

Electromagnetic radiation from hot nuclear matter

Science Coffee, Lund, 15 December 2020

Outline:

- Objectives:
- Method:
- Accomplished:
- Future:

- Chiral symmetry and temperature of QCD matter
 - Thermal dielectron production with ALICE at the CERN-LHC
- plished: Understand your background

FECHNOLOGIE ENTWICKLUNG

Expected performance with ALICE and next-generation particle detectors

Nucleon mass: 1% from quark mass (Higgs mechanism) \rightarrow 99% from the strong interaction (QCD)

Nucleon mass: 1% from quark mass (Higgs mechanism) \rightarrow 99% from the strong interaction (QCD)

Strong interaction is blind to chirality, BUT...

Nucleon mass: 1% from quark mass (Higgs mechanism) \rightarrow 99% from the strong interaction (QCD)

Spontaneously broken: chiral symmetry

• Hadrons with different parity do **not have same mass**

Nucleon mass: 1% from quark mass (Higgs mechanism) \rightarrow 99% from the strong interaction (QCD)

Compare to magnet:

$$H_{ ext{int}} = g \sum_{i
eq i} ec{s}_i \cdot ec{s}_j$$

interaction between microscopic magnetic dipoles (spins) does not prefer any direction, BUT the ground state:

1	Ť	1	1	1
1	1	1	1	1
1	1	1	1	1
1	1	1	1	1
1	1	1	1	1

with magnetization M (order parameter)

Spontaneously broken: chiral symmetry

• Hadrons with different parity do **not have same mass**

Nucleon mass: 1% from quark mass (Higgs mechanism) \rightarrow 99% from the strong interaction (QCD)

Spontaneously broken: chiral symmetry

• Hadrons with different parity do **not have same mass**

Unique test of fundamental QCD property:

• Change order parameter \rightarrow change temperature

Nucleon mass: 1% from quark mass (Higgs mechanism) \rightarrow 99% from the strong interaction (QCD)

Spontaneously broken: chiral symmetry

Hadrons with different parity do not have same mass

Unique test of fundamental QCD property:

- Change order parameter \rightarrow change temperature
- Symmetry restoration at high temperatures

Nucleon mass: 1% from quark mass (Higgs mechanism) \rightarrow 99% from the strong interaction (QCD)

do not have same mass

- Change order parameter \rightarrow change temperature
- Symmetry restoration at high temperatures
- Experimental proof
 - Measure hadron properties (**spectral functions**)
 - Measure temperature of QCD matter 0

Putting into context

Unique test of fundamental QCD property:

- Change order parameter \rightarrow change temperature
- Symmetry restoration at high temperatures
- Experimental proof
 - Measure hadron properties (**spectral functions**)
 - Measure temperature of QCD matter

Science Coffee, Lund, 15 Dec 2020

Michael Weber (SMI)

Putting into context

Phase transition in early universe (quarks→hadrons)

Unique test of fundamental QCD property:

- Change order parameter \rightarrow change temperature
 - Symmetry restoration at high temperatures

Experimental proof

- Measure hadron properties (**spectral functions**)
- Measure temperature of QCD matter

Heavy-ion collisions and dileptons

Heavy-ion collisions and dileptons

Strategy: measure dileptons (e^+e^- or $\mu^+\mu^-$ pairs)

- Couple to EM current throughout the full collision history
- Very low interaction with QCD medium (no strong interaction)

Heavy-ion collisions and dileptons

Strategy: measure dileptons (e^+e^- or $\mu^+\mu^-$ pairs)

- Couple to EM current throughout the full collision history
- Very low interaction with QCD medium (no strong interaction)
- Virtual photons: invariant mass, no blue-shift of rapidly expanding system
- Bonus: Also sensitive to BSM particle decays (dark photons)

Thermal dilepton emission rate:

Thermal dilepton production

• **Vacuum**: EM spectral function well known from the e^+e^- annihilation cross section into hadrons / $\mu^+\mu^-$

$$R = -\frac{12\pi}{s} \mathrm{Im}\Pi_{\mathrm{EM}}$$

Thermal dilepton production

• **Vacuum**: EM spectral function well known from the e^+e^- annihilation cross section into hadrons / $\mu^+\mu^-$

$$R = -\frac{12\pi}{s} \mathrm{Im}\Pi_{\mathrm{EM}}$$

• Medium:

- Below 1.5 GeV/*c*²: measure **in-medium rho spectral function**
- Above 1.5 GeV/ c^2 : extraction of temperature (and space-time evolution of thermal source)

Why important?

