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• At high temperatures and densities, quarks 
and gluons are no longer confined into 
hadrons but behave quasi-freely 
• Quark-Gluon Plasma (QGP)

High-temperature regime of QCD
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• microseconds after  
the big bang

Where do we find deconfined matter?
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• in the cores of neutron stars

• in numerical simulations  
on supercomputers

And in collisions of  
heavy nuclei at  
high energies!
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Relativistic Heavy Ion Collider 
• 3.8 km circumference 
• Au+Au collisions @ √sNN = 7.7 – 200 GeV 
• also p+p, p+Au, d+Au, 3He+Au, Cu+Cu, 

Cu+Au, U+U

Heavy-ion colliders
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Large Hadron Collider 
• 27 km circumference 
• Pb+Pb collisions @ √sNN = 2.76, 5 TeV 
• also p+p, p+Pb, Xe+Xe
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Heavy-ion detectors at RHIC
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STARPHENIX
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Heavy-ion detectors at the LHC
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CMS

LHCb

ATLAS

ALICE
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Observables in the detector:  
spatial and momentum  
distributions of stable final  
state particles (π, K, p, e, µ)

Physics of the collision system:  
initial state, dynamic evolution,  
chemical and thermodynamic  
properties, interactions with  
charged probes, hadronization,  
reconstruct all final state particles  
(π, K, p, Λ, Ξ, Ω, J/ψ, Υ, η, ρ, γ, e, µ,…)
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• Peripheral events are not rotationally-
symmetric 

• Anisotropic interaction region

• Centrality: amount of overlap of the 
colliding nuclei

Geometry of a heavy-ion collision

9

“peripheral” “central” symmetry plane
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Anisotropic interaction region
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position-space  
anisotropy

momentum-space  
anisotropy

anisotropic pressure 
gradients

STAR,	PRL	90	(2003)	032301,	arXiv:nucl-ex/0206006

Elliptic Flow in  
Ultracold Lithium
K.M. O’Hara et al., Science,  
13 Dec 2002: 2179-2182

• Stronger in-plane pressure 
gradients  
→ particles boosted in-plane 
more than out-of-plane
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• Particle distribution described by a Fourier cosine series 

• v2 → “elliptic flow”

Anisotropic flow coefficients
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dN/dφ ~ 1 + 2v2cos(2(φ-Ψ2)) 
STAR,	PRL	90	(2003)	032301,	arXiv:nucl-ex/0206006
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• Particle distribution described by a Fourier cosine series 

• v2 → “elliptic flow” 

•Measurements of v2 are described very well by 
hydrodynamic models → QGP behaves as a liquid! 

•Viscosity (η/s) is near quantum lower bound  
→ QGP is the “perfect liquid”

Anisotropic flow coefficients
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ALICE, JHEP 09 (2016) 164, 
arXiv:1606.06057 [nucl-ex]

η/s = 0.08dN/dφ ~ 1 + 2v2cos(2(φ-Ψ2)) 
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• As they traverse the QGP, partons 
interact with the medium  
→ “jet quenching” 

• Characterize the nature of this energy 
loss to understand properties of the 
QGP and the interactions of a colored 
probe with a colored medium

• Hard scatterings in the early stages of 
the collision produce  
back-to-back recoiling partons, which 
fragment into collimated clusters of 
hadrons

A colored probe in a colored medium
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Jets in heavy-ion collisions

15
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• Significant suppression of jets in central heavy-ion collisions! 

