A very quick introduction to heavy-ion physics

Alice Ohlson Lund University, Sweden

November 30, 2020

High-temperature regime of QCD

- At high temperatures and densities, quarks and gluons are no longer confined into hadrons but behave quasi-freely
 - Quark-Gluon Plasma (QGP)

Where do we find deconfined matter?

microseconds after the big bang

And in collisions of heavy nuclei at high energies!

• in the cores of neutron stars

Alice Ohlson

in numerical simulations on supercomputers

Heavy-ion colliders

Relativistic Heavy Ion Collider

- 3.8 km circumference
- Au+Au collisions @ $\sqrt{s_{NN}} = 7.7 200 \text{ GeV}$
- also p+p, p+Au, d+Au, ³He+Au, Cu+Cu, Cu+Au, U+U

Alice Ohlson

Large Hadron Collider

- 27 km circumference
- Pb+Pb collisions (a) $\sqrt{s_{NN}} = 2.76$, 5 TeV
- also p+p, p+Pb, Xe+Xe

Heavy-ion detectors at RHIC

Heavy-ion detectors at the LHC

Observables in the detector: spatial and momentum distributions of stable final state particles (π , K, p, e, μ)

Physics of the collision system: initial state, dynamic evolution, chemical and thermodynamic properties, interactions with charged probes, hadronization, reconstruct all final state particles $(\pi, K, p, \Lambda, \Xi, \Omega, J/\psi, Y, \eta, \rho, \gamma, e, \mu, ...)$

Geometry of a heavy-ion collision

• Centrality: amount of overlap of the colliding nuclei

- Peripheral events are not rotationallysymmetric
- Anisotropic interaction region

Anisotropic interaction region

• Stronger in-plane pressure

STAR, PRL 90 (2003) 032301, arXiv:nucl-ex/0206006 ϕ_{lab} - Ψ_{plane} (rad)

Alice Ohlson

Elliptic Flow in Ultracold Lithium

K.M. O'Hara et al., Science, 13 Dec 2002: 2179-2182

Anisotropic flow coefficients

- Particle distribution described by a Fourier cosine series $dN/d\phi \sim 1 + 2v_2\cos(2(\phi-\Psi_2))$
- $v_2 \rightarrow$ "elliptic flow"

Anisotropic flow coefficients

- Particle distribution described by a Fourier cosine series $dN/d\phi \sim 1 + 2v_2 cos(2(\phi \Psi_2))$
- $v_2 \rightarrow$ "elliptic flow"
- Measurements of v_2 are described very well by hydrodynamic models \rightarrow QGP behaves as a liquid!
- Viscosity (η/s) is near quantum lower bound \rightarrow QGP is the "perfect liquid"

A colored probe in a colored medium

 Hard scatterings in the early stages of the collision produce back-to-back recoiling partons, which fragment into collimated clusters of hadrons

- As they traverse the QGP, partons interact with the medium
 → "jet quenching"
- Characterize the nature of this energy loss to understand properties of the QGP and the interactions of a colored probe with a colored medium

Jets in heavy-ion collisions

Alice Ohlson

2

Jet quenching

- Significant suppression of jets in central heavy-ion collisions!
- By comparing with a wide variety of models, extract the jet transport coefficient \hat{q}

Alice Ohlson

Number of jets in a heavy-ion collision dN_{jet}/dp_T AA R_{AA} $\langle N_{coll} \rangle$ pp Number of jets in a Equivalent number of proton-proton collision proton-proton collisions in a heavy-ion event

Statistical model of particle production

Alice Ohlson

• Calculation of particle yields in thermal equilibrium with a common chemical freeze-out temperature (T_{chem}) shows excellent agreement with the data over seven orders of magnitude

> ALICE, Nucl. Phys. A 971 (2018) 1, arXiv:1710.07531 [nucl-ex]

