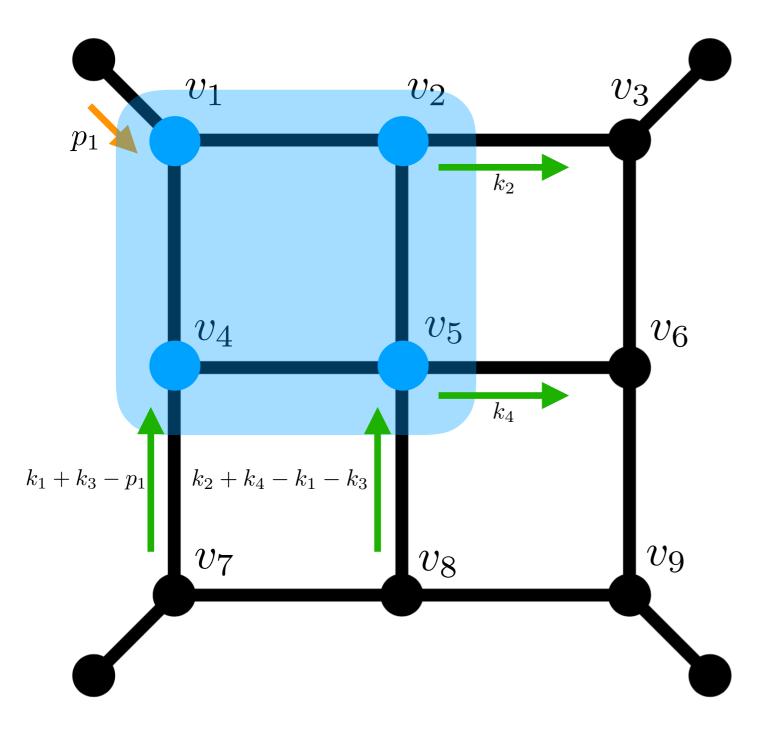
Each internal edge corresponds to a couplet of vertices

$$e_{ij} = \{v_i, v_j\}$$

External edges are denoted as

$$a_i, i = 1, ..., 4$$

Physical Thresholds as Connected Cuts



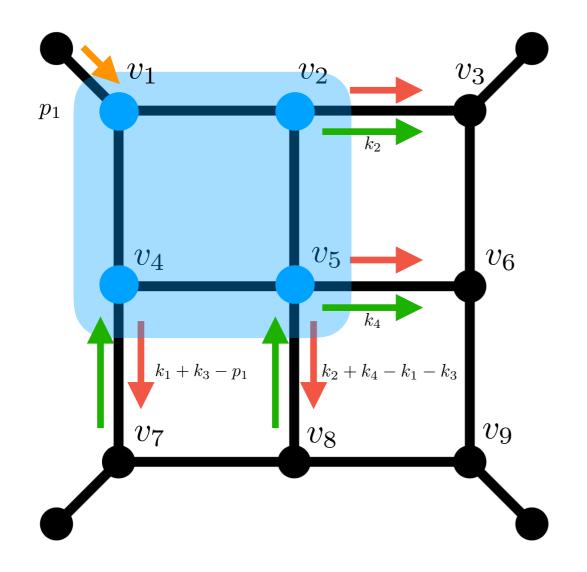
Green arrow: momentum orientation

$$\mathbf{s} = \{v_1, v_2, v_4, v_5\}$$

The boundary of this set contains all the edges connecting vertices in it with vertices outside of it

$$\delta(\mathbf{s}) = \{e_{23}, e_{56}, e_{58}, e_{47}, a_1\}$$

This set completely characterises a threshold



Draw **energy-flow arrows** by flipping the green arrows that flow inside the set

Denote by

$$E_{e_{12}} = \sqrt{|\vec{k}_1|^2 + m_{12}^2}$$

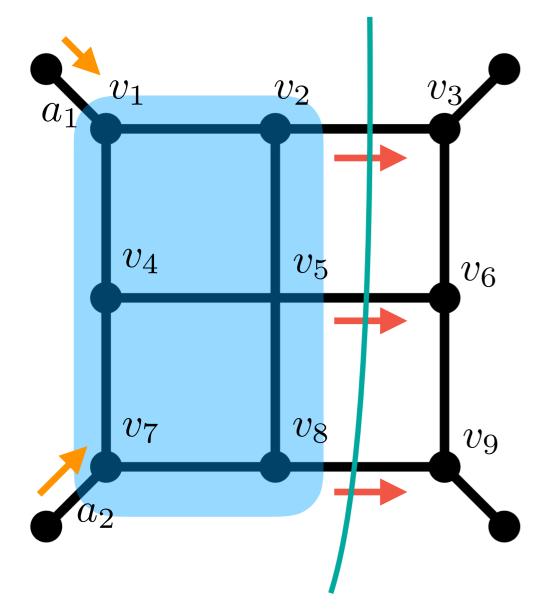
the on-shell energy of e_{12}

Reading the conservation of on-shell energies for particles going in/out of the set

