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Local Unitarity: a representation of differential cross-sections that is locally free of IR singularities at any order

First, allow me to point out a striking observation, might be inspiration for new physics...

Lund University Local Unitarity

LU

This cannot be a coincidence!!
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Local Unitarity: a representation of differential cross-sections that is locally free of IR singularities at any order

Our objective

Automating perturbative computations: provide a deterministic procedure (and
code) that, given any process specific input, and given enough time and enough
computational resources, outputs a reliable output with arbitrary precision

Deep theoretical understanding

A
Fully automating INSEPARABLE
perturbative computations
\ 4

Outstanding algorithms
and efficient implementation
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Local Unitarity: a representation of differential cross-sections that is locally free of IR singularities at any order

The hardest theoretical problem in full automation is that of IR singularities.

It manifests itself in fixed order computations, PDFs, event generators.

l

LU forces to unify the treatment for all of its manifestations!

In contrast, the traditional way of computing cross-section usually divides the
problem into

- Computing amplitudes analytically

- Computing the phase space integrals numerically with counter-terms

This asymmetric way of dealing with IR singularities hides an inherent
simplicity
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Local Unitarity: a representation of differential cross-sections that is locally free of IR singularities at any order

Some relevant pragmatic consequences...

No counter-terms

No dimensional regularisation

Not process specific

Fully numerical and automatable

Differential

Some interesting theoretical consequences...

- Forward scattering diagrams are central, not amplitudes

- Initial states with higher multiplicities

- Beyond LSZ

 Infrared scales from theory

- Classification of singularities and the systematics of their
cancellations

* No explicit reference to collinear mass factorisation
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Local Unitarity: a representation of differential cross-sections that is locally free of IR singularities at any order

In computing perturbative cross section for physical processes in QFTs, one
encounters diagrams, either in the form of amplitudes or forward scattering diagrams

The properties of perturbative cross-sections are deeply entrenched with the
diagrammatic technique

As a recurring example, one can consider a four-loop amplitude for qq — qq

Or a forward-scattering diagram for N4ALO qq —> X
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Local Unitarity: a representation of differential cross-sections that is locally free of IR singularities at any order

Momentum conservation constraints

P1
\ . " p3
: : Choosing a loop momentum

routing is equivalent to fixing a

4 4 spanning tree
ki —p1 ky — kq ka2 — p3
! The edges not In the spanning tree
' Jr—— J—( ' are the loop variables!
A A
]C3 k4
futks —pr | | ke ke = k= Ko o ka = s Spanning trees contain info on the
connectivity structure of the graph

Indeed a graph admits a spanning
tree only if it is connected!

Momentum conservation completely determines
the singular structure!!!
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Local Unitarity: a representation of differential cross-sections that is locally free of IR singularities at any order

Loop-Tree Duality

Consider a loop integral in the Minkowski representation

o

1

b dAk N
2 2
] (2m)* Hjee(Qj — mj)
The LTD representation using residue theorem to integrate the energy components

L

I = (i)t / H (%g fitd

1=1

Our objective is to determine J1td for any Feynman diagram

The interplay between momentum conservation
conditions and the ie prescription is key in deriving f}; 4
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Local Unitarity: a representation of differential cross-sections that is locally free of IR singularities at any order

Choose the simplest non trivial example: the two-loop sunrise By 2

N
fita = _/dk(l)dkg 0 0 0 0 0 0 0 0
(k7 + E1)(ki — Er) (kg + B2) (ks — E2)(k{ + k3 + E3) (k] + kg — E3)
k2 —m? +ie= (kY — B + Ey)

where

B = \fa2 +m3 —ie, By = \JBaf2+md —ie, By = \JIFi + Fof2 +m3 — i
Due to the Feynman prescription Im[ EZ] <0

Analytically continue the integrand in k? first, and then kg . We choose to close
the contour in the lower half of complex plane

Re[k?]

1

Im[k)]
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Local Unitarity: a representation of differential cross-sections that is locally free of IR singularities at any order

Start by performing the integration in k?. The poles contained in the contour are

K = B Re[k?)

