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Outline:
● Objectives: Chiral symmetry and temperature of QCD matter
● Method: Thermal dielectron production with ALICE at the CERN-LHC
● Accomplished: Understand your background 
● Future: Expected performance with ALICE and next-generation particle detectors 

Michael Weber
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The origin of mass

3

PHYSICAL REVIEW D 95, 036020 (2017)
https://physics.aps.org/articles/v11/118 Nucleon mass: 1% from quark mass (Higgs mechanism) → 99% from the strong interaction (QCD)

https://journals.aps.org/prd/abstract/10.1103/PhysRevD.95.036020
https://physics.aps.org/articles/v11/118
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The origin of mass
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PHYSICAL REVIEW D 95, 036020 (2017)
https://physics.aps.org/articles/v11/118 Nucleon mass: 1% from quark mass (Higgs mechanism) → 99% from the strong interaction (QCD)

https://www.quantumdiaries.org/2011/06/19/helicity-chirality-mass-and-the-higgs/

Strong interaction is blind to chirality, BUT...

right-handedleft-handed

https://journals.aps.org/prd/abstract/10.1103/PhysRevD.95.036020
https://physics.aps.org/articles/v11/118
https://www.quantumdiaries.org/2011/06/19/helicity-chirality-mass-and-the-higgs/
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The origin of mass
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PHYSICAL REVIEW D 95, 036020 (2017)
https://physics.aps.org/articles/v11/118 Nucleon mass: 1% from quark mass (Higgs mechanism) → 99% from the strong interaction (QCD)

Spontaneously broken: chiral symmetry
● Hadrons with different parity                 

do not have same mass

Strong interaction is blind to chirality, BUT
the ground state is NOT. 

right-handedleft-handed

https://journals.aps.org/prd/abstract/10.1103/PhysRevD.95.036020
https://physics.aps.org/articles/v11/118
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The origin of mass

6

PHYSICAL REVIEW D 95, 036020 (2017)
https://physics.aps.org/articles/v11/118 Nucleon mass: 1% from quark mass (Higgs mechanism) → 99% from the strong interaction (QCD)

Spontaneously broken: chiral symmetry
● Hadrons with different parity                 

do not have same mass

Strong interaction is blind to chirality, BUT
the ground state is NOT. 

Compare to magnet:

interaction between microscopic 
magnetic dipoles (spins)
does not prefer any direction, BUT
the ground state:

with magnetization M 
(order parameter)

right-handedleft-handed

https://journals.aps.org/prd/abstract/10.1103/PhysRevD.95.036020
https://physics.aps.org/articles/v11/118
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The origin of mass
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PHYSICAL REVIEW D 95, 036020 (2017)

Unique test of fundamental QCD property:
● Change order parameter → change temperature

 

https://physics.aps.org/articles/v11/118 Nucleon mass: 1% from quark mass (Higgs mechanism) → 99% from the strong interaction (QCD)

Spontaneously broken: chiral symmetry
● Hadrons with different parity                 

do not have same mass

Phys. Rev. D 95, 036020 (2017)

https://journals.aps.org/prd/abstract/10.1103/PhysRevD.95.036020
https://physics.aps.org/articles/v11/118
https://journals.aps.org/prd/abstract/10.1103/PhysRevD.95.036020
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The origin of mass
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PHYSICAL REVIEW D 95, 036020 (2017)
https://physics.aps.org/articles/v11/118 Nucleon mass: 1% from quark mass (Higgs mechanism) → 99% from the strong interaction (QCD)

Unique test of fundamental QCD property:
● Change order parameter → change temperature
● Symmetry restoration at high temperatures

 

Phys. Rev. D 95, 036020 (2017)

Spontaneously broken: chiral symmetry
● Hadrons with different parity                 

do not have same mass

https://journals.aps.org/prd/abstract/10.1103/PhysRevD.95.036020
https://physics.aps.org/articles/v11/118
https://journals.aps.org/prd/abstract/10.1103/PhysRevD.95.036020
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The origin of mass
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PHYSICAL REVIEW D 95, 036020 (2017)

Unique test of fundamental QCD property:
● Change order parameter → change temperature
● Symmetry restoration at high temperatures
● Experimental proof

○ Measure hadron properties (spectral functions) 
○ Measure temperature of QCD matter

https://physics.aps.org/articles/v11/118 Nucleon mass: 1% from quark mass (Higgs mechanism) → 99% from the strong interaction (QCD)