$$\eta_{\mathbf{s}} = E_{e_{23}} + E_{e_{56}} + E_{e_{58}} + E_{e_{47}} - E_{a_1} = 0$$

or, if we want to be fancy...
$$\eta_{\mathbf{s}} = \sum_{e \in \delta(\mathbf{s}) \backslash \mathbf{e}_{\mathrm{ext}}} E_e - \sum_{e \in \mathbf{a}} E_e + \sum_{e \in \mathbf{e}_{\mathrm{ext}} \backslash \mathbf{a}} E_e$$

S-channel thresholds and Cutkosky cuts



Consider a specific subclass of connected cuts, those whose boundary contains $a_1,\ a_2$

Let $\mathbf{s} \subset \mathbf{v}$ such that

- \mathbf{s} , $\mathbf{v} \setminus \mathbf{s}$ are connected
- $\delta(\mathbf{s}) \cap \mathbf{e}_{\text{ext}} = \{a_1, a_2\}$

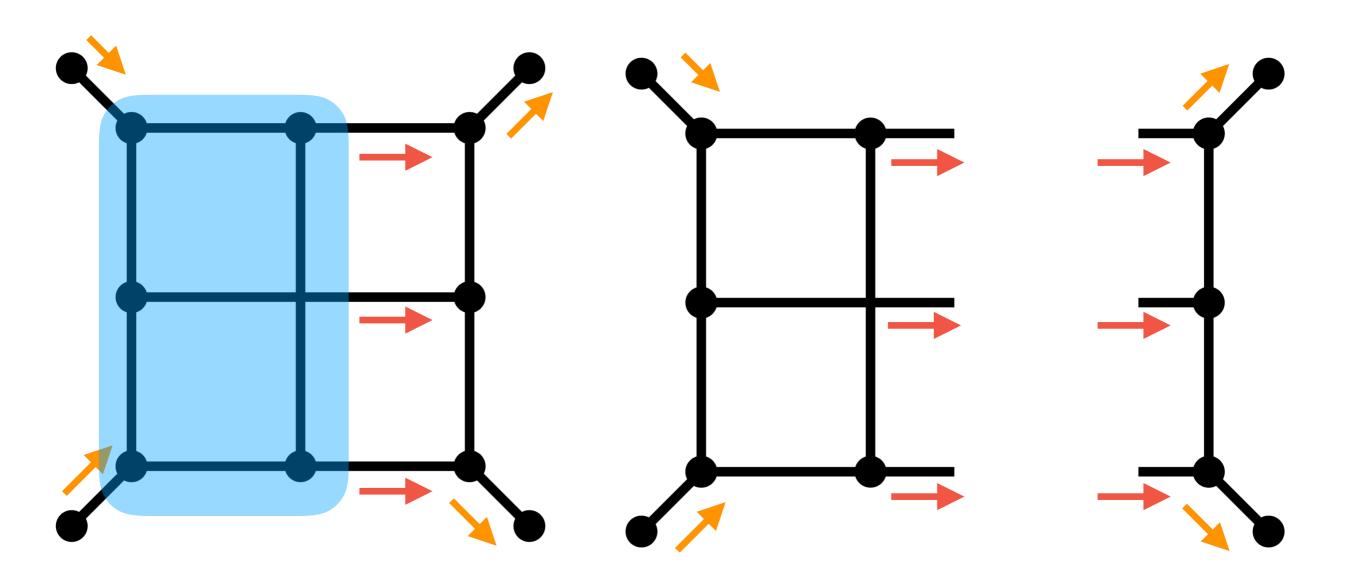
An example:

$$\mathbf{s} = \{v_1, v_2, v_4, v_5, v_7, v_8\}$$

The **Cutkosky cut** can be denoted by a line crossing the internal edges in $\delta(s)$

$$\mathbf{c_s} = \delta(\mathbf{s}) \setminus \mathbf{e}_{\text{ext}} = \{e_{23}, e_{56}, e_{89}\}$$

We have just constructed an interference diagram from a "bigger" graph rather than as a product of amplitudes

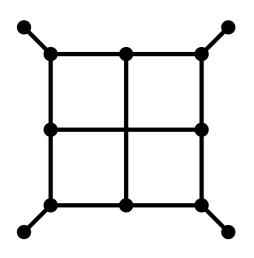


LSZ, Cutkosky cuts, and how to construct an interference diagram

In a way, we already knew this description of thresholds...