Im [k

I Im|F4] <0
ndeea Im[—kj + F3] = Im[E3] < 0

Using residue theorem we obtain two residue

fita = 27ri/d/<0 N (ki = E1)
ltd = 29FE1 (kY + E5) (k) — Eo) (kY + E1 + E3) (kY + E1 — E3)

+27ri/dk0 N(ky = —k3 + Bs)
29E3(kd + Ey) (kY — E2)(—kQ — E1 + E3)(—kY + E; + E3)
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Local Unitarity: a representation of differential cross-sections that is locally free of IR singularities at any order

We now perform the integration in kg

I = 27ri/dk0 Nk = B)
: ?2B1 (k3 + E2)(k§ — E2)(k§ + E1 + E3)(k§ + By — Es)
. kS = Fs
The poles of this piece are located at -0

The first pole is always in the lower half of complex plane, the second is not!!!

Im[—El Eg] Does not have a well-defined negative sign!

Thus, after applying residue theorem, we write

_ N(ko = by, ky = Es) Ensuring the pole
2F12F5(Es + E1 + E3)(Ey + E; — E3)  is in the contour!

Nk = E1, kQ = Es — E1) /
™ O(Im[—F3 + E
SEE By — By + By) (B — By + ) 0 e )

Iy
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Local Unitarity: a representation of differential cross-sections that is locally free of IR singularities at any order

I, = 27ri/dl~c0 N(KY = —h3 + Fs)
’ *2F3(k9 + E2) (k9 — E2)(—k3 — By + E3)(—k§ + Ey + E3)

k) = E,
The poles of this piece are located at kS = B3 — B4
kY = E1 + E3

The second pole can be inside or outside the contour depending on L1, Ej3.

After applying residue theorem

B N(k® = —Es + E3, k) = E5)

B 2E32F5(—Fo — E1 + E3)(—F2 + E1 + Ej3)
N(k? = E1,k = E5 — Ey)

" 2F32F;(E5 — By + E5)(Es — E1 — E»)

| Nk = —E1, kS = E;y + E3)

' 2F32F(E1 + By + E3)(Ey + F3 — E»)

15

@(Im[—Eg -+ El])
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Local Unitarity: a representation of differential cross-sections that is locally free of IR singularities at any order

Finally, we can combine the two contributions!

N (kY = E1, kY = E»)
Jiwa = 11 + 1o = : - —
2E12F5(Fy + E1 + Es)(F2 + E1 — Es)
N(K? = F1, kY = E5 — E)
+ O(Im|—F3 + F
2E12E5(Ey — Ey + E3)(—FEs — By + Es) (Im[=E; 1])\
Same contribution,

N(k(l) = — Ly + b3, kg = F») opposite sign!
2E32E2(_E2 =10 EB)(_EQ RS EB) Theta cancellatic.)n!
N(k?:ElykngS—El) /
- O(Im|—Fs + F
SE32E (Bs — By + B)(Bs — By — By) O Fs 1 Eil)
N(k(l) — _Ela k(z) = Fq + E3)
2E32E1 (El + E2 + E3)(E1 -+ E3 — EQ)

_|_

We can represent the final result graphically. Using the convention

Fr Es
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Local Unitarity: a representation of differential cross-sections that is locally free of IR singularities at any order

cut structure
+ +
N =FE .,k = FE
fita =1 + I = (b = Bn, by = Ba)
2(,2F5(Fs + E4 + E3)(FEs + B — Fs)
n N(k? = — s + Fs, kg = F») 1
2E32Fs(—FE9 — 1 + E3)(—Es + 1 + E3)
n N(k? = —E1,kY = E1 + E3)
2E32F,(E1 + Es + E3)(E1 + E3 — Es)
For a general amplitude
L TT.or. 695 (g2 — m2
— b q; —mj)
fltdZZ/ ][k ) N5 —
beB 1=1 HiEe\b(qz’ o mz)
Each delta corresponds to a cut with an associated sign or energy flow.
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Local Unitarity: a representation of differential cross-sections that is locally free of IR singularities at any order

Real and virtual particles?

