

Electromagnetic radiation from hot nuclear matter

Science Coffee, Lund, 15 December 2020

Outline:

-
-
-

FORSCHUNG TECHNOLOGIE ENTWICKLUNG

-
- **Objectives:** Chiral symmetry and temperature of QCD matter
- **Method:** Thermal dielectron production with ALICE at the CERN-LHC
- Accomplished: Understand your background
- **Future: Expected performance with ALICE and next-generation particle detectors**

hucleon mass: 1% from quark mass (Higgs mechanism) → 99% from the strong interaction (QCD)

hucleon mass: 1% from quark mass (Higgs mechanism) → 99% from the strong interaction (QCD)

Strong interaction is blind to chirality, BUT...

hucleon mass: 1% from quark mass (Higgs mechanism) → 99% from the strong interaction (QCD)
mass *N*

Spontaneously broken: chiral symmetry

• Hadrons with different parity do **not have same mass**

hucleon mass: 1% from quark mass (Higgs mechanism) → 99% from the strong interaction (QCD)
mass **A**

Spontaneously broken: chiral symmetry

• Hadrons with different parity do **not have same mass**

Compare to magnet:

$$
H_{\text{int}} = g \sum_{i \neq j} \vec{s}_i \cdot \vec{s}_j
$$

interaction between microscopic magnetic dipoles (spins) does not prefer any direction, BUT the ground state:

\uparrow	$\hat{\P}$	\uparrow	$\hat{\mathbb{P}}$	1
\uparrow	\uparrow	\bullet	\uparrow	\uparrow
\uparrow	\uparrow	\uparrow	\uparrow	\uparrow
1	\uparrow	1	$\hat{\P}$	\uparrow
$\hat{\mathbb{L}}$	$\hat{\P}$	$\hat{\mathbb{T}}$	1	\uparrow

with magnetization M (order parameter)

hucleon mass: 1% from quark mass (Higgs mechanism) \rightarrow *99% from the strong interaction (QCD)*
mass **A**

Spontaneously broken: chiral symmetry

● Hadrons with different parity do **not have same mass**

Unique test of fundamental QCD property:

● Change order parameter → change temperature

hucleon mass: 1% from quark mass (Higgs mechanism) \rightarrow *99% from the strong interaction (QCD)*
mass **A**

Spontaneously broken: chiral symmetry

• Hadrons with different parity do **not have same mass**

- **● Change order parameter → change temperature**
- **● Symmetry restoration at high temperatures**

hucleon mass: 1% from quark mass (Higgs mechanism) \rightarrow *99% from the strong interaction (QCD)*
mass **A**

do **not have same mass**

- **● Change order parameter → change temperature**
- **● Symmetry restoration at high temperatures**
- **Experimental proof**
	- Measure hadron properties (**spectral functions**)
	- Measure **temperature of QCD matter**

Putting into context

Unique test of fundamental QCD property:

- **● Change order parameter → change temperature**
- **● Symmetry restoration at high temperatures**
- Experimental proof
	- Measure hadron properties (**spectral functions**)
	- Measure **temperature of QCD matter**

Science Coffee, Lund, 15 Dec 2020 Michael Weber (SMI)

Putting into context

Phase transition in early universe (quarks→hadrons)

Unique test of fundamental QCD property:

- **● Change order parameter → change temperature**
	- **● Symmetry restoration at high temperatures**
	- Experimental proof
		- Measure hadron properties (**spectral functions**)
		- Measure **temperature of QCD matter**

Heavy-ion collisions and dileptons

Heavy-ion collisions and dileptons

Strategy: measure dileptons (e⁺e⁻ or μ⁺μ⁻ pairs)

- Couple to EM current throughout the **full collision history**
- Very low interaction with QCD medium (**no strong interaction**)

Heavy-ion collisions and dileptons

Strategy: measure dileptons (e⁺e⁻ or μ⁺μ⁻ pairs)

- Couple to EM current throughout the **full collision history**
- Very low interaction with QCD medium (**no strong interaction**)
- **Virtual photons:** invariant mass, no blue-shift of rapidly expanding system
- **Bonus:** Also sensitive to **BSM particle decays (dark photons)**

Thermal dilepton emission rate:

Thermal dilepton production

• Vacuum: EM spectral function well known from the e⁺e⁻ annihilation cross section into hadrons / μ⁺μ⁻

$$
R = -\frac{12\pi}{s} \text{Im}\Pi_{\text{EM}}
$$

Thermal dilepton production

• Vacuum: EM spectral function well known from the e⁺e⁻ annihilation cross section into hadrons / μ⁺μ⁻

$$
R = -\frac{12\pi}{s} \text{Im}\Pi_{\text{EM}}
$$

● **Medium:**

- Below 1.5 GeV/*c* 2 : measure **in-medium rho spectral function**
- Above 1.5 GeV/*c* 2 : **extraction of temperature** (and space-time evolution of thermal source)

Why important?