- Interference diagrams are obtained by contour deforming certain thresholds.
- In LSZ, interference diagrams are obtained by glueing connected amplitudes.

In order to formulate and connect these two principles rigorously, we need the LTD representation!

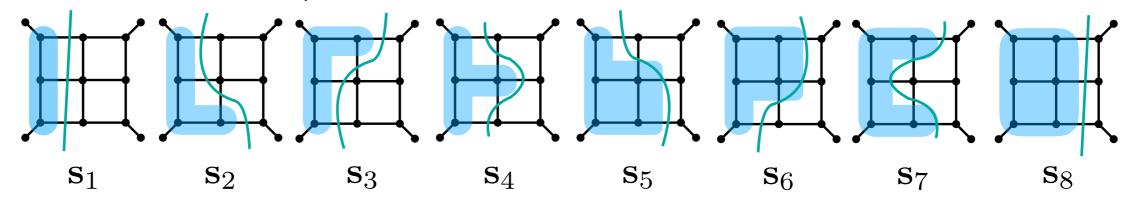


- Consider this graph, called the supergraph
- Construct interference diagrams from it, by summing over the thresholds of its LTD representation

A (rough) recipe to construct cross sections

Consider the LTD representation of

1. Its thresholds correspond to connected cuts



2. Associate a Cutkosky cut to any s-channel threshold

Cutkosky cut

$$= \int \left(\prod_{i=1}^{L} \frac{d^3 \vec{k}}{(2\pi)^3} \right) f_{\text{ltd}}(\mathbb{H}) \, \eta_{\mathbf{s_1}} \delta(\eta_{\mathbf{s_1}}) \, \mathcal{O}_{\mathbf{s_1}}$$

Observable

S1 (but there are some subtleties as we will see)

LTD representation of

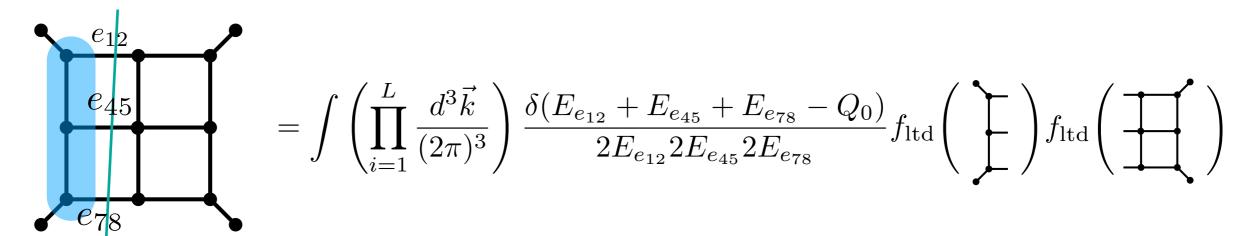
3. Keep a **consistent loop momentum** routing between all interference diagrams

Sum all these interference diagrams together to obtain the cross-section per super graph

We will now show that this sum is free of IR singularities

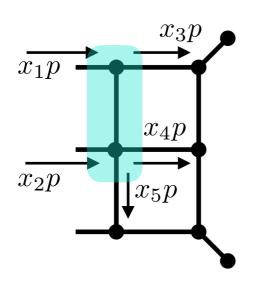
Cancellation of thresholds

The formula shown before can be manipulated to obtain



The singularities of f_{ltd} are themselves connected sets!

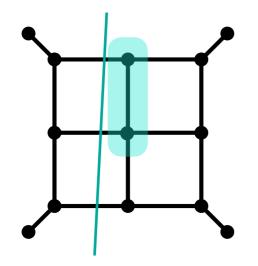
e.g.