LTD clarifies the distinction between real and virtual particles

Q D
v, - ot A cut-structure corresponds to a unique spanning tree
. {, { Cut particles are “physical”, i.e. on-shell.
Then the cut structure represents a classical tree

- -+\ ) process

& v

LTD sums over all possible classical tree processes that can be embedded
in the virtual loops

15
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Local Unitarity: a representation of differential cross-sections that is locally free of IR singularities at any order

Singularities of the sunrise

N (kY = E1, kY = E») Let’s look at the denominators
fltd: 2E12E12(E’2 + b1+ Eg)(EQ + By — Eg) E1=0, E5 =0, E3=0
0 _ 0 _
—l_2E32E2]2[£%2_—_E?2-|-+E§;(’]—62EQ_—|-E;?)1 + FE3) AR
N (kY = —Eq1, k3 = Ey + Ej) E1+E3_E2i0
- Es—Fys—FE1 =0

2E32F1(E1 + Es + E3)(FE1 4+ E3 — Es)

However, the last two singularities are singularities of single residues, but not of fita !!!

1 1 1 1
Using the identity CESTIEEy = 2 (m_y B x+y)

N’ Manifestly
2E12E22E3(E1 + E9y + ES) Causal LTD

we can rewrite fita =

where N is a polynomial. This is the phenomenon of dual cancellations.
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Local Unitarity: a representation of differential cross-sections that is locally free of IR singularities at any order

E-surfaces or physical thresholds

This can be generalised to any arbitrary amplitude. The general amplitude will be
singular at zeros of on-shell energies and at the locations

n= Y Ei—py=0

where Po is a linear combination of the energies of external particles.

7] is a positive linear combination of the on-shell energies of internal particles.

As a consequence, it describes a convex bounded surface

lts imaginary part has a well-defined sign

Im | Ei—po| =) Im[E]<0

This is important to determine the constraints on the contour deformation

Zeno Capatti, ETH Ziirich Seminar at Lund University
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Local Unitarity: a representation of differential cross-sections that is locally free of IR singularities at any order

Ellipses and pinched singularities

At one loop, the physical thresholds take an especially simple form

Fy+ Eo —po = ’\/|E\2+\/\E+ﬁ\2—po =0

It's the equation for an ellipse! It exists if p2 > 0

Aky e Aky
p02p > 0

p= (|ﬁ|7070)

Pinched configuration is obtained by squeezing the ellipse

1 118
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Local Unitarity: a representation of differential cross-sections that is locally free of IR singularities at any order

Numerically computing amplitudes within LTD
2
In the unphysical region p? < 0, (ij> < 0 there are no physical thresholds!
j

The integrand is finite and can be easily Monte Carlo integrated

.
50
=
D 6

1-loop, analytic (x ~10%i) — 1

5 k 1-loop, LTD (x -10%i) —=— ]

( 0_5 = 2-loop, analytic (x5 10*) — ]

3 2-loop, LTD (x5 10%) —o—

NS 4r 3-loop, analytic (x 107i) —

e) f) g) h) %3 ] 3-loop, LTD (x107i) —+— ]

. 6 gz '::\a.‘._‘ N N E :

G  Reference Numerical LTD N [10°] [us] : — —— e ]
a)* [33] i4.31638 -10~7 i4.31637(19) -10~7 110 1.1 'E :
T 2+ . - -

b) [33] 10.358640 i0.358646(29) 210 5.9 < ! - Relative deviation ) -
2 ’—I—I—I—:—’—:—I—I—.—i—‘—.—.—.—l—.—‘—.—l—.—m

c) [7] 1.1339(5)-10"*  1.133719(58) - 10~* 5500 2.5 e S
Q-< [© A . g‘

c* [7]  4.398(1) -107°  4.39825(17) -107° 5500 2.5 s -
d)* [7]  2.409(1) -107%  2.40869(27) -10~® 5500 3.5 R s e e ]
e) [34] —1.433521 -107° —1.4338(18) -10"° 1500 27.4 g, F L et e Ag
f) [35] i5.26647 -107° i5.236(38) -107° 7000 3.3 ~ o 2'5 5'0 7'5 o

g)* [7] i1.7790(6) - 10~ '° 11.77648(48) -10~'° 22000 11
h) [35] —8.36515 -10"° —8.309(31) -10"® 7000 15.8

1 19
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Local Unitarity: a representation of differential cross-sections that is locally free of IR singularities at any order

In the physical region we need a deformation satisfying the causal constraint

k — k — 1k with

Topology

Numerical LTD

@)