• System temperature > critical temperature?

Lattice QCD, Phys. Lett. B 795 (2019) 15

Why important?

- System temperature > critical temperature?
- Experimentally established: saturation in the chemical freeze-out temperature (after/at hadronisation)

Lattice QCD, Phys. Lett. B 795 (2019) 15 SHM, Nature 561 (2018) 7723, 321-330

Why important?

- System temperature > critical temperature?
- Experimentally established: saturation in the chemical freeze-out temperature (after/at hadronisation)
- Initial/average temperature: largely unmeasured, predicted to exceed critical temperature

Why important?

- System temperature > critical temperature?
- Experimentally established: saturation in the chemical freeze-out temperature (after/at hadronisation)
- Initial/average temperature: largely unmeasured, predicted to exceed critical temperature

Goal:

 high precision measurements vs collision energy ranging over three orders of magnitude

Strategy:

- Last five years:
 - Optimize analysis
 - Understand background(s)
- Next ten years:
 - Optimize detector
 - Measure temperature and vector meson spectral function

What to expect at the LHC

Ralf Rapp. arXiv:1304.2309 [hep-ph]

• In-medium modified rho spectral function

 \rightarrow restoration of chiral symmetry

What to expect at the LHC

R. Rapp, H. van Hees, Phys.Lett. B 753, 586 (2016)

• In-medium modified rho spectral function

- \rightarrow restoration of chiral symmetry \rightarrow average and initial temperature
- Inverse slope parameter of dilepton invariant mass

Experimental setup: ALICE at the CERN-LHC

Method: dielectrons with ALICE at the LHC

- Identify electrons/positrons
 - Minimize hadron contamination
- Pair electrons and positrons in one event
 - Major contribution from **photon conversion** in detector material

Improve electron efficiency

- Pair electrons and positrons in one event
 - Major contribution from photon conversion in detector material

Improve electron efficiency

Major contribution from photon conversion in detector material

Improve conversion rejection

Method: dielectrons with ALICE at the LHC

- Identify electrons/positrons
 - Minimize hadron contamination
- Pair electrons and positrons in one event
 - Major contribution from **photon conversion** in detector material
- Subtract combinatorial background B
 - \circ S/B ~ 10⁻³ in Pb-Pb collisions

Method: dielectrons with ALICE at the LHC

- Identify electrons/positrons
 - Minimize hadron contamination
- Pair electrons and positrons in one event
 - Major contribution from photon conversion in detector material
- Subtract combinatorial background B
 - \circ S/B ~ 10⁻³ in Pb-Pb collisions
- Subtract "known" long-lived light- and heavy-flavour sources ("cocktail")
 - \circ **Step 1:** Reference systems \rightarrow pp and p-Pb collisions

Method: dielectrons with ALICE at the LHC

- Identify electrons/positrons
 - Minimize hadron contamination
- Pair electrons and positrons in one event
 - Major contribution from **photon conversion** in detector material
- Subtract combinatorial background B
 - \circ S/B ~ 10⁻³ in Pb-Pb collisions

- $\gamma \qquad e^+$ $\gamma \qquad e^-$ A
- Subtract "known" long-lived light- and heavy-flavour sources ("cocktail") as well QED dielectron production
 - \circ **Step 1:** Reference systems \rightarrow pp and p-Pb collisions
 - Step 2: Peripheral Pb-Pb collisions

Science Coffee, Lund, 15 Dec 2020

Michael Weber (SMI)

Understanding "hadronic sources"

0.5

ALI-PUB-347516

0

0.5

1.5

2

2.5

3

 $m_{\rm ee}~({\rm GeV}/c^2)$

3.5

0.5

0

ALI-PUB-347521

1.5

2.5

2

3.5

3

 $m_{\rm ee}$ (GeV/ c^2)

Understanding "hadronic sources"

ALICE, arXiv:2005.11995 [nucl-ex]

- Understand modifications not related to hot QCD matter
- Thermal radiation in small systems?