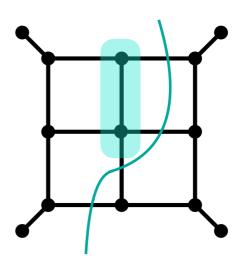


The cluster of collinear particles going in and outside the set are **degenerate** at the singular points

The cancelling partner

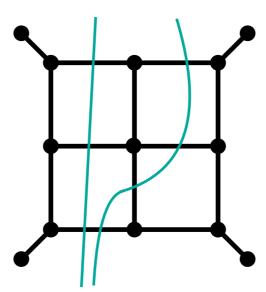
How do we find the contribution cancelling this singularity? It's all about **degeneracy**





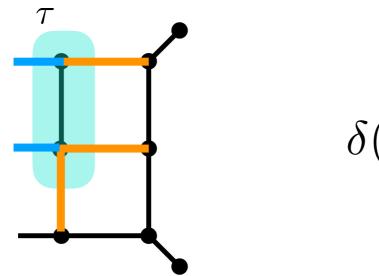
Just move the Cutkosky cut across the singularity!

At the location of the singularity, these two interference diagrams become the same



Showing cancellations

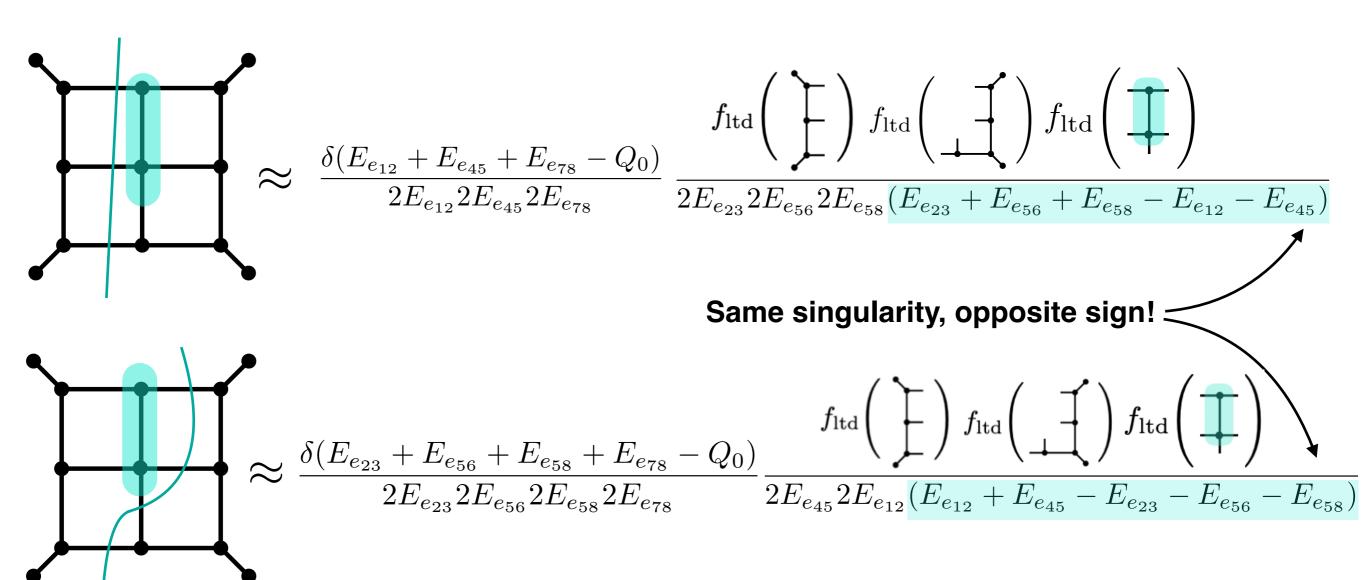
Consider the internal particles in the boundary of the cut



$$\delta(\tau) = \{e_{23}, e_{56}, e_{58}, \underbrace{e_{12}, e_{45}}_{\text{Particles internal to the amplitude}}, \underbrace{e_{12}, e_{45}}_{\text{Particles external to the amplitude}}\}$$

The LTD representation factorises in the product of the LTD representation of the two smaller amplitudes and the threshold

$$f_{\text{ltd}}\left(\frac{1}{1}\right) f_{\text{ltd}}\left(\frac{1}{1}\right) f_{\text{ltd}}\left(\frac{1}{1}\right) \frac{1}{2E_{e_{23}}2E_{e_{56}}2E_{e_{56}}(E_{e_{23}} + E_{e_{56}} + E_{e_{58}} - E_{e_{12}} - E_{e_{45}})}$$



Everything a part from the delta is manifestly the same. If we substitute

$$E_{e_{12}} + E_{e_{45}} - E_{e_{23}} - E_{e_{56}} - E_{e_{58}} = 0$$

$$\delta(E_{e_{12}} + E_{e_{45}} + E_{e_{78}} - Q_0) \to \delta(E_{e_{23}} + E_{e_{56}} + E_{e_{58}} + E_{e_{78}} - Q_0)$$