Spontaneously broken: chiral symmetry
● Hadrons with different parity                 

do not have same mass

Phys. Rev. D 95, 036020 (2017)

https://journals.aps.org/prd/abstract/10.1103/PhysRevD.95.036020
https://physics.aps.org/articles/v11/118
https://journals.aps.org/prd/abstract/10.1103/PhysRevD.95.036020
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Putting into context
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Unique test of fundamental QCD property:
● Change order parameter → change temperature
● Symmetry restoration at high temperatures
● Experimental proof

○ Measure hadron properties (spectral functions)
○ Measure temperature of QCD matter

Phase transition in early universe
(quarks→hadrons)
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Putting into context
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Use heavy-ion collisions

Phase transition in early universe
(quarks→hadrons)

Boyanovsky, de Vega, Schwarz, Annual Review of Nuclear and Particle Science, Vol. 56:441-500

Phys. Rev. Lett. 119, 141301

Unique test of fundamental QCD property:
● Change order parameter → change temperature
● Symmetry restoration at high temperatures
● Experimental proof

○ Measure hadron properties (spectral functions) 
○ Measure temperature of QCD matter

https://www.annualreviews.org/doi/pdf/10.1146/annurev.nucl.56.080805.140539
https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.119.141301
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Heavy-ion collisions and dileptons
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R. Rapp, Nature Phys. 15 (2019), 990–991
Degrees of freedom: quarks, gluons hadrons

https://www.nature.com/articles/s41567-019-0614-5
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Heavy-ion collisions and dileptons
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R. Rapp, Nature Phys. 15 (2019), 990–991

Strategy: measure dileptons (e+e- or μ+μ- pairs)
● Couple to EM current throughout the full collision history
● Very low interaction with QCD medium (no strong interaction)

Degrees of freedom: quarks, gluons hadrons

https://www.nature.com/articles/s41567-019-0614-5
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Heavy-ion collisions and dileptons
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R. Rapp, Nature Phys. 15 (2019), 990–991

Strategy: measure dileptons (e+e- or μ+μ- pairs)
● Couple to EM current throughout the full collision history
● Very low interaction with QCD medium (no strong interaction)
● Virtual photons: invariant mass, no blue-shift of rapidly expanding system
● Bonus: Also sensitive to BSM particle decays (dark photons)

Degrees of freedom: quarks, gluons hadrons

https://www.nature.com/articles/s41567-019-0614-5


Science Coffee, Lund, 15 Dec 2020 Michael Weber (SMI)

Thermal dilepton production
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Thermal dilepton emission rate:

 

hadronsquarks, gluons

Electromagnetic spectral function
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Thermal dilepton production

● Vacuum: EM spectral function well known from the e+e− annihilation cross section into hadrons / μ+μ-

16

Thermal dilepton emission rate:

 

Landolt-Bornstein 23 (2010) 134

http://materials.springer.com/lb/docs/sm_lbs_978-3-642-01539-7_6
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Thermal dilepton production

● Vacuum: EM spectral function well known from the e+e− annihilation cross section into hadrons / μ+μ-

● Medium: 
○ Below 1.5 GeV/c2: measure in-medium rho spectral function 
○ Above 1.5 GeV/c2: extraction of temperature (and space-time evolution of thermal source)

17

Thermal dilepton emission rate:

 

Landolt-Bornstein 23 (2010) 134

http://materials.springer.com/lb/docs/sm_lbs_978-3-642-01539-7_6


Science Coffee, Lund, 15 Dec 2020 Michael Weber (SMI)

Relevant temperatures in heavy-ion collisions
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Lattice QCD, Phys. Lett. B 795 (2019) 15

Why important?
● System temperature > critical temperature?