• By comparing with a wide variety of models, extract the jet transport coefficient  

Jet quenching

16

RAA =
(1/Nevt) dNjet /dpT

AA

⟨Ncoll⟩ (1/Nevt) dNjet /dpT
pp

Number of jets in a  
heavy-ion collision

Number of jets in a  
proton-proton collisionEquivalent number of  

proton-proton collisions 
 in a heavy-ion event

ATLAS, Phys. Lett. B 790 (2019) 108, 
arXiv:1805.05635

̂q
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Identified particle spectra
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Identified particle spectra
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Identified particle spectra
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•Measure the total hadron yield (dN/dy) for 
many species (requires extrapolation to pT = 0) 
–probe particle abundances at  
chemical freeze-out
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• Calculation of particle yields in thermal equilibrium with a common chemical freeze-out 
temperature (Tchem) shows excellent agreement with the data over seven orders of magnitude

Statistical model of particle production

21

ALICE,	Nucl.	Phys.	A	971	(2018)	1,	
arXiv:1710.07531	[nucl-ex]
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Identified particle spectra

23

• Fit shape of pT spectrum 
–probe final hadron kinematics at  
kinetic freeze-out 
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• Boltzmann-Gibbs Blast-Wave model: a simplified hydrodynamic model 
• Simultaneous fit to π, K, p spectra to obtain 

• radial expansion velocity βT 

• kinetic freeze-out temperature Tkin 

• More central (higher multiplicity) events  
have lower Tkin and higher expansion rate

Kinematics − freeze-out parameters

24

increasing 
multiplicity
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• Properties of the quark-gluon plasma:  
• strong quenching of colored probes  (   ) 
• collective behavior with very low shear viscosity  (η/s) 
• high temperatures, mostly statistical particle production  (Tchem, Tkin) 
• susceptibilities give information about the phase transition  (χ)

Conclusions

25

We are now in the 
precision era of studying 

extreme QCD!
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•At low µB → Cross-over transition between 
deconfined QGP phase and confined hadron gas 
phase 
•At higher µB → 1st order phase transition 
• In between → critical point?

Phase structure of nuclear matter

28
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• Small u, d quark masses → proximity to O(4) 
second order phase transition → pseudocritical 
features may be observable

Phase structure of nuclear matter

29
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• Theoretical prediction for the phase boundary temperature coincides with hadronic  
freeze-out (Tchem)! 

• Look for signatures of the phase transition encoded in the final state hadron yields

Where does the phase transition occur?

30

A.	Bazavov	et	al.	(HotQCD	Collaboration),	
Phys.	Rev.	D	85	(2012)	054503 A.	Andronic	et	al.	Nature	561	(2018)	321Tfo = 156.5 ± 3 MeV Tpc = 156.5 ± 1.5 MeV 
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• Event-by-event fluctuations of particle multiplicities are used to study properties and phase 
structure of strongly-interacting matter

• Fluctuations grow in the region near  
a phase transition and/or critical point 
• Can we observe signs of criticality?

Fluctuations in heavy-ion collisions

31

T > Tc      T >~ Tc     T <~ Tc     T < Tc

Critical opalescence in CO2  
J.V. Sengers, A.L Sengers, Chem. Eng. News, 
June 10, 104–118, 1968
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• Event-by-event fluctuations of particle multiplicities are used to study properties and phase 
structure of strongly-interacting matter

• Fluctuations grow in the region near  
a phase transition and/or critical point 
• Can we observe signs of criticality? 

• Fluctuations of conserved charges  
can be related to susceptibilities calculable in 
lattice QCD 
• Precision test of LQCD at µB ≈ 0

Fluctuations in heavy-ion collisions

32
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• Thermodynamic susceptibilities χ 
• describe the response of a thermalized system to changes in external conditions, 

fundamental properties of the medium 
• can be calculated within lattice QCD 
• within the Grand Canonical Ensemble, are related to event-by-event fluctuations of the 

number of conserved charges

Connecting theory to experiment

33

Δη acceptance of 
the measurement

“particle bath”
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• Thermodynamic susceptibilities χ 
• describe the response of a thermalized system to changes in external conditions, 

fundamental properties of the medium 
• can be calculated within lattice QCD 
• within the Grand Canonical Ensemble, are related to event-by-event fluctuations of the 

number of conserved charges

Connecting theory to experiment

34

Charge Observable
Electric charge charged particles  

(proxy: pions)
Strangeness strange mesons+baryons  

(proxy: kaons)