Kinematics – freeze-out parameters

- Boltzmann-Gibbs Blast-Wave model: a simplified hydrodynamic model
- Simultaneous fit to π , K, p spectra to obtain
 - radial expansion velocity β_T
 - kinetic freeze-out temperature T_{kin}

• More central (higher multiplicity) events have lower T_{kin} and higher expansion rate

Conclusions

- Properties of the quark-gluon plasma:
 - strong quenching of colored probes (\hat{q})
 - collective behavior with very low shear viscosity (η/s)
 - high temperatures, mostly statistical particle production (T_{chem} , T_{kin})
 - susceptibilities give information about the phase transition (χ)

Exploring the phase diagram of nuclear matter with fluctuations in heavy-ion collisions

Alice Ohlson Lund University, Sweden

November 30, 2020

Phase structure of nuclear matter

- At low $\mu_B \rightarrow$ Cross-over transition between deconfined QGP phase and confined hadron gas phase
- At higher $\mu_B \rightarrow 1^{st}$ order phase transition
- In between \rightarrow critical point?

Phase structure of nuclear matter

Alice Ohlson

Small u, d quark masses \rightarrow proximity to O(4) second order phase transition \rightarrow pseudocritical features may be observable

Where does the phase transition occur?

A. Bazavov et al. (HotQCD Collaboration), Phys. Rev. D 85 (2012) 054503

- Theoretical prediction for the phase boundary temperature coincides with hadronic freeze-out (T_{chem})!
- Look for signatures of the phase transition encoded in the final state hadron yields

Fluctuations in heavy-ion collisions

structure of strongly-interacting matter

Alice Ohlson

• Event-by-event fluctuations of particle multiplicities are used to study properties and phase

- Fluctuations grow in the region near a phase transition and/or critical point
 - Can we observe signs of criticality?

Critical opalescence in CO₂

J.V. Sengers, A.L Sengers, Chem. Eng. News, June 10, 104–118, 1968

Fluctuations in heavy-ion collisions

structure of strongly-interacting matter

Alice Ohlson

• Event-by-event fluctuations of particle multiplicities are used to study properties and phase

- Fluctuations grow in the region near a phase transition and/or critical point
 - Can we observe signs of criticality?
- Fluctuations of conserved charges can be related to susceptibilities calculable in lattice QCD
 - Precision test of LQCD at $\mu_B \approx 0$

- Thermodynamic susceptibilities χ
 - describe the response of a thermalized system to changes in external conditions, fundamental properties of the medium
 - can be calculated within lattice QCD
 - number of conserved charges

Alice Ohlson

within the Grand Canonical Ensemble, are related to event-by-event fluctuations of the

Experiment: moments of particle multiplicity distributions $\Delta N_{B} = N_{B} - N_{\overline{R}}$

• Thermodynamic susceptibilities χ

Alice Ohlson

- describe the response of a thermalized system to changes in external conditions, fundamental properties of the medium
- can be calculated within lattice QCD
- number of conserved charges

• within the Grand Canonical Ensemble, are related to event-by-event fluctuations of the

Observable

- charged particles (proxy: pions) strange mesons+baryons (proxy: kaons)
- baryons (proxy:protons)

Experiment: moments of particle multiplicity distributions $\Delta N_{B} = N_{B} - N_{\overline{B}}$

• Thermodynamic susceptibilities χ

Alice Ohlson

- describe the response of a thermalized system to changes in external conditions, fundamental properties of the medium
- can be calculated within lattice QCD
- number of conserved charges