Box4E

-6.57637 +/-

-7.43805 +/-

0.00122

0.00121

-3.44317 +/-
-2.56505 +/-

0.00045
0.00046

-0.00036 +/-
5.97143 +/-

0.00029
0.00029

-0.83888 +/-
-1.71325 +/-

0.00016
0.00017

-3.49044 +/-
-3.89965 +/-

0.00054
0.00054

0.90036 +/-
4.17823 +/-

0.00076
0.00080

0.04227 +/-
-2.18118 +/-

0.00068
0.00068

1L6P
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0.03046 +/-
-1.17691 +/-

0.00006
0.00008

-2.07392 +/-
0.42593 +/-

0.00188
0.00161

1.36950 +/-
-2.25957 +/-

0.00052
0.00053

1.29802 +/-
-2.16555 +/-

0.00038
0.00037

-0.27225 +/-
-1.20895 +/-

0.00010
0.00011

2.83777 +/-
0.83144 +/-

0.00040
0.00040

-3.01976 +/-
-7.73280 +/-

0.00040
0.00047

2.13487 +/-
0.65770 +/-

0.03230
0.03145

0.00804 +/-
-1.15278 +/-

0.00014
0.00014

-2.81583 +/-
2.47308 +/-

0.00060
0.00061

Topology Numerical LTD
1.13123 +/- 0.00006
_0.55486 +/- 0.00005
5.71929 +/- 0.00055
_7.24055 +/- 0.00053
1.55376 +/- 0.00012
I::::I _2.07005 +/- 0.00012
1.85214 +/- 0.00012
1L4P 5 18397 +/- 0.00012
0.30272 +/- 0.00004
~1.08130 +/- 0.00004
Z0.17991 +/- 0.00005
_2.27593 +/- 0.00008
~1.90856 +/- 0.00074
~6.45306 +/- 0.00077
Z0.15137 +/- 0.00032
_1.80672 +/- 0.00033
20.66271 +/- 0.00032
1i:::>- _1.23567 +/- 0.00032
2.60394 +/- 0.00072
ILSP 7 95017 +/- 0.00076
Z0.48305 +/- 0.00059
_3.27664 +/- 0.00061
Z1.21508 +/- 0.00020
~1.53126 +/- 0.00020

(plus some magnitude constraints)

Topology Numerical LTD
4.58688 +/- 0.05132
<:};:} 5.04144 +/- 0.05075
~1.04316 +/- 0.35247
2L6P.a 4 42468 +/- 0.35421
1.17336 +/- 0.00888
<:}§:I 3.99809 +/- 0.00896
5.35217 +/- 0.00153
2L6P.b 3.81579 +/- 0.00150
4.90974 +/- 0.01407
-<:}[:>— -2.13974 +/- 0.01434
1.05934 +/- 0.15850
2L6P.c 4 03698 +/- 0.15312
1.90487 +/- 0.05753
'<:}§:f -3.55267 +/- 0.05746
~2.97419 +/- 0.00961
2L6P.d ) 18847 +/- 0.00957
2.87833 +/- 0.00951
'<:]Z:I 1.99937 +/- 0.00961
1.67332 +/- 0.00578
2L6P.e ) 21788 +/- 0.00571
-0.95486 +/- 0.00890
3.28530 +/- 0.00889
2.55104 +/- 0.00208
2L6P.f 1 63019 +/- 0.00205
Ii:E:I -5.15438 +/- 0.03310
2L8P 6.78546 +/- 0.03243

Topology

O

2L4P.a

P.b

N
=
S

=l

2L6P.c

@

2L6P.d

N
[y
)]

P.f

Numerical LTD

.82875
.66843

+/-
+/-

0.
.00017

00015

.83742
.38163

+/-
+/-

0
0.
0.00066

00072

.89794

.00112

.00099

.00095

.64045

.00220

.00392

.00393

.19040

.00147

.00092

.00092

.62856

.00052

.00716

.00724

.83639

.00042

.00075

.00075

.61094

.00404

.00423

.00430

SHS

.02723

.00165

+/-
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.00111

.00112
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Local Unitarity: a representation of differential cross-sections that is locally free of IR singularities at any order