Baryon number baryons  
(proxy:protons)



Alice Ohlson

• Thermodynamic susceptibilities χ 
• describe the response of a thermalized system to changes in external conditions, 

fundamental properties of the medium 
• can be calculated within lattice QCD 
• within the Grand Canonical Ensemble, are related to event-by-event fluctuations of the 

number of conserved charges

Connecting theory to experiment

35

Sσ = χB
3 /χB

2

κσ2 = χB
4 /χB

2
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• Thermodynamic susceptibilities χ 
• describe the response of a thermalized system to changes in external conditions, 

fundamental properties of the medium 
• can be calculated within lattice QCD 
• within the Grand Canonical Ensemble, are related to event-by-event fluctuations of the 

number of conserved charges

Connecting theory to experiment

36

Theory:  
fixed volume,  
particle bath in 

GCE

Experiment:  
event-by-event 

volume fluctuations,  
global conservation 

laws

/
/

/

/
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• 2nd order moments → no deviation between HRG and LQCD expectations 
• 4th order → 30% deviation from unity expected from LQCD

Needed: high precision

37

A. Bazavov et al. (HotQCD Collaboration), 
Phys. Rev. D 95 (2017) 054504
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•Deviations from unity and signs of criticality are greatly enhanced for the higher moments 
(4th, 6th, 8th,…) 

•But huge statistics are needed and experimental effects must be carefully controlled  

Needed: higher-order moments

38

Friman,	B.,	et	al.	Eur.	Phys.	J.	C	71	(2011)	1694,	
arXiv:1103.3511	[hep-ph]

4th 4th6th 8th



Alice Ohlson

1.   Event-by-event particle identification 
2.   Event-by-event efficiency correction

Experimental challenges

39

We know how to correct the first moments,  
but what about the higher moments?
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• Traditional method:  
– count number of pions (Nπ), kaons (NK), protons (Np) in each event 

– find moments of distributions of Nπ, NK, Np, ....

The challenge: event-by-event PID

40

Np =
1
0

⎧
⎨
⎩i

# tracks

∑
particle i is a proton 
    

particle i is not a proton
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•What if PID is unclear? 
– use other detector information or reject phase space bin 
– results in lower efficiency

Traditional method

41
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•As a function of the PID variable m, determine probability w that particle is of a given species 
• Calculate event-by-event sum of weights Wπ, WK, Wp, .... 

•Using knowledge of inclusive m distributions, unfold moments of W distributions to get 
moments of N 
• Contamination is accounted for, full phase space can be used

Identity Method

42

Wp = wp(mi )
i

# tracks

∑

A.	Rustamov	et	al.,	PRC	86	(2012)	044906,	
arXiv:1204.6632	[nucl-th]	
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• Simple scaling of moments using HIJING and/or AMPT 
• Correction of factorial moments assuming binomial track loss 

–extension to Identity Method 

• Correction using moments of detector response matrix 

• Full unfolding of moments 

All correction methods rely on different assumptions,  
which must be assessed and tested carefully!

Efficiency correction: several ideas

43

A.	Bzdak	and	V.	Koch,		
Phys.	Rev.	C86,	044904	(2012),		
arXiv:1206.4286	[nucl-th].	

A.	Bzdak	and	V.	Koch,	
Phys.	Rev.	C91,	027901	(2015),	
arXiv:1312.4574	[nucl-th].	

C.	Pruneau,	Phys.	Rev.	C96	(2017)	054902,		
arXiv:1706.01333	[physics.data-an]

T.	Nonaka	et	al.,	Nucl.	Inst.	Meth.	A	906	(2018)	10,	arXiv:1805.00279	
[physics.data-an]



2nd moments at the LHC
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• If multiplicity distributions of protons and anti-
protons are Poissonian and uncorrelated  
 