Theory:
susceptibilities

$$\chi_{n}^{B} = \frac{\partial^{n} \left(P/T^{4}\right)}{\partial \left(\mu_{B}/T\right)^{n}}$$

$$\left\langle \left(\Delta N_{B}\right)^{2} = VT^{3}\chi_{1}^{B} + \frac{\partial^{2} \left(\Delta N_{B}\right)^{2}}{\left(\Delta N_{B}\right)^{2}} = \sigma^{2} + \frac{\partial^{2} \left(\Delta N_{B}\right)^{2}}{\left(\Delta N_{B}\right)^{2}} + \frac{\partial^{2} \left(\Delta N_{B}\right)^{2}}{\left(\Delta N_{B}\right)^{2}} = S + \frac{\partial^{2} \left(\Delta N_{B}\right)^{2}}{\left(\Delta N_{B}-\left(\Delta N_{B}\right)^{4}\right)^{2}} + \sigma^{4} - 3 = \frac{VT^{3}\chi_{4}^{B}}{\left(VT^{3}\chi_{2}^{B}\right)^{2}} = K$$

within the Grand Canonical Ensemble, are related to event-by-event fluctuations of the

Experiment: moments of particle multiplicity distributions $\Delta N_B = N_B - N_{\overline{R}}$

- Thermodynamic susceptibilities χ
 - describe the response of a thermalized system to changes in external conditions, fundamental properties of the medium
 - can be calculated within lattice QCD
 - number of conserved charges

Theory: fixed volume, particle bath in GCE

 $\left\langle \Delta N_B \right\rangle \neq VT^3 \chi$ $\left\langle \left(\Delta N_B - \left\langle \Delta N_B \right\rangle \right\rangle$

 $\left(\Delta N_{B}-\left\langle \Delta N_{B}\right.$

Alice Ohlson

• within the Grand Canonical Ensemble, are related to event-by-event fluctuations of the

$$\left| \frac{\chi_{1}^{B}}{\langle X_{2}^{B} \rangle} \right|^{2} \left| \neq VT^{3}\chi_{2}^{B} = \sigma^{2} \right|$$

$$\left| \frac{\chi_{2}^{B}}{\langle X_{2}^{B} \rangle} \right|^{3} \left| \frac{VT^{3}\chi_{3}^{B}}{\langle VT^{3}\chi_{2}^{B} \rangle} \right|^{3/2} = S$$

$$\left| \frac{\chi_{2}^{B}}{\langle X_{2}^{B} \rangle} \right|^{4} \left| \frac{\chi_{2}^{B}}{\langle X_{2}^{B} \rangle} \right|^{2} = K$$

Experiment: event-by-event volume fluctuations, global conservation laws

Needed: high precision

- 2^{nd} order moments \rightarrow no deviation between HRG and LQCD expectations
- 4th order \rightarrow 30% deviation from unity expected from LQCD

Needed: higher-order moments

(4th, 6th, 8th,...)

• But huge statistics are needed and experimental effects must be carefully controlled

Alice Ohlson

• Deviations from unity and signs of criticality are greatly enhanced for the higher moments

Friman, B., et al. Eur. Phys. J. C 71 (2011) 1694, arXiv:1103.3511 [hep-ph]

Experimental challenges

- Event-by-event particle identification 1.
- Event-by-event efficiency correction 2.

We know how to correct the first moments, but what about the higher moments?

The challenge: event-by-event PID

- Traditional method:
 - count number of pions (N_{π}) , kaons (N_{K}) , protons (N_{p}) in each event

#tracks

N_p

- find moments of distributions of N_{π} , N_{K} , N_{p} ,

- particle *i* is a proton
- particle *i* is not a proton

Traditional method

- What if PID is unclear?
 - use other detector information or reject phase space bin
 - results in lower efficiency

Identity Method

- moments of N
- Contamination is accounted for, full phase space can be used

Alice Ohlson

arXiv:1204.6632 [nucl-th]

Efficiency correction: several ideas

• Simple scaling of moments using HIJING and/or AMPT

• Correction of factorial moments assuming binomial track loss

A. Bzdak and V. Koch, Phys. Rev. C86, 044904 (2012), arXiv:1206.4286 [nucl-th].

A. Bzdak and V. Koch, Phys. Rev. C91, 027901 (2015), arXiv:1312.4574 [nucl-th].

-extension to Identity Method

C. Pruneau, Phys. Rev. C96 (2017) 054902, arXiv:1706.01333 [physics.data-an]

• Correction using moments of detector response matrix

T. Nonaka et al., Nucl. Inst. Meth. A 906 (2018) 10, arXiv:1805.00279 [physics.data-an]

• Full unfolding of moments

Alice Ohlson

All correction methods rely on different assumptions, which must be assessed and tested carefully!