● *System temperature* **> critical temperature?**

[Lattice QCD, Phys. Lett. B 795 \(2019\) 15](https://www.sciencedirect.com/science/article/pii/S0370269319303223?via%3Dihub)

Why important?

- *System temperature* **> critical temperature?**
- Experimentally established: saturation in the **chemical freeze-out temperature (after/at hadronisation)**

[Lattice QCD, Phys. Lett. B 795 \(2019\) 15](https://www.sciencedirect.com/science/article/pii/S0370269319303223?via%3Dihub) [SHM, Nature 561 \(2018\) 7723, 321-330](https://www.nature.com/articles/s41586-018-0491-6)

Why important?

- *System temperature* **> critical temperature?**
- Experimentally established: saturation in the **chemical freeze-out temperature (after/at hadronisation)**
- **Initial/average temperature**: largely unmeasured, predicted to exceed **critical temperature**

Why important?

- *System temperature* **> critical temperature?**
- Experimentally established: saturation in the **chemical freeze-out temperature (after/at hadronisation)**
- **Initial/average temperature**: largely unmeasured, predicted to exceed **critical temperature**

Goal:

● high precision measurements vs collision energy ranging over three orders of magnitude

Strategy:

- **Last five years:**
	- Optimize analysis
	- Understand background(s)
- **Next ten years:**
	- Optimize detector
	- Measure temperature and vector meson spectral function

What to expect at the LHC

[Ralf Rapp, arXiv:1304.2309 \[hep-ph\]](https://arxiv.org/abs/1304.2309)

- In-medium modified rho spectral function → **restoration of chiral symmetry**
	-

What to expect at the LHC

[Ralf Rapp, arXiv:1304.2309 \[hep-ph\]](https://arxiv.org/abs/1304.2309) [R. Rapp, H. van Hees, Phys.Lett. B 753, 586 \(2016\)](https://www.sciencedirect.com/science/article/pii/S0370269315010138?via%3Dihub)

- In-medium modified rho spectral function → **restoration of chiral symmetry**
- Inverse slope parameter of dilepton invariant mass **→ average and initial temperature**
- -

Experimental setup: ALICE at the CERN-LHC

Science Coffee, Lund, 15 Dec 2020 Michael Weber (SMI)

Method: dielectrons with ALICE at the LHC

- Identify electrons/positrons
	- Minimize hadron contamination
- Pair electrons and positrons in one event
	- Major contribution from **photon conversion** in detector material

Improve electron efficiency

- Pair electrons and positrons in one event
	- Major contribution from **photon conversion** in detector material

Improve electron efficiency

○ Major contribution from **photon conversion** in detector material

Improve conversion rejection

Method: dielectrons with ALICE at the LHC

- Identify electrons/positrons
	- Minimize hadron contamination
- Pair electrons and positrons in one event
	- Major contribution from **photon conversion** in detector material
- **Subtract combinatorial background B**
	- \circ S/B ~ 10⁻³ in Ph-Ph collisions

Method: dielectrons with ALICE at the LHC

- Identify electrons/positrons
	- Minimize hadron contamination
- Pair electrons and positrons in one event
	- Major contribution from **photon conversion** in detector material
- **Subtract combinatorial background B**
	- \circ S/B \sim 10⁻³ in Pb-Pb collisions
- Subtract "known" long-lived light- and heavy-flavour sources ("**cocktail**")
	- **Step 1:** Reference systems → pp and p-Pb collisions

Science Coffee, Lund, 15 Dec 2020 Michael Weber (SMI)

Method: dielectrons with ALICE at the LHC

- Identify electrons/positrons
	- Minimize hadron contamination
- Pair electrons and positrons in one event
	- Major contribution from **photon conversion** in detector material
- **Subtract combinatorial background B**
	- \circ S/B \sim 10⁻³ in Pb-Pb collisions
- \overline{A}
- Subtract "known" long-lived light- and heavy-flavour sources ("**cocktail**") as well **QED dielectron production**
	- **Step 1:** Reference systems → pp and p-Pb collisions
	- **Step 2:** Peripheral Pb-Pb collisions

Science Coffee, Lund, 15 Dec 2020 Michael Weber (SMI)

Understanding "hadronic sources"