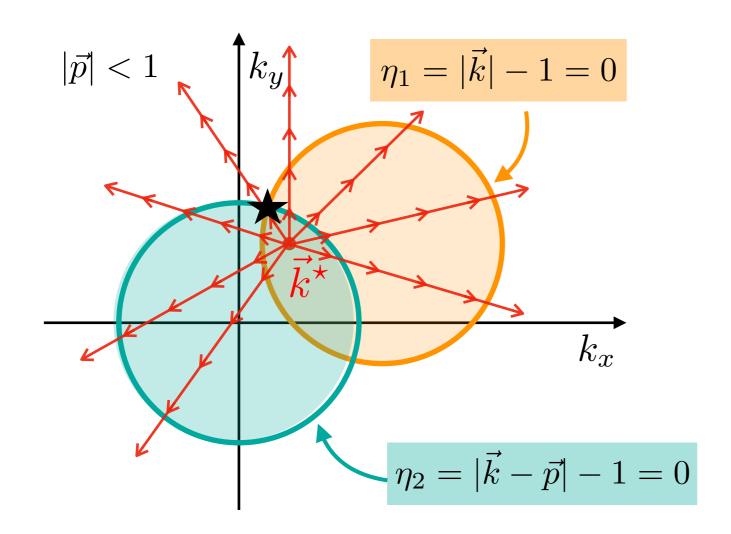
Causal flow or constructing a local representation

What we said up until now does not address how to construct the actual local representation, which requires **solving the deltas**!

$$\int d\vec{k} \, \frac{\delta(|\vec{k}| - 1)}{|\vec{k} - \vec{p}| - 1} + \frac{\delta(|\vec{k} - \vec{p}| - 1)}{|\vec{k}| - 1} \qquad 1 = \int dt h(t)$$

$$= \int dt \int d\vec{k} \, \frac{h(t)\delta(|\vec{k}| - 1)}{|\vec{k} - \vec{p}| - 1} + \frac{h(t)\delta(|\vec{k} - \vec{p}| - 1)}{|\vec{k}| - 1}$$

$$= \int dt \int d\vec{k} \mathbb{J} \phi \left(\frac{h(t)\delta(|\phi(t,\vec{k})|-1)}{|\phi(t,\vec{k})-\vec{p}|-1} + \frac{h(t)\delta(|\phi(t,\vec{k})-\vec{p}|-1)}{|\phi(t,\vec{k})|-1} \right)$$



Choose:

$$\begin{cases} \partial_t \phi(t, \vec{k}) = \kappa(\phi(t, \vec{k})) \\ \phi(0, \vec{k}) = \vec{k} \end{cases}$$

With:

$$\kappa \cdot \nabla \eta_i > 0 \text{ if } \eta_i = 0$$

 κ is the field used to contour deform around thresholds!

$$\kappa = \vec{k} - \vec{k}^*$$

Then
$$\forall \vec{k} \qquad \exists ! \ t_i^\star \in \mathbb{R} \qquad \text{s.t.}$$

$$|\phi(t_1^*, \vec{k})| - 1 = 0$$

 $|\phi(t_2^*, \vec{k}) - \vec{p}| - 1 = 0$

Points on different thresholds are correlated, so that cancelling partners are evaluated at the same point when they need to cancel!

$$= \int dt \int d\vec{k} \mathbb{J} \phi \left(\frac{h(t)\delta(|\phi(t,\vec{k})| - 1)}{|\phi(t,\vec{k}) - \vec{p}| - 1} + \frac{h(t)\delta(|\phi(t,\vec{k}) - \vec{p}| - 1)}{|\phi(t,\vec{k})| - 1} \right)$$

$$= \int dt \int d\vec{k} \mathbb{J} \phi \left(\frac{h(t_1^{\star})}{\partial_t |\phi(t_1^{\star}, \vec{k})| \frac{(|\phi(t_1^{\star}, \vec{k}) - \vec{p}| - 1)}{(|\phi(t_1^{\star}, \vec{k}) - \vec{p}| - 1)}} + \frac{h(t_2^{\star})}{\partial_t |\phi(t_2^{\star}, \vec{k}) - \vec{p}| \frac{(|\phi(t_2^{\star}, \vec{k})| - 1)}{(|\phi(t_2^{\star}, \vec{k})| - 1)}} \right)$$