2nd moments at the LHC

Net-proton second moments at the LHC

Alice Ohlson

ALICE, PLB 807 (2020) 135564, arXiv:1910.14396

$$\kappa_{1}(p) = \langle N_{p} \rangle \qquad \kappa_{2}(p) = \langle \left(N_{p} - \langle N_{p} \rangle\right)^{2} \rangle$$

$$\kappa_{2}(p - \overline{p}) = \langle \left(N_{p} - N_{\overline{p}} - \langle N_{p} - N_{\overline{p}} \rangle\right)^{2} \rangle$$

$$= \kappa_{2}(p) + \kappa_{2}(\overline{p}) - 2\left(\langle N_{p}N_{\overline{p}} \rangle - \langle N_{p} \rangle \langle N_{\overline{p}} \rangle\right)$$

correlation term

• If multiplicity distributions of protons and antiprotons are Poissonian and uncorrelated $\kappa_2(p) = \kappa_1(p)$

$$R_1 = \kappa_2(p)/\kappa_1(p) \to 1$$

Net-proton second moments at the LHC

Alice Ohlson

ALICE, PLB 807 (2020) 135564, arXiv:1910.14396

$$\kappa_{1}(p) = \langle N_{p} \rangle \qquad \kappa_{2}(p) = \langle \left(N_{p} - \langle N_{p} \rangle\right)^{2} \rangle$$

$$\kappa_{2}(p - \overline{p}) = \langle \left(N_{p} - N_{\overline{p}} - \langle N_{p} - N_{\overline{p}} \rangle\right)^{2} \rangle$$

$$= \kappa_{2}(p) + \kappa_{2}(\overline{p}) - 2\left(\langle N_{p}N_{\overline{p}} \rangle - \langle N_{p} \rangle \langle N_{\overline{p}} \rangle\right)$$

correlation term

• If multiplicity distributions of protons and antiprotons are Poissonian and uncorrelated \rightarrow Skellam distribution for net-protons

$$\kappa_2(Skellam) = \kappa_1(p) + \kappa_1(\overline{p})$$

 $R_2 = \kappa_2(p - \overline{p})/(\kappa_1(p) + \kappa_1(\overline{p})) \to 1$

Net-proton second moments

Alice Ohlson

ALICE, PLB 807 (2020) 135564, arXiv:1910.14396

$$\kappa_{1}(p) = \langle N_{p} \rangle \qquad \kappa_{2}(p) = \langle \left(N_{p} - \langle N_{p} \rangle\right)^{2} \rangle$$

$$\kappa_{2}(p - \overline{p}) = \langle \left(N_{p} - N_{\overline{p}} - \langle N_{p} - N_{\overline{p}} \rangle\right)^{2} \rangle$$

$$= \kappa_{2}(p) + \kappa_{2}(\overline{p}) - 2\left(\langle N_{p}N_{\overline{p}} \rangle - \langle N_{p} \rangle \langle N_{\overline{p}} \rangle\right)$$

correlation term

- κ_2 shows deviation from Skellam prediction
 - due to correlation term?
 - are protons and anti-protons Poissonian?