● Understand production and decay of **light and heavy flavour hadrons**

 0.5

ALI-PUB-347516

0

 0.5

 1.5

 2.5

 $\mathbf{2}$

 3.5

3

 $m_{\rm ee}$ (GeV/ c^2)

ALICE

冒

 $\overline{11111}$

E

lilli
Eli

 0.5

0

ALI-PUB-347521

 1.5

 $\overline{2.5}$

 $\overline{2}$

-
- **●** Understand **modifications not related to hot QCD matter**

 $\overline{3.5}$

3

 m_{ee} (GeV/ c^2)

Understanding "hadronic sources"

[ALICE, arXiv:2005.11995 \[nucl-ex\]](https://arxiv.org/abs/2005.11995)

-
- **● Thermal radiation in small systems?**

 0.5

0

ALI-PUB-347521

 1.5

 2.5

3

 m_{ee} (GeV/ c^2)

2

 3.5

Understanding "QED sources"

Understanding "QED sources"

[arXiv:1909.02508 \[nucl-ex\]](https://arxiv.org/abs/1909.02508)

Excess of dielectrons over hadronic cocktail

Understanding "QED sources"

- **Excess of dielectrons** over hadronic cocktail
	- **→ Continuum dilepton photo-production in Pb-Pb collisions at the LHC with nuclear overlap**

'Anomalous' dileptons in pp collisions

CERN ISR – AFS (1987):

- **Excess of dielectrons** over expectation from known hadronic sources in a 'elementary' collision system
	- \rightarrow Similar effects also observed in real-photon channel

Low-mass region (LMR) excess:

- \bullet 0.05 GeV/ c^2 < m_{ee} < 0.6 GeV/ c^2
- $p_{T,ee}$ < 1 GeV/ c

→ No other experiment could probe this region

'Anomalous' dileptons in pp collisions

CERN ISR – AFS (1987):

- **Excess of dielectrons** over expectation from known hadronic sources in a 'elementary' collision system
	- \rightarrow Similar effects also observed in real-photon channel

Low-mass region (LMR) excess:

- \bullet 0.05 GeV/ c^2 < m_{ee} < 0.6 GeV/ c^2
- $p_{T,ee}$ < 1 GeV/ c **→ No other experiment could probe this region**
- Dedicated low B-field campaign (B = 0.5 T \rightarrow 0.2 T):
	- \bullet Electron selection down to p_{T} > 0.075 GeV/*c*
	- Better TOF acceptance & conversion rejection **→ Allows ALICE to challenge the AFS measurement**

V. Hedberg, PhD thesis, Lund (1987)

- 0.14 GeV/ c^2 < m_{ee} < 0.6 GeV/ c^2
- $\rho_{\text{T,ee}}$ < 0.4 GeV/*c*

[●] Enhancement also observed at LHC energies

- **● Enhancement also observed at LHC energies**
	- 0.14 GeV/ c^2 < m_{ee} < 0.6 GeV/ c^2
	- ρ _{T,ee} < 0.4 GeV/*c*
- **● η contribution dominating source of the cocktail uncertainties**
	- ALICE measurement only down to $p_T < 0.4$ GeV/*c*
	- \circ *m*_T scaling overshoots η at low p_{T}
		- \rightarrow CERES/TAPS measurement used to constrain low p_{τ}

[Eur.Phys.J.C 4 \(1998\) 249-257](https://link.springer.com/article/10.1007/s100529800804)

Science Coffee, Lund, 15 Dec 2020 Michael Weber (SMI)

- **● Enhancement also observed at LHC energies**
- **● Study control regions and multiplicity dependence**

- **● Enhancement also observed at LHC energies**
- **● Study control regions and multiplicity dependence**
	- \rightarrow No excess at lower $m_{\rm ee}^{}$ or higher $\overline{\rho}_{\rm T,ee}^{}$
	- \rightarrow No clear multiplicity dependence within uncertainties
- **● Most consistent with linear scaling**

→ Future ALICE pp programme: Large MB data set with an integrated luminosity of about **3 pb−1 (factor 300)**

Status: thermal radiation in Pb-Pb collisions at LHC

Status: thermal radiation in Pb-Pb collisions at LHC

- **Central Pb-Pb collisions** (2015 data only)
- \bullet Still large uncertainties (analysis of 2018 data with \sim 10 times larger sample ongoing)

Status: thermal radiation in Pb-Pb collisions at LHC

- **Central Pb-Pb collisions** (2015 data only)
- Still large uncertainties (analysis of 2018 data with $~10$ times larger sample ongoing)
- Comparisons to **pure hadronic cocktail, nPDFs, and thermal scenarios** inconclusive so far

(similar conclusion from Run 1 data)