Topology Numerical LTD Topology Numerical LTD Topology Numerical LTD
0.51018 +/- 0.00031 -1.08656 +/- 0.00127
-1.54768 +/- 0.00032 2.86702 +/- 0.00125 0.00796 +/- 0.00877
0.60407 +/- 0.00216 3.09646 +/- 0.00696
-6.96436 +/- 0.00213 9.53952 +/- 0.00706  3L4P -6.73786 +/- 0.00856
0.40655 +/- 0.00152 1.70253 +/- 0.00285
{::::}- -2.51588 +/- 0.00157 4.56488 +/- 0.00291 8.38828 +/- 0.07772
1.30529 +/- 0.00289 2.80094 +/- 0.00023
L8P 5 27744 +/- 0.00284 2L4P-P 3 34866 +/- 0.00025 4L4P.a -0.01028 +/- 0.07754
-2.20131 +/- 0.00241 8.15559 +/- 0.00123
-6.37841 +/- 0.00254 6.10277 +/- 0.00124 7.96654 +/- 0.11281
-1.28057 +/- 0.00088 3.10306 +/- 0.00021
-2.21602 +/- 0.00088 0.09376 +/- 0.00020 4L4P.b  0.07617 +/- 0.11858
5.10300 +/- 0.00400 0.27368 +/- 0.00131
-1.62544 +/- 0.00373 1.44760 +/- 0.00129
4.21309 +/- 0.00421 1.08568 +/- 0.00342
-1.95771 +/- 0.00394 1.78725 +/- 0.00339 5L4P 3.28900 +/- 0.01964
1.26931 +/- 0.00486 2.09848 +/- 0.00648
Q -0.84023 +/- 0.00503 @ 2.04022 +/- 0.00648 8.36493 +/- 0.02167
-0.35626 +/- 0.00057 1.51586 +/- 0.00027
L8P _1.46911 +/- 0.00058 2LSP | 4454 4/_ 0.00027 6L4P.a
-1.16905 +/- 0.00794 1.97798 +/- 0.01394
-2.72569 +/- 0.00967 1.13209 +/- 0.01173 1.09968 +/- 0.41729
-0.57605 +/- 0.00196 2.00638 +/- 0.00061
-4.04047 +/- 0.00202 _0.08277 +/- 0.00060 ©SL4P.b
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Topology Numerical LTD
-2.43299 +/- 0.03927
-3.41797 +/- 0.03956
-5.36759 +/- 0.14110
~1.05826 +/- 0.13399
-4.46226 +/- 0.10022
-0.72941 +/- 0.09918
-3.89588 +/- 0.00173
3L4P 3.89127 +/- 0.00165
-3.15581 +/- 0.00639
2.97368 +/- 0.00633
-0.10876 +/- 0.00096
1.86939 +/- 0.00095
~1.06298 +/- 0.02843
-0.88557 +/- 0.02875
-3.28794 +/- 0.07308
-0.29022 +/- 0.07635
-1.61475 +/- 0.14277
- 0.25654 +/- 0.13621
-1.26220 +/- 0.00124
SL5P 1.06124 +/- 0.00123
4.58640 +/- 0.00609
1.80523 +/- 0.00645
-1.05359 +/- 0.01706
5.92117 +/- 0.01660
1.28725 +/- 0.00637
AL4P.a  2.95568 +/- 0.00642
-4.34119 +/- 0.01166
AL4P. b -2.77244 +/- 0.01160
21
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Local Unitarity: a representation of differential cross-sections that is locally free of IR singularities at any order

Other representations...

d*k

i N B d?’/;?;
1 (27T)4> [Lice(a? —m3) = / (1_[1 (277)3> !

Loop-Tree Duality

L

-

1

Algebraic
manipulation
Covariant Y
perturbation Explicit energy . Manifestly Causal
theory integrations Loop-Tree Duality
Algebraic

manipulation

v

Time-Ordered
Perturbation theory

The Loop Tree duality offers the best understanding of IR singularities
and their cancellations, other than being relatively efficient to evaluate

22
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Local Unitarity: a representation of differential cross-sections that is locally free of IR singularities at any order

Just a bit of notation...

a1 a4 ® We give to each internal vertex

a label
Ug , 1 = 1, ,9

Each internal edge corresponds
to a couplet of vertices

€ij = Vi, V5 }
External edges are denoted as

a;, i=1,...4

| T 1 23
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Local Unitarity: a representation of differential cross-sections that is locally free of IR singularities at any order