Net-proton second moments at the LHC

45

ALICE,	PLB	807	(2020)	135564,	
arXiv:1910.14396

κ2(p) = κ1(p)

R1 = κ2(p)/κ1(p) → 1
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• If multiplicity distributions of protons and anti-
protons are Poissonian and uncorrelated  
→ Skellam distribution for net-protons

Net-proton second moments at the LHC

46

ALICE,	PLB	807	(2020)	135564,	
arXiv:1910.14396

κ2(Skellam) = κ1(p) + κ1(p)
R2 = κ2(p − p)/(κ1(p) + κ1(p)) → 1
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• κ2 shows deviation from Skellam prediction 
• due to correlation term? 
• are protons and anti-protons Poissonian? 

Net-proton second moments

47

ALICE,	PLB	807	(2020)	135564,	
arXiv:1910.14396
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• Modeling the effects of volume fluctuations  

• Inputs to the model: κ1(p), κ1(p), centrality 
determination procedure 

• Model gives a consistent picture of κ2 without 
need of correlations or critical fluctuations

Net-proton second moments

48

ALICE,	PLB	807	(2020)	135564,	
arXiv:1910.14396

P.	Braun-Munzinger	et	al.,	NPA	960	(2017)	114,	
arXiv:1612.00702	[nucl-th]	
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•Small Δη → Poissonian  
fluctuations, ratio to Skellam ~1 

•Large Δη → global baryon  
number conservation effects,  
ratio to Skellam < 1 

•Δη dependence consistent with effects 
of baryon number conservation

Global conservation laws

49

Δη acceptance of 
the measurement

ALICE,	PLB	807	(2020)	135564,	
arXiv:1910.14396

P. Braun-Munzinger et al., NPA 960 (2017) 114, 
arXiv:1612.00702 [nucl-th] 



Higher moments at the LHC

50
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• Third moments agree with Skellam expectation of zero, precision on the order of 5% 
•Very sensitive measurements, requires great experimental control over efficiencies, etc 
• Fourth moments in progress...

Net-proton third moments at the LHC

51



Higher moments at RHIC
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Higher moments at RHIC

53
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Net-proton moments at RHIC

54

STAR,	arXiv:2001.02852

4th
3rd
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Net-proton moments at RHIC

55

STAR,	arXiv:2001.02852

?

4th
3rd
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•Above √sNN = 11.5 GeV: deviation from unity can be described by global baryon number 
conservation

Critical behavior?  Not yet…

56

P.	Braun-Munzinger,	A.	Rustamov,		
J.	Stachel,	NPA	982	(2019)	307	
arXiv:1807.08927	[nucl-th]

4th3rd



Net-Λ fluctuations 
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F.	Karsch,	EMMI	Workshop	on	Fluctuations,	Wuhan,	
October	2017

• Moving beyond net-baryon, net-strangeness, net-charge 
fluctuations to correlated fluctuations of net-charge, net-
strangeness, net-baryon number 
– Access off-diagonal elements, mixed derivatives χBS, χBQ, χQS 

• Net-Λ fluctuations: explore correlated fluctuations of baryon 
number and strangeness 

• Critical fluctuations not expected for second moments, 
establish baseline for future measurements of higher moments 
in the strangeness sector 

• Improve understanding of net-baryon fluctuations 
• different contributions from resonances, etc, than in net-

proton measurement 
• Λs can be “added” to net-proton or net-kaon results to get 

closer to net-baryon and net-strangeness fluctuations

From net-π, K, p to net-Λ moments

58



Identity Method for Λ 
• For any value of minv, probability that a particle is 

a Λ or combinatoric pπ pair is known from 
inclusive distribution 

• Identity Method formalism can be applied  
for four ‘species’:  
Λ, Λ, combinatoric pπ-, combinatoric pπ+

• Identity Method makes it possible to account 
for large combinatoric background 