Net-proton second moments

Alice Ohlson

Modeling the effects of volume fluctuations

P. Braun-Munzinger et al., NPA 960 (2017) 114, arXiv:1612.00702 [nucl-th]

- Inputs to the model: $\kappa_1(p)$, $\kappa_1(\overline{p})$, centrality determination procedure
- Model gives a consistent picture of κ_2 without need of correlations or critical fluctuations

Global conservation laws

- Small $\Delta \eta \rightarrow$ Poissonian fluctuations, ratio to Skellam ~1
- Large $\Delta \eta \rightarrow$ global baryon number conservation effects, ratio to Skellam < 1
- $\Delta\eta$ dependence consistent with effects of baryon number conservation

P. Braun-Munzinger et al., NPA 960 (2017) 114, arXiv:1612.00702 [nucl-th]

Alice Ohlson

ALICE, PLB 807 (2020) 135564, arXiv:1910.14396

Higher moments at the LHC

Net-proton third moments at the LHC

ALI-PREL-337360

- Third moments agree with Skellam expectation of zero, precision on the order of 5%
- Very sensitive measurements, requires great experimental control over efficiencies, etc
- Fourth moments in progress...

Alice Ohlson

tion of zero, precision on the order of 5% texperimental control over efficiencies, etc

Higher moments at RHIC

Higher moments at RHIC

Net-Proton

Phys. Rev. Lett. 112, 032302 (2014). Phys. Rev. Lett. 113 092301 (2014).

Alice Ohlson

Net-Charge

Phys. Lett. B 785, 551 (2018).

Net-proton moments at RHIC

Net-proton moments at RHIC

Critical behavior? Not yet...

• Above $\sqrt{s_{NN}} = 11.5$ GeV: deviation from unity can be described by global baryon number conservation

Alice Ohlson

P. Braun-Munzinger, A. Rustamov, J. Stachel, NPA 982 (2019) 307 arXiv:1807.08927 [nucl-th]

Net-A fluctuations

From net- π , K, p to net- Λ moments

- Moving beyond net-baryon, net-strangeness, net-charge fluctuations to correlated fluctuations of net-charge, netstrangeness, net-baryon number
 - Access off-diagonal elements, mixed derivatives χ^{BS} , χ^{BQ} , χ^{QS}
- Net- Λ fluctuations: explore correlated fluctuations of baryon number and strangeness
- Critical fluctuations not expected for second moments, establish baseline for future measurements of higher moments in the strangeness sector
- Improve understanding of net-baryon fluctuations
 - different contributions from resonances, etc, than in netproton measurement
- As can be "added" to net-proton or net-kaon results to get closer to net-baryon and net-strangeness fluctuations

Identity Method for A

- For any value of m_{inv} , probability that a particle is Identity Method makes it possible to account for large combinatoric background a Λ or combinatoric $p\pi$ pair is known from inclusive distribution
- Identity Method formalism can be applied for four 'species':

 $\Lambda, \overline{\Lambda}$, combinatoric $p\pi^-$, combinatoric $\overline{p}\pi^+$

Efficiency ($\varepsilon \sim 10-30\%$) and secondary contamination ($\delta \sim 20-35\%$) corrections performed under binomial assumption

Centrality dependence of 1st moments

 $C_1(\Lambda) = \langle N_\Lambda \rangle$

Alice Ohlson

Centrality dependence of 2nd moments

$$C_{1}(\Lambda) = \langle N_{\Lambda} \rangle$$

$$C_{2}(\Lambda) = \langle \left(N_{\Lambda} - \langle N_{\Lambda} \rangle \right)^{2} \rangle$$

If multiplicity distributions of Λ and $\overline{\Lambda}$ are Poissonian lacksquare $C_2(\Lambda) = C_1(\Lambda)$

Centrality dependence of net- $\Lambda 2^{nd}$ moments

$$C_{1}(\Lambda) = \langle N_{\Lambda} \rangle$$

$$C_{2}(\Lambda) = \langle \left(N_{\Lambda} - \langle N_{\Lambda} \rangle \right)^{2} \rangle$$

$$C_{2}(\Lambda - \overline{\Lambda}) = \langle \left(N_{\Lambda} - N_{\overline{\Lambda}} - \langle N_{\Lambda} - N_{\overline{\Lambda}} \rangle \right)^{2} \rangle$$

$$C_{2}(\Lambda - \overline{\Lambda}) = C_{2}(\Lambda) + C_{2}(\overline{\Lambda}) - 2 \left(\langle N_{\Lambda} N_{\overline{\Lambda}} \rangle \right)^{2} \rangle$$