0.5

ALI-PUB-347521

0

0.5

1.5

2.5

3

 $m_{\rm ee} \, ({\rm GeV}/c^2)$

2

3.5

ALICE

Understanding "QED sources"

Understanding "QED sources"

arXiv:1909.02508 [nucl-ex]

Excess of dielectrons over hadronic cocktail

Understanding "QED sources"

- Excess of dielectrons over hadronic cocktail
 - \rightarrow Continuum dilepton photo-production in Pb-Pb collisions at the LHC with nuclear overlap

'Anomalous' dileptons in pp collisions

CERN ISR – AFS (1987):

- **Excess of dielectrons** over expectation from known hadronic sources in a 'elementary' collision system
 - \rightarrow Similar effects also observed in real-photon channel

Low-mass region (LMR) excess:

- 0.05 GeV/ $c^2 < m_{ee} < 0.6$ GeV/ c^2
- *p*_{T,ee} < 1 GeV/*c*

 \rightarrow No other experiment could probe this region

'Anomalous' dileptons in pp collisions

CERN ISR – AFS (1987):

- **Excess of dielectrons** over expectation from known hadronic sources in a 'elementary' collision system
 - \rightarrow Similar effects also observed in real-photon channel

Low-mass region (LMR) excess:

- 0.05 GeV/ $c^2 < m_{ee} < 0.6$ GeV/ c^2
- *p*_{T,ee} < 1 GeV/*c*
 - \rightarrow No other experiment could probe this region
- Dedicated low B-field campaign (B = 0.5 T \rightarrow 0.2 T):
 - Electron selection down to $p_{\rm T} > 0.075 \text{ GeV/}c$
 - Better TOF acceptance & conversion rejection
 → Allows ALICE to challenge the AFS measurement

V. Hedberg, PhD thesis, Lund (1987)

- 0.14 GeV/ $c^2 < m_{ee} < 0.6 \text{ GeV}/c^2$
- *p*_{T,ee} < 0.4 GeV/*c*

[•] Enhancement also observed at LHC energies

- Enhancement also observed at LHC energies
 - 0.14 GeV/ $c^2 < m_{ee} < 0.6 \text{ GeV}/c^2$
 - p_{T.ee} < 0.4 GeV/c
- η contribution dominating source of the cocktail uncertainties
 - ALICE measurement only down to $p_{T} < 0.4 \text{ GeV}/c$
 - $m_{\rm T}$ scaling overshoots η at low $p_{\rm T}$
 - \rightarrow CERES/TAPS measurement used to constrain low p_{τ}

Eur.Phys.J.C 4 (1998) 249-257

- Enhancement also observed at LHC energies
- Study control regions and multiplicity dependence

Enhancement also observed at LHC energies

- Study control regions and multiplicity dependence
 - \rightarrow No excess at lower m_{ee} or higher p_{Tee}
 - \rightarrow No clear multiplicity dependence within uncertainties
- Most consistent with linear scaling
 - \rightarrow Future ALICE pp programme: Large MB data set with an integrated luminosity of about 3 pb⁻¹ (factor 300)

ALICE-PUBLIC-2020-005

Status: thermal radiation in Pb-Pb collisions at LHC

Status: thermal radiation in Pb-Pb collisions at LHC

- Central Pb-Pb collisions (2015 data only)
- Still large uncertainties (analysis of 2018 data with ~10 times larger sample ongoing)

Status: thermal radiation in Pb-Pb collisions at LHC

- Central Pb-Pb collisions (2015 data only)
- Still large uncertainties (analysis of 2018 data with ~10 times larger sample ongoing)
- Comparisons to pure hadronic cocktail, nPDFs, and thermal scenarios inconclusive so far

(similar conclusion from Run 1 data)

The next decade

Major ALICE upgrade

- Continuous (triggerless) data taking
- TPC readout: MWPC -> GEM
- New inner tracking system (ITS2)
- New event characterization detectors (FIT)

The next decade

Major ALICE upgrade

- dileptons
- Continuous (triggerless) data taking
- TPC readout: MWPC -> GEM
- New inner tracking system (ITS2)
- New event characterization detectors (FIT)