• Efficiency (ε ~10-30%) and secondary 
contamination (δ ~ 20-35%) corrections 
performed under binomial assumption 

59
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Centrality dependence of 1st moments

60

C1(Λ) = ⟨NΛ⟩
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Centrality dependence of 2nd moments

• If multiplicity distributions of Λ and Λ are Poissonian  
 

61

C1(Λ) = ⟨NΛ⟩
C2(Λ) = ⟨(NΛ − ⟨NΛ⟩)2⟩

C2(Λ) = C1(Λ)
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Centrality dependence of net-Λ 2nd moments

• If multiplicity distributions of Λ and Λ are Poissonian  
 
     → if uncorrelated, Skellam distribution for net-Λ 

• Small deviations from Skellam baseline 
– correlation term?  non-Poissonian Λ or Λ distributions?  

critical fluctuations?

62

C1(Λ) = ⟨NΛ⟩
C2(Λ) = ⟨(NΛ − ⟨NΛ⟩)2⟩
C2(Λ − Λ) = ⟨(NΛ − NΛ − ⟨NΛ − NΛ⟩)2⟩
C2(Λ − Λ) = C2(Λ) + C2(Λ) − 2 (⟨NΛNΛ⟩ − ⟨NΛ⟩⟨NΛ⟩)

C2(Λ) = C1(Λ)

C2(Skellam) = C1(Λ) + C1(Λ)
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Comparison to HIJING

• HIJING does not describe strangeness production well 
– underestimates C1 and C2 by factor ~4 
• C2(Λ-Λ)/C2(Skellam) ratio agrees with data 
– coincidence?  or due to description of fluctuations  

and resonance contributions in HIJING?

63

C1(Λ) = ⟨NΛ⟩
C2(Λ) = ⟨(NΛ − ⟨NΛ⟩)2⟩
C2(Λ − Λ) = ⟨(NΛ − NΛ − ⟨NΛ − NΛ⟩)2⟩
C2(Λ − Λ) = C2(Λ) + C2(Λ) − 2 (⟨NΛNΛ⟩ − ⟨NΛ⟩⟨NΛ⟩)
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Comparison to net-protons

• Qualitatively similar results for net-protons  
– note different kinematic range 
– different contributions from resonance decays

64

PLB	807	(2020)	135564,	
arXiv:1910.14396
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Comparison to net-protons

65

• Model including volume fluctuations and global baryon 
number conservation fully describes deviations from 
Poisson/Skellam expectation for net-protons

P.	Braun-Munzinger,	A.	Rustamov,	J.	Stachel,	NPA	
960	(2017)	114,	arXiv:1612.00702	[nucl-th]	

PLB	807	(2020)	135564,	
arXiv:1910.14396
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Δη dependence in central collisions
acceptance of the 
measurement

• Small Δη → Poissonian fluctuations, ratio to Skellam ~1 
• Large Δη → global baryon number and strangeness 

conservation effects, ratio to Skellam < 1 
• Systematic uncertainties are highly correlated  

point-to-point 
• Δη dependence consistent with effects of baryon number 

conservation

66
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Δη dependence, comparison to net-protons

• C2(p-p) fully consistent with Skellam baseline after 
accounting for global baryon number conservation 

• Similar trends for net-Λ 
– also strangeness conservation effects should be 

considered

67

PLB	807	(2020)	135564,	
arXiv:1910.14396
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Δη dependence in mid-central collisions

• Net-protons results not described by HIJING, but net-
Λ results are consistent

68
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• Properties of the quark-gluon plasma:  
• strong quenching of colored probes  (   ) 
• collective behavior with very low shear viscosity  (η/s) 
• high temperatures, mostly statistical particle production  (Tchem, Tkin) 
• susceptibilities give information about the phase transition  (χ)