If multiplicity distributions of Λ and Λ are Poissonian
 C₂(Λ) = C₁(Λ)
 → if uncorrelated, Skellam distribution for net-Λ

$$C_2(Skellam) = C_1(\Lambda) + C_1(\Lambda)$$

• Small deviations from Skellam baseline

Alice Ohlson

- correlation term? non-Poissonian Λ or $\overline{\Lambda}$ distributions? critical fluctuations?

Comparison to HIJING

$$C_{1}(\Lambda) = \langle N_{\Lambda} \rangle$$

$$C_{2}(\Lambda) = \langle \left(N_{\Lambda} - \langle N_{\Lambda} \rangle \right)^{2} \rangle$$

$$C_{2}(\Lambda - \overline{\Lambda}) = \langle \left(N_{\Lambda} - N_{\overline{\Lambda}} - \langle N_{\Lambda} - N_{\overline{\Lambda}} \rangle \right)^{2} \rangle$$

$$C_{2}(\Lambda - \overline{\Lambda}) = C_{2}(\Lambda) + C_{2}(\overline{\Lambda}) - 2\left(\langle N_{\Lambda} N_{\overline{\Lambda}} \rangle \right)^{2} \rangle$$

- HIJING does not describe strangeness production well \bullet – underestimates C_1 and C_2 by factor ~4
- $C_2(\Lambda \overline{\Lambda})/C_2$ (Skellam) ratio agrees with data
 - coincidence? or due to description of fluctuations and resonance contributions in HIJING?

Comparison to net-protons

- Qualitatively similar results for net-protons
 - note different kinematic range
 - different contributions from resonance decays

Alice Ohlson

Comparison to net-protons

lacksquarePoisson/Skellam expectation for net-protons

$\Delta\eta$ dependence in central collisions

- \bullet
- lacksquareconservation effects, ratio to Skellam < 1
- Systematic uncertainties are highly correlated point-to-point
- conservation

$\Delta\eta$ dependence, comparison to net-protons

- $C_2(p-\overline{p})$ fully consistent with Skellam baseline after accounting for global baryon number conservation
- Similar trends for net- Λ
 - also strangeness conservation effects should be considered

Alice Ohlson

ALI-PREL-157768

$\Delta\eta$ dependence in mid-central collisions

 Net-protons results not described by HIJING, but net-Λ results are consistent

Alice Ohlson

Conclusions

- Properties of the quark-gluon plasma:
 - strong quenching of colored probes (\hat{q})
 - collective behavior with very low shear viscosity (η/s)
 - high temperatures, mostly statistical particle production (T_{chem} , T_{kin})
 - susceptibilities give information about the phase transition (χ)

Conclusions

- Properties of the quark-gluon plasma:
 - strong quenching of colored probes (\hat{q})
 - collective behavior with very low shear viscosity (η/s)
 - high temperatures, mostly statistical particle production (T_{chem} , T_{kin})
 - susceptibilities give information about the phase transition (χ)
- Event-by-event fluctuations of identified particles
 - yield information on properties of the QGP medium
 - test lattice QCD predictions at $\mu_{\rm B} = 0$
 - allow us to look for effects of criticality
- Net-proton and net-Λ fluctuations at LHC energies: no deviations from Skellam baseline observed after accounting for baryon number conservation, agreement with LQCD predictions
- Net-proton fluctuations at RHIC energies: can be described above $\sqrt{s_{NN}} = 11.5$ GeV by baryon number conservation