Look at the singularities of the first term. It is exactly the equation defining $\,t_2^\star$

$$|\phi(t_1^{\star}, \vec{k}) - \vec{p}| - 1 = 0 \quad \Rightarrow \quad t_1^{\star} = t_2^{\star} \qquad \left(\begin{array}{c} |\phi(t_1^{\star}, \vec{k})| - 1 = 0 \\ |\phi(t_2^{\star}, \vec{k}) - \vec{p}| - 1 = 0 \end{array} \right)$$

Furthermore

$$|\phi(t_1^{\star}, \vec{k}) - \vec{p}| - 1 = |\phi(t_2^{\star}, \vec{k}) - \vec{p}| - 1 + (t_1^{\star} - t_2^{\star})\partial_t |\phi(t_2^{\star}, \vec{k}) - \vec{p}| + o((t_1^{\star} - t_2^{\star}))$$

$$= (t_1^{\star} - t_2^{\star})\partial_t |\phi(t_2^{\star}, \vec{k}) - \vec{p}| + o((t_1^{\star} - t_2^{\star}))$$

which is a simple pole in the flow variable! Expanding carefully...

Expanding carefully the two term composing the integrand...

$$\frac{h(t_1^{\star})}{\partial_t |\phi(t_1^{\star}, \vec{k})| \frac{|h(t_1^{\star})|}{(|\phi(t_1^{\star}, \vec{k}) - \vec{p}| - 1)}} = \frac{h(t_2^{\star})}{\partial_t |\phi(t_1^{\star}, \vec{k})| \frac{|h(t_2^{\star})|}{\partial_t |\phi(t_2^{\star}, \vec{k}) - \vec{p}| (t_1^{\star} - t_2^{\star})}} + \mathcal{O}((t_1^{\star} - t_2^{\star})^0)$$

$$\frac{h(t_2^{\star})}{\partial_t |\phi(t_2^{\star}, \vec{k}) - \vec{p}| (|\phi(t_2^{\star}, \vec{k})| - 1)} = \frac{h(t_2^{\star})}{\partial_t |\phi(t_2^{\star}, \vec{k}) - \vec{p}| \partial_t |\phi(t_1^{\star}, \vec{k})| (t_2^{\star} - t_1^{\star})} + \mathcal{O}((t_1^{\star} - t_2^{\star})^0)$$

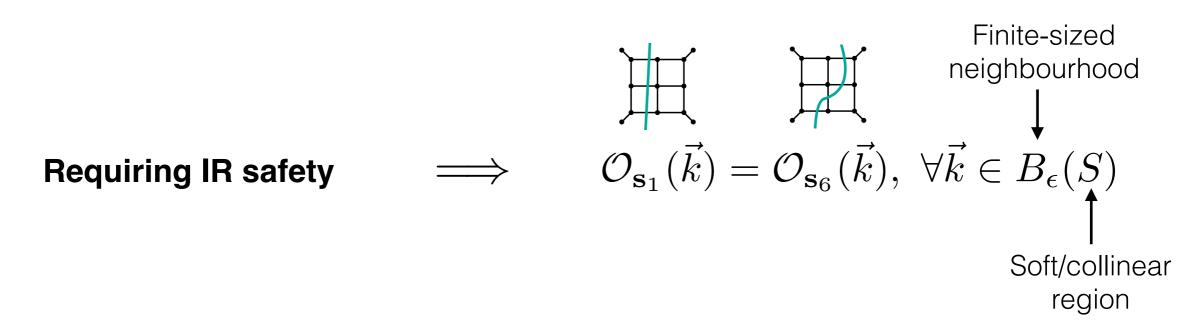
So that they combine to a finite quantity!!!

$$\frac{h(t_2^{\star})}{\partial_t |\phi(t_2^{\star}, \vec{k}) - \vec{p}|(|\phi(t_2^{\star}, \vec{k})| - 1)} + \frac{h(t_1^{\star})}{\partial_t |\phi(t_1^{\star}, \vec{k})|(|\phi(t_1^{\star}, \vec{k}) - \vec{p}| - 1)} = \mathcal{O}((t_1^{\star} - t_2^{\star})^0)$$

IR safety

- ullet is a **natural parameter in which to expand** to show cancellations
- One single parameter to approach all limits (single/double collinear, soft collinear etc.)
- Parameter in which we solve the deltas \Rightarrow 1d residue theorem along the flow! This same expansion can be performed for the interference diagrams

The major difference is the observable!