Physical Thresholds as Connected Cuts

Green arrow: momentum orientation

P1
S = {Ul, U2, U4, 05}
The boundary of this set contains all
the edges connecting vertices in it
with vertices outside of it
k1 + ks —p1

0(s) = {eas, €56, €58, €47, G1 }

This set completely
characterises a threshold

24
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Local Unitarity: a representation of differential cross-sections that is locally free of IR singularities at any order

Draw energy-flow arrows by
flipping the green arrows that
flow inside the set

Denote by

Ly, = \/‘k1|2 T m%Z

the on-shell energy of €12

Reading the conservation of on-shell energies for particles going in/out of the set

N = Bey. + Boee + Bo-. + Boy. — By, =0

€23 €56 €58 €47
or, if we want to be fancy... ns= % E.—» E.+ Y E.
665(5)\eext eca eeeext\a
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Local Unitarity: a representation of differential cross-sections that is locally free of IR singularities at any order

S-channel thresholds and Cutkosky cuts

Consider a specific subclass of connected
cuts, those whose boundary contains a1, as

Let S C v such that

e S, V\S areconnected

i 5(8) M Cext — {al,ag}

An example:

a9 S — {U17U27U4vv5av77v8}

The Cutkosky cut can be denoted by a line crossing the internal edges in §(s)

Cs = 0(S) \ €ext = {€23, €56, €89 }

26
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Local Unitarity: a representation of differential cross-sections that is locally free of IR singularities at any order

We have just constructed an interference diagram from a “bigger” graph
rather than as a product of amplitudes

..
..
—> — —

27
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Local Unitarity: a representation of differential cross-sections that is locally free of IR singularities at any order

LSZ, Cutkosky cuts, and how to construct an interference diagram

In a way, we already knew this description of thresholds...

e [nterference diagrams are obtained by contour deforming certain thresholds.

e |In LSZ, interference diagrams are obtained by glueing connected amplitudes.

In order to formulate and connect these two principles
rigorously, we need the LTD representation!

e (Consider this graph, called the supergraph

e Construct interference diagrams from it, by summing
over the thresholds of its LTD representation

28
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Local Unitarity: a representation of differential cross-sections that is locally free of IR singularities at any order

A (rough) recipe to construct cross sections

Consider the LTD representation of

1. Its thresholds correspond to connected cuts

R e PR

2. Associate a Cutkosky cut to any s-channel threshold

Cutkosky cut

L d3
/ 3 fltd( ) Tsq 5(77sl) Os, Observable
1= 1

S1  (but there are some subtleties as we will see) LTD representation of

3. Keep a consistent loop momentum routing between all interference diagrams

29
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Local Unitarity: a representation of differential cross-sections that is locally free of IR singularities at any order

Sum all these interference diagrams together to obtain the cross-section
per super graph

B B
P-E-B

t[*
]jj@

We will now show that this sum is free of IR singularities

o(FH) =

I 1

30
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Local Unitarity: a representation of differential cross-sections that is locally free of IR singularities at any order

Cancellation of thresholds

The formula shown before can be manipulated to obtain

3k 0(Feyy + Feye + Eey — Qo)
I SE 9F 9F fitd fitd

€12 €45 €78

) are themselves connected sets!

Ir3p

The cluster of collinear particles
going in and outside the set are
degenerate at the singular points

e.g.

31
Zeno Capatti, ETH Ziirich Seminar at Lund University



Local Unitarity: a representation of differential cross-sections that is locally free of IR singularities at any order

The cancelling partner

How do we find the contribution cancelling this singularity? It's all about degeneracy

Just move the Cutkosky cut across the singularity!