- Improved pointing resolution (x3)
- Reduced material budget (less photon conversions)
- More statistics (up to x100)
- Dedicated low B field run(s): improved efficiency at low *p*_T, better conversion rejection

2019 🖬 2020 🖬 2021 🖬 2022 🖬 2023 🖬 2024 🖬 2025 🖬 2026 🖬 2027 🖬 2028 🖬 2029 🖬 2030 💼 2040 💼 205

ALICE

HL-LHC WG5 yellow report

The next decade

Science Coffee, Lund, 15 Dec 2020

Michael Weber (SMI)

ALICE

Towards a massless detector

Towards a massless detector

- Exchange inner 3 ITS layers with truly cylindrical Si-pixel layers based on ultra-thin, curved sensors (based on ALPIDE developed for ITS2):
 - Reduce material budget from 0.35% X/X_0 to \approx 0.05% X/X_0 and remove its inhomogeneities

Towards a massless detector

Inner layers	ITS1 (Run 1-2)	ITS2 (Run 3)	ITS3 (Run 4)
X/X ₀	1.14%	0.38%	0.05%
innermost radius	39 mm	22 mm	18 mm
pixel size	$50x425 \mu m^2$	~27x29 μ m ²	O(15x15 µm²)

- Exchange inner 3 ITS layers with truly cylindrical Si-pixel layers based on ultra-thin, curved sensors (based on ALPIDE developed for ITS2):
 - Reduce material budget from 0.35% X/X_0 to \approx 0.05% X/X_0 and remove its inhomogeneities
- Move layers closer to the primary vertex, innermost layer at **R = 1.8 cm** (new beam-bipe with inner radius R = 1.6 cm)
 - \circ Improves pointing resolution by a factor ~3

ALICE

HL-LHC WG5 yellow report

Putting into the big picture

Why important?

- System temperature > critical temperature?
- Experimentally established: saturation in the chemical freeze-out temperature (after/at hadronisation)
- Initial/average temperature: largely unmeasured, predicted to exceed critical temperature

Goal:

 high precision measurements vs collision energy ranging over three orders of magnitude

Strategy:

- Last five years: understand hadronic "background" in pp and p-Pb collisions, first feasibility studies in heavy-ion collisions
- Next ten years: measure T, vector meson spectral functions (and much more)

Putting into the big picture

Why important?

- System temperature > critical temperature?
- Experimentally established: saturation in the chemical freeze-out temperature (after/at hadronisation)
- Initial/average temperature: largely unmeasured, predicted to exceed critical temperature

Goal:

 high precision measurements vs collision energy ranging over three orders of magnitude

Strategy:

- Last five years: understand hadronic "background" in pp and p-Pb collisions, first feasibility studies in heavy-ion collisions
- Next ten years: measure T, vector meson spectral functions (and much more)

\rightarrow measuring the hottest temperature ever achieved by mankind

Michael Weber (SMI)

Science Coffee, Lund, 15 Dec 2020

Bright future at the LHC

Heavy-ion physics after 2030:

• Construct the ultimate soft dilepton and photon detector (based on ITS3 technology): *p* ~ 1/*R*_{Nucleus} ~ 10 MeV/*c*

Bright future at the LHC

Heavy-ion physics after 2030:

• Construct the **ultimate soft dilepton and photon detector** (based on ITS3 technology): *p* ~ 1/*R*_{Nucleus} ~ 10 MeV/c

Bright future at the LHC

Heavy-ion physics after 2030:

- Construct the ultimate soft dilepton and photon detector (based on ITS3 technology): *p* ~ 1/*R*_{Nucleus} ~ 10 MeV/c
- Precision measurement of EM radiation multi-differentially and down to lowest momenta, e.g. electric conductivity
- BSM physics
- \rightarrow Letter of Intent planned for end 2021

Summary

- Objectives:
- Method:
- Accomplished:
 - : Understand your background (+ excess at low transverse momenta in pp)
 - Future: Expected performance with ALICE and next-generation particle detectors

Thermal dilepton production with ALICE at the CERN-LHC

Chiral symmetry and temperature of QCD matter

Science Coffee, Lund, 15 Dec 2020

Michael Weber (SMI)

Thank you!

Michael Weber (SMI)