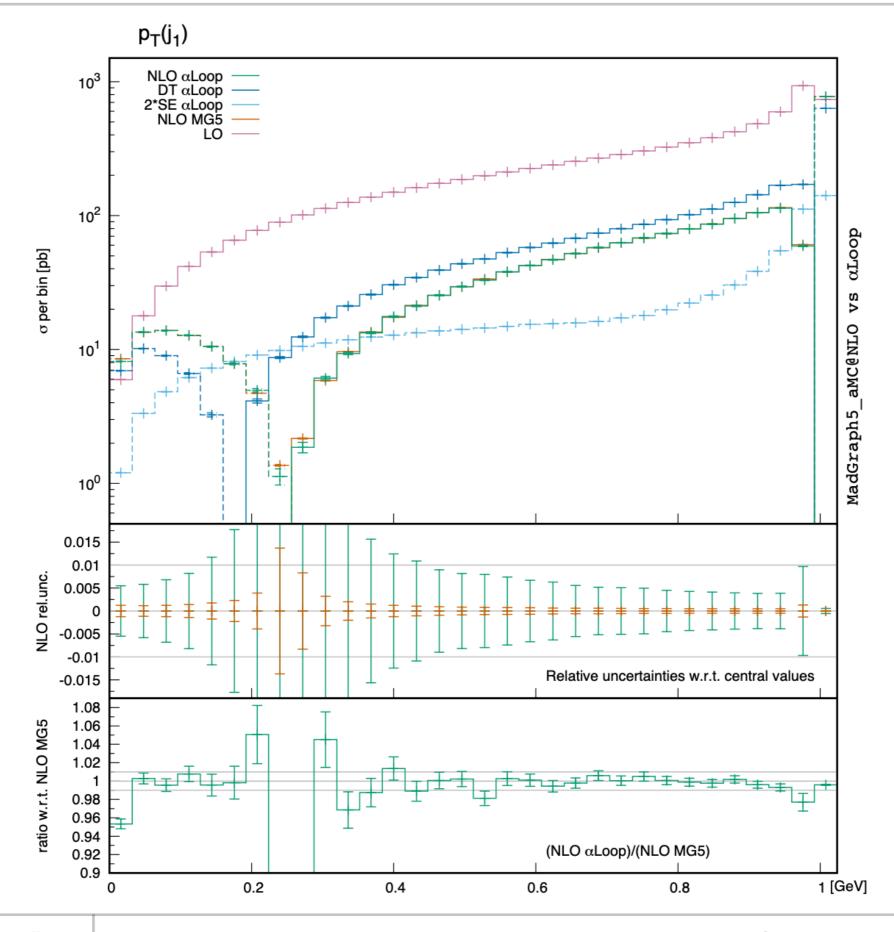
 ϵ is a **mathematically needed scale**, gauging the volume of phase space in which the observables must coincide

 \Longrightarrow

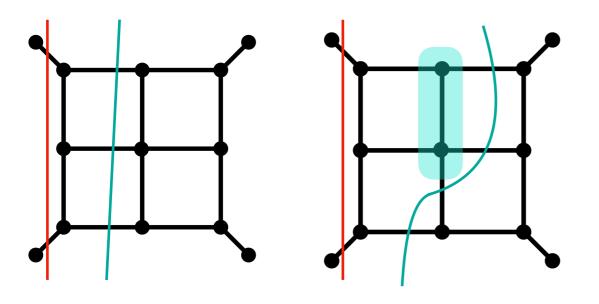
Experimental resolution of degenerate parton configurations!

a.1)	\bigcirc	a.2)		a.3)	\bigcirc	b.1)	\bigoplus	b.2)	
b.3)		b.4)		b.5)	\bigcirc	b.6)		b.7)	
b.8)		b.9)		b.10)		b.11)		b.12)	\bigoplus
b.13)	\bigoplus	b.14)	\bigoplus	b.15)	\bigoplus	b.16)	\bigcirc	c.1)	
c.2)		c.3)	\bigoplus	,		ŕ		,	