At the location of the singularity, these two interference diagrams become the same

32
Zeno Capatti, ETH Ziirich Seminar at Lund University



Local Unitarity: a representation of differential cross-sections that is locally free of IR singularities at any order

Showing cancellations

Consider the internal particles in the boundary of the cut

T

], 0(T) = {e23, €56, €58,/€12, €45 |

Particles internal Particles external
to the amplitude to the amplitude

The LTD representation factorises in the product of the LTD representation of the two
smaller amplitudes and the threshold

Jita fltd I

—— 2F.,,2E. .2F...(Eey; + Eesy + FBeey — Fey, — Ee,;)
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Local Unitarity: a representation of differential cross-sections that is locally free of IR singularities at any order

fltd(}) fltd(&)fltd( )
5(E612 + E€45 + E€78 B QO) I

™ 2E€122E€452E€78 2E€232E€562E€58 (E€23 T E€56 658 o 612 o 645
Same singularity, opposite sign! /
fltd( E ) fita fltd( )
~ 5(E€23 T E€56 T E€58 T E€78 - QO)
2E€23 2E€56 2E€58 2E€78 2E645 2E€12 (E€12 645 - 623 656 o 658

Everything a part from the delta is manifestly the same. If we substitute

Fe,+Ee,, —Fe,, —Fe.. — FEe., =0

€56 €58

5(E€12 T E€45 T E€78 - QO) — 5(E€23 T E656 + E658 + E€78 o QO)
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Local Unitarity: a representation of differential cross-sections that is locally free of IR singularities at any order

Causal flow or constructing a local representation

What we said up until now does not address how to construct the actual local
representation, which requires solving the deltas!

/QE@WMJ),N%:ﬂ—D 1= [ ath(
k—pl—1 k| —1

[ DRI~ 1) | h()O(F — 7~ 1)
E—p—1 B -1

/dt/dkj}¢ 6((t, k)| — 1) _ 1®)o([o(t, k) —pl— 1)
\¢ k) —pl—1 |
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Local Unitarity: a representation of differential cross-sections that is locally free of IR singularities at any order

N Choose:
pl <1 ky| = |k|-1=0 L .
\ 1 0ip(t, k) = K(p(t, k)
£ ¢(0,k) =k
With:
R /{Vm>01fm:()
Ky
K is the field used to contour deform
\ . around thresholds!
—|k—p—1=0 = =
. o=k — K

Then vk AItF e R S.t. Pt1, k)l =1=0
¢(t§7 ) ﬁ' —1=0

Points on different thresholds are correlated, so that cancelling partners are
evaluated at the same point when they need to cancel!
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Local Unitarity: a representation of differential cross-sections that is locally free of IR singularities at any order
t, k)| —1 t,k)—p|l— 1
/dt/mgb( S(lo(t )~ 1) | h(D)5(|o(t. k) — p >)
(8, k) — pl — 1 ot k)| — 1

/dt/dkﬂ¢< At )q | _ Mt) )
Oi|o(t1, B)|(|o(t, k) — Bl — 1) 9| o(t5, k) — pI(|b(t5, k)| — 1)

Look at the singularities of the first term. It is exactly the equation defining t;

b(t1, k)| =1 =0

k) —pl—1=0 = t] =1t
o(t7, k) — Pl 1 = 19 S ) — B —1=0

Furthermore

B(t1,k) — P — 1= 6(t5, k) — 5l = 1+ (¢] — t5)04|o(t5, k) — §] + o((¢] — 15))
= (t7 — 15)0:|d(t5, k) — Bl + o (t] — t5))

which is a simple pole in the flow variable! Expanding carefully...
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Local Unitarity: a representation of differential cross-sections that is locally free of IR singularities at any order

Expanding carefully the two term composing the integrand...

h( 7{) h(tg) + O((t’{ o t;)O)

_ h( 3) _ _ _ h(tg) _ + O((t’{ o t;)O)
Ol o(85, k) — pl(|@(t5, k)| = 1) Oulo(t3, k) — ploo(tT, k)[(t5 — t7)

So that they combine to a finite quantity!!!

h(t3) , h(t1)

T 7 | . 7 . :O((t{_ 72‘()0)
Oclo(t3, k) — pl(|o(t3, k)| — 1) Oclo(er, k)|(|o(t7, k) — p| — 1)
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Local Unitarity: a representation of differential cross-sections that is locally free of IR singularities at any order

IR safety

e { is a natural parameter in which to expand to show cancellations
e One single parameter to approach all limits (single/double collinear, soft collinear etc. )

e Parameter in which we solve the deltas = 1d residue theorem along the flow!