Time: 2015-11-25 10:36:18 Colliding system: Pb-Pb Collision energy: 5.02 TeV

Global conservation laws

• Contribution from global baryon number conservation calculated as

$$\frac{\kappa_2(p-\overline{p})}{\kappa_2(Skellam)} = 1 - \frac{\left\langle N_p^{meas} \right\rangle}{\left\langle N_B^{4\pi} \right\rangle} = 1 - \alpha$$

• Inputs for $< N_B^{acc} >$ from

P. Braun-Munzinger et al., PLB 747 (2015) 292, arXiv:1412.8614 [hep-ph]

Extrapolation from $\langle N_B^{acc} \rangle$ to $\langle N_B^{4\pi} \rangle$ using AMPT and HIJING

- Deviation from Skellam baseline accounted for by global baryon number conservation
 - or local conservation over 5 units of pseudorapidity

ALICE, PLB 807 (2020) 135564, arXiv:1910.14396

Anisotropic flow coefficients

• Particle distribution described by a Fourier cosine series $dN/d\phi \sim 1 + 2v_2\cos(2(\phi-\Psi_2))$

• Two-particle ($\Delta \varphi$) distribution described by Fourier series with coefficients v_n^2 $dN/d\phi \sim 1 + 2v_2^2 \cos(2\Delta\phi)$

Anisotropic flow coefficients

- Particle distribution described by a Fourier cosine series $dN/d\phi \sim 1 + 2v_1 \cos(\phi - \Psi_1)$ $+ 2v_2 \cos(2(\varphi - \Psi_2))$ $+ 2v_3 \cos(3(\varphi - \Psi_3))$ $+ 2v_4 \cos(4(\phi - \Psi_4))$ +...
- Two-particle ($\Delta \varphi$) distribution described by Fourier series with coefficients v_n^2

$$dN/d\phi \sim 1 + 2v_1^2 cos(\Delta\phi) + 2v_2^2 cos(2\Delta\phi) + 2v_3^2 cos(3\Delta\phi) + 2v_4^2 cos(4\Delta\phi) +...$$

Alice Ohlson

Higher-order flow coefficients

• Due to event-by-event fluctuations of the positions of nucleons, overlap region is not perfectly symmetric \rightarrow development of triangular flow v₃, quadrangular flow v₄,...

Higher-order flow coefficients

- Due to event-by-event fluctuations of the positions of nucleons, overlap region is not perfectly symmetric \rightarrow development of triangular flow v₃, quadrangular flow v₄,...
- Higher harmonics are sensitive to hydrodynamic properties and dynamics of the QGP

H. Niemi, K.J. Eskola, R. Paatelainen, PRC 93 (2016) 024907, arXiv:1505.02677 [hep-ph]

Alice Ohlson

Charged particle RAA

JET Collaboration, K.M. Burke et al., PRC 90 (2014) 014909, arXiv:1312.5003 [nucl-th]

 R_{AA}

Alice Ohlson

Equivalent number of proton-proton collisions in a heavy-ion event

 $(1/N_{evt}) dN_{ch}/dp_T$

 $\langle N_{coll} \rangle (1/N_{evt}) dN_{ch}/dp_T$

Number of particles in a proton-proton collision

Charged particle RAA

Alice Ohlson

By comparing with a wide variety of models, extract the *jet transport coefficient*

$$\frac{\hat{q}}{T^3} \approx \begin{cases} 4.6 \pm 1.2 & \text{at RHIC,} \\ 3.7 \pm 1.4 & \text{at LHC,} \end{cases}$$

for a quark jet with E = 10 GeV

$$\begin{cases} 1.2 \pm 0.3 \\ 1.9 \pm 0.7 \end{cases} \ {\rm GeV^2/fm} \ {\rm at} \quad \begin{array}{l} {\rm T}{=}370 \ {\rm MeV} \\ {\rm T}{=}470 \ {\rm MeV} \end{cases}$$

JET Collaboration, K.M. Burke et al., PRC 90 (2014) 014909, arXiv:1312.5003 [nucl-th]