The next decade

Major ALICE upgrade
Continuous (triansriess) data takins

- *● Continuous (triggerless) data taking*
- *● TPC readout: MWPC -> GEM*
- *● New inner tracking system (ITS2)*
- *● New event characterization detectors (FIT)*

The next decade

2040 2050 2019 2020 2021 2022 2023 2024 \blacksquare 2025 \blacksquare 2026 2027 2028 2029 2030

dileptons

- *● Continuous (triggerless) data taking*
- *● TPC readout: MWPC -> GEM*
- *● New inner tracking system (ITS2)*
- *● New event characterization detectors (FIT)*

- **●** Improved **pointing resolution (x3)**
- Reduced material budget (**less photon conversions**)
- *artiful characterization* **and the contract of the statistics (up to x100)**

a continuous (triangulars) data taking
	- Dedicated **low B field run(s)**: improved efficiency at low $\rho_{_{\text{T}}}$, better conversion rejection

2040 205 2019 2020 2021 2022 2023 2024 ■ 2025 I **2026 F** 2027 2028 2029 2030

→ first measurement of temperature

 2.5

ALICE

[HL-LHC WG5 yellow report](https://arxiv.org/abs/1812.06772)

The next decade

Science Coffee, Lund, 15 Dec 2020 Michael Weber (SMI)

ALICE

Towards a massless detector

Towards a massless detector

- Exchange inner 3 ITS layers with truly cylindrical Si-pixel layers based on ultra-thin, curved sensors (based on ALPIDE developed for ITS2):
	- Reduce **material budget from 0.35% X/X₀ to ≈ 0.05% X/X₀** and remove its inhomogeneities

Towards a massless detector

- Exchange inner 3 ITS layers with truly cylindrical Si-pixel layers based on ultra-thin, curved sensors (based on ALPIDE developed for ITS2):
	- Reduce **material budget from 0.35% X/X₀ to ≈ 0.05% X/X₀** and remove its inhomogeneities
- Move layers closer to the primary vertex, innermost layer at $R = 1.8$ cm (new beam-bipe with inner radius $R = 1.6$ cm)
	- **○ Improves pointing resolution by a factor ~3**

[HL-LHC WG5 yellow report](https://arxiv.org/abs/1812.06772)

Putting into the big picture

Why important?

- *System temperature* **> critical temperature?**
- Experimentally established: saturation in the **chemical freeze-out temperature (after/at hadronisation)**
- **Initial/average temperature**: largely unmeasured, predicted to exceed **critical temperature**

Goal:

● high precision measurements vs collision energy ranging over three orders of magnitude

Strategy:

- **Last five years: understand hadronic** "background" in pp and p-Pb collisions, first feasibility studies in heavy-ion collisions
- **Next ten years: measure T, vector meson** spectral functions (and much more)

Putting into the big picture

- *System temperature* **> critical temperature?**
- Experimentally established: saturation in the **chemical freeze-out temperature (after/at hadronisation)**
- **Initial/average temperature**: largely unmeasured, predicted to exceed **critical temperature**

Goal:

● high precision measurements vs collision energy ranging over three orders of magnitude

Strategy:

- **Last five years: understand hadronic** "background" in pp and p-Pb collisions, first feasibility studies in heavy-ion collisions
- **Next ten years: measure T, vector meson** spectral functions (and much more)

→ measuring the hottest temperature ever achieved by mankind

Science Coffee, Lund, 15 Dec 2020 Michael Weber (SMI)

Bright future at the LHC

Heavy-ion physics after 2030:

Construct the **ultimate soft dilepton and photon detector** (based on ITS3 technology): $p \sim 1/R_{Nucleus} \sim 10$ MeV/c

Bright future at the LHC

Heavy-ion physics after 2030:

Construct the **ultimate soft dilepton and photon detector** (based on ITS3 technology): $p \sim 1/R$ _{Nucleus} ~ 10 MeV/c

Bright future at the LHC

Heavy-ion physics after 2030:

- Construct the **ultimate soft dilepton and photon detector** (based on ITS3 technology): $p \sim 1/R$ _{Nucleus} ~ 10 MeV/c
- **Precision measurement** of EM radiation multi-differentially and down to lowest momenta, e.g. **electric conductivity**
- **● BSM physics**
- **→ Letter of Intent planned for end 2021**

Summary

- **Objectives:** Chiral symmetry and temperature of QCD matter
- **Method:** Thermal dilepton production with ALICE at the CERN-LHC
- - **Accomplished:** Understand your background (+ excess at low transverse momenta in pp)
	- **Future:** Expected performance with ALICE and next-generation particle detectors

Thank you!