This same expansion can be pertormed for the interference diagrams

The major difference is the observable!

| Finite-sizead
) neighbourhood
L/

f l
Requiring IR safety — O, (k) = O, (k), Vk € B.(S)

T

Soft/collinear
region

€ is a mathematically needed scale,
gauging the volume of phase space in —
which the observables must coincide

Experimental resolution of
degenerate parton configurations!
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Local Unitarity: a representation of differential cross-sections that is locally free of IR singularities at any order

a.l) @ a.2) @ a.3) @ b.1) @ b.2) @
b.3) @ b.4) @ b.5) @ b.6) @ b.7) @
b.8) @ b.9) @ b.10) @ b.11) @ b.12) @
b.13) @ b.14) @ b.15) @ b.16) @ c.1) @
c.2) {§§§E>- c.3) fgzﬁz>
r N, [109] .t/p ls] N., FORCER [GeV?] aLoor [GeV?] exp. A [o] A [%]

min avg

Inclusive cross-section per supergraph

a.l 1 5 450 16  5.75396 5.7530(46) -6 0.21 0.00017
a.2 1 10 690 16 -5.75396 -5.763(11) -6 0.82 0.0016
a.3 1 25 1400 16 -5.75396 -5.771(23) -6 0.74 0.0039
b.1 1 150 6600 45 -1.04773 -1.0459(23) -7 0.79 0.0017
b.2 1 270 39000 45 -1.04773 -1.0457(21) -7 0.97 0.0029
b.3 1 320 52000 81 -1.04773 -1.0448(21) -7 1.4 0.0028
b.4 1 740 96000 75 -1.04773 -1.0455(22) -7 1.0 0.0021
b.5 1 340 20000 45 -1.04773 -1.0441(23) -7 1.6 0.0035
b.6 1 350 12000 45 -1.04773 -1.0434(26) -7 1.7 0.0042
b.7 1 1800 180000 81 -1.04773 -1.0563(51) -7 1.7 0.0081
b.8 1 1400 120000 75 -1.04773 -1.0526(42) -7 1.2 0.0046
b.9 1 1200 36000 45 -1.04773 -1.0439(27) -7 1.4 0.0037
b.10 1 1100 32000 45 -1.04773 -1.0488(29) -7 0.37 0.0010
b.11 1 1100 54000 45 -1.04773 -1.0516(35) -7 1.1 0.0037
b.12 1 1100 30000 45 -1.04773 -1.0473(30) -7 0.14 0.00041
b.13 1 2700 83000 45 -1.04773 -1.040(15) -7 0.51 0.0074
b.14 1 3100 110000 75 -2.09546 -2.123(12) -7 2.3 0.0130
b.15 1 3100 210000 81 -2.09546 -2.1045(67) -7 1.3 0.0043
b.16 2 1800 120000 75 -5.23865 -5.312(65) -8 1.1 0.014
c.1 1 1100 49000 128  1.66419 1.6691(79) -9 0.62 0.0029
c.2 1 900 46000 130  1.77832 1.7752(71) -9 0.44 0.0018
c.3 1 1600 69000 130  1.77832 1.7797(33) -9 0.42 0.00077
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Local Unitarity: a representation of differential cross-sections that is locally free of IR singularities at any order

pr(4)
3. NLOaLoop —
107 F DT aLoop —
[ 2*SE aloop ﬁ_ﬁ
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= |
£ ©
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5 >
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° 2
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5
I
wn
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Local Unitarity: a representation of differential cross-sections that is locally free of IR singularities at any order

Initial State Radiation

Interference diagrams that cancel at the
location of a singularity correspond to
varying final state multiplicities

e |f we want ISR cancellations, we need to consider diagrams with more than
two initial states or it is not IR-safe!

e Furthermore, to cancel singularities that correlate initial and final states,
we also need diagrams with disconnected amplitudes, contradicting LSZ

The interference diagrams are now obtained by cutting vacuum graphs!

How do PDF renormalisation and resummation fit into this model?
We'll have to wait to know for sure...
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Local Unitarity: a representation of differential cross-sections that is locally free of IR singularities at any order

A recap:

e | oop-Tree Duality representation for the sunrise

e Singularities of the sunrise

e Physical thresholds as connected cuts

e Constructing interference diagrams from the super-graph

e Easy cancellations of IR singularities through local factorisation of
amplitudes

e The causal flow and hints at a general proof

e |R-safety and observables

e [nitial state radiation
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Local Unitarity: a representation of differential cross-sections that is locally free of IR singularities at any order
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