Г	N [106]	t/p [μs]		NT	FORCER [GeV ²]	al can [Gay2]		A [_]	A [07]	
1	$N_p [10^6]$	min	avg	N_{ch}	FORCER [Gev-]	$lpha$ Loop [GeV 2]	exp.	Δ [σ]	Δ [%]	
Inclusive cross-section per supergraph										
a.1	1	5	450	16	5.75396	5.7530(46)	-6	0.21	0.00017	
a.2	1	10	690	16	-5.75396	-5.763(11)	-6	0.82	0.0016	
a.3	1	25	1400	16	-5.75396	-5.771(23)	-6	0.74	0.0039	
b.1	1	150	6600	45	-1.04773	-1.0459(23)	-7	0.79	0.0017	
b.2	1	270	39000	45	-1.04773	-1.0457(21)	-7	0.97	0.0029	
b.3	1	320	52000	81	-1.04773	-1.0448(21)	-7	1.4	0.0028	
b.4	1	740	96000	75	-1.04773	-1.0455(22)	-7	1.0	0.0021	
b.5	1	340	20000	45	-1.04773	-1.0441(23)	-7	1.6	0.0035	
b.6	1	350	12000	45	-1.04773	-1.0434(26)	-7	1.7	0.0042	
b.7	1	1800	180000	81	-1.04773	-1.0563(51)	-7	1.7	0.0081	
b.8	1	1400	120000	75	-1.04773	-1.0526(42)	-7	1.2	0.0046	
b.9	1	1200	36000	45	-1.04773	-1.0439(27)	-7	1.4	0.0037	
b.10	1	1100	32000	45	-1.04773	-1.0488(29)	-7	0.37	0.0010	
b.11	1	1100	54000	45	-1.04773	-1.0516(35)	-7	1.1	0.0037	
b.12	1	1100	30000	45	-1.04773	-1.0473(30)	-7	0.14	0.00041	
b.13	1	2700	83000	45	-1.04773	-1.040(15)	-7	0.51	0.0074	
b.14	1	3100	110000	75	-2.09546	-2.123(12)	-7	2.3	0.0130	
b.15	1	3100	210000	81	-2.09546	-2.1045(67)	-7	1.3	0.0043	
b.16	2	1800	120000	75	-5.23865	-5.312(65)	-8	1.1	0.014	
c.1	1	1100	49000	128	1.66419	1.6691(79)	-9	0.62	0.0029	
c.2	1	900	46000	130	1.77832	1.7752(71)	-9	0.44	0.0018	
c.3	1	1600	69000	130	1.77832	1.7797(33)	-9	0.42	0.00077	



Initial State Radiation



Interference diagrams that cancel at the location of a singularity correspond to varying final state multiplicities

- If we want ISR cancellations, we need to consider diagrams with more than two initial states or it is not IR-safe!
- Furthermore, to cancel **singularities that correlate initial and final states**, we also need diagrams with disconnected amplitudes, **contradicting LSZ**

The interference diagrams are now obtained by cutting vacuum graphs!

How do PDF renormalisation and resummation fit into this model? We'll have to wait to know for sure...

A recap:

- Loop-Tree Duality representation for the sunrise
- Singularities of the sunrise
- Physical thresholds as connected cuts
- Constructing interference diagrams from the super-graph
- Easy cancellations of IR singularities through local factorisation of amplitudes
- The causal flow and hints at a general proof
- IR-safety and observables
- Initial state radiation

References:

Loop-Tree Duality

- S. Catani, T. Gleisberg, F. Krauss, G. Rodrigo, J.C. Winter, From loops to trees by-passing Feynman's theorem, JHEP 09 (2008) 065
- I. Bierenbaum, S. Catani, P. Draggiotis, G. Rodrigo, A Tree-Loop Duality Relation at Two Loops and Beyond, JHEP 10 (2010) 073
- ZC, V. Hirschi, D. Kermanschah, B. Ruijl, Loop-Tree Duality for Multiloop Numerical Integration, Phys. Rev. Lett. 123 (2019) 15
- ZC, V. Hirschi, D. Kermanschah, A. Pelloni, B. Ruijl, Manifestly Causal Loop-Tree Duality, (2020)
- J. Aguilera-Verdugo, R.J Hernandez Pinto, G. Rodrigo, G. Sborlini, W.J. Torres Bobadilla, Mathematical properties of netted residues and their application to multi-loop scattering amplitudes, (2020)

Contour deformation

• ZC, V. Hirschi, D. Kermanschah, A. Pelloni, B. Ruijl, Numerical Loop-Tree Duality: contour deformation and subtraction, JHEP 04 (2020) 096

Local Unitarity

- D.E. Soper, Techniques for QCD calculations by numerical integration, Phys. Rev. D62 (2000)
- ZC, V. Hirschi, A. Pelloni, B. Ruijl, Local Unitarity: a representation of differential cross-sections that is locally free of IR singularities at any order, (2020)