Conclusions

69
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• Properties of the quark-gluon plasma:  
• strong quenching of colored probes  (   ) 
• collective behavior with very low shear viscosity  (η/s) 
• high temperatures, mostly statistical particle production  (Tchem, Tkin) 
• susceptibilities give information about the phase transition  (χ) 

• Event-by-event fluctuations of identified particles  
•  yield information on properties of the QGP medium 
•  test lattice QCD predictions at µB = 0 
•  allow us to look for effects of criticality 

• Net-proton and net-Λ fluctuations at LHC energies: no deviations from Skellam baseline 
observed after accounting for baryon number conservation, agreement with LQCD 
predictions 

• Net-proton fluctuations at RHIC energies: can be described above √sNN = 11.5 GeV by 
baryon number conservation

Conclusions

70
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Thank you for your attention! 
Any questions?
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• Contribution from global baryon number  
conservation calculated as 

• Inputs for <NBacc> from  
 
 
Extrapolation from <NBacc> to <NB4π> using  
AMPT and HIJING 

• Deviation from Skellam baseline accounted  
for by global baryon number conservation 
• or local conservation over 5 units of  

pseudorapidity

Global conservation laws

72

ALICE,	PLB	807	(2020)	135564,	
arXiv:1910.14396

P.	Braun-Munzinger	et	al.,	PLB	747	(2015)	292,	
arXiv:1412.8614	[hep-ph]	
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• Particle distribution described by a Fourier cosine series 

• Two-particle (Δφ) distribution described by  
Fourier series with coefficients vn2 

Anisotropic flow coefficients

73

dN/dφ ~ 1 + 2v2cos(2(φ-Ψ2)) 

dN/dφ ~ 1 + 2v22cos(2Δφ)

ALICE, PLB 708 (2012) 249, 
arXiv:1109.2501 [nucl-ex]
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• Particle distribution described by a Fourier cosine series 

• Two-particle (Δφ) distribution described by  
Fourier series with coefficients vn2 

Anisotropic flow coefficients

74

dN/dφ ~ 1 + 2v1cos(φ-Ψ1)  
     + 2v2cos(2(φ-Ψ2))  
     + 2v3cos(3(φ-Ψ3))  
     + 2v4cos(4(φ-Ψ4))  
     +...

dN/dφ ~ 1 + 2v12cos(Δφ)  
     + 2v22cos(2Δφ)  
     + 2v32cos(3Δφ)  
     + 2v42cos(4Δφ)  
     +...

ALICE, PLB 708 (2012) 249, 
arXiv:1109.2501 [nucl-ex]
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• Due to event-by-event fluctuations of the positions of 
nucleons, overlap region is not perfectly symmetric  
→ development of triangular flow v3, quadrangular flow v4,...

Higher-order flow coefficients

75
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• Due to event-by-event fluctuations of the positions of 
nucleons, overlap region is not perfectly symmetric  
→ development of triangular flow v3, quadrangular flow v4,... 

• Higher harmonics are sensitive to hydrodynamic properties 
and dynamics of the QGP

Higher-order flow coefficients

76

H. Niemi, K.J. Eskola, R. Paatelainen, 
PRC 93 (2016) 024907, 
arXiv:1505.02677 [hep-ph]
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Charged particle RAA

77

RAA =
(1/Nevt) dNch/dpT AA

⟨Ncoll⟩ (1/Nevt) dNch/dpT pp

Number of particles in a  
heavy-ion collision

Number of particles in a  
proton-proton collisionEquivalent number of  

proton-proton collisions 
 in a heavy-ion event

JET Collaboration, K.M. Burke et al.,  
PRC 90 (2014) 014909, arXiv:1312.5003 [nucl-th]
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• By comparing with a wide variety of models, extract the 
jet transport coefficient 

• for a quark jet with E = 10 GeV

Charged particle RAA

78

JET Collaboration, K.M. Burke et al.,  
PRC 90 (2014) 014909, arXiv:1312.5003 [nucl-th]