 

https://www.sciencedirect.com/science/article/pii/S0370269319303223?via%3Dihub
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Relevant temperatures in heavy-ion collisions
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Lattice QCD, Phys. Lett. B 795 (2019) 15
SHM, Nature 561 (2018) 7723, 321-330

Why important?
● System temperature > critical temperature?
● Experimentally established: saturation in the 

chemical freeze-out temperature        
(after/at hadronisation)
 

https://www.sciencedirect.com/science/article/pii/S0370269319303223?via%3Dihub
https://www.nature.com/articles/s41586-018-0491-6
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Relevant temperatures in heavy-ion collisions
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NA60, AIP Conf.Proc. 1322 (2010) 1, 1-10
HADES, Nature Physics 15 (2019) 10, 1040-1045
Lattice QCD, Phys. Lett. B 795 (2019) 15
SHM, Nature 561 (2018) 7723, 321-330

Why important?
● System temperature > critical temperature?
● Experimentally established: saturation in the 

chemical freeze-out temperature        
(after/at hadronisation)

● Initial/average temperature: 
largely unmeasured, predicted to exceed 
critical temperature

https://aip.scitation.org/doi/abs/10.1063/1.3541982
https://www.nature.com/articles/s41567-019-0583-8
https://www.sciencedirect.com/science/article/pii/S0370269319303223?via%3Dihub
https://www.nature.com/articles/s41586-018-0491-6
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Relevant temperatures in heavy-ion collisions
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Why important?
● System temperature > critical temperature?
● Experimentally established: saturation in the 

chemical freeze-out temperature        
(after/at hadronisation)

● Initial/average temperature: 
largely unmeasured, predicted to exceed 
critical temperature

Goal: 
● high precision measurements vs collision 

energy ranging over three orders of magnitude

Strategy:
● Last five years: 

○ Optimize analysis 
○ Understand background(s)

● Next ten years: 
○ Optimize detector
○ Measure temperature

and vector meson spectral function

At LHC

NA60, AIP Conf.Proc. 1322 (2010) 1, 1-10
HADES, Nature Physics 15 (2019) 10, 1040-1045
Lattice QCD, Phys. Lett. B 795 (2019) 15
SHM, Nature 561 (2018) 7723, 321-330

?

https://aip.scitation.org/doi/abs/10.1063/1.3541982
https://www.nature.com/articles/s41567-019-0583-8
https://www.sciencedirect.com/science/article/pii/S0370269319303223?via%3Dihub
https://www.nature.com/articles/s41586-018-0491-6
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What to expect at the LHC
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● In-medium modified rho spectral function → restoration of chiral symmetry 

Ralf Rapp, arXiv:1304.2309 [hep-ph]

https://arxiv.org/abs/1304.2309
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● In-medium modified rho spectral function → restoration of chiral symmetry 
● Inverse slope parameter of dilepton invariant mass → average and initial temperature

R. Rapp, H. van Hees, Phys.Lett. B 753, 586 (2016)Ralf Rapp, arXiv:1304.2309 [hep-ph]

Average temperature

Initial Temperature

What to expect at the LHC

https://www.sciencedirect.com/science/article/pii/S0370269315010138?via%3Dihub
https://arxiv.org/abs/1304.2309
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Experimental setup: ALICE at the CERN-LHC 

24

Detector:
Length: 26 meters
Height: 16 meters
Weight: 10,000 ton

Central barrel:
Event characterization,
Vertex, Tracking, PID
|η| < 0.9
→ Dielectrons

Muon Spectrometer:
Trigger and Tracking
-2.5 > η > -4
→ Dimuons           
(not in this talk)

ALICE, Int. J. Mod. Phys. A 29 (2014) 1430044
ALICE, JINST, 3 (2008), S08002

Time-Of-Flight
Time Projection Chamber

Inner Tracking System
V0, T0

e+

e-

https://www.worldscientific.com/doi/abs/10.1142/S0217751X14300440
https://iopscience.iop.org/article/10.1088/1748-0221/3/08/S08002/meta
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Experimental approach and challenges

25

Method: dielectrons with ALICE at the LHC
● Identify electrons/positrons

○ Minimize hadron contamination
● Pair electrons and positrons in one event

○ Major contribution from photon conversion in detector material
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Experimental approach and challenges

26

Improve electron efficiency

Applying Machine Learning techniques (BDTs, Neural Networks):

CERN-THESIS-2019-261
CERN-THESIS-2018-034

Method: dielectrons with ALICE at the LHC
● Identify electrons/positrons

○ Minimize hadron contamination
● Pair electrons and positrons in one event

○ Major contribution from photon conversion in detector material

Efficiency

Contamination

MVA

Traditional cuts

http://cds.cern.ch/record/2705740?ln=en
https://cds.cern.ch/record/2315615?ln=en
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Experimental approach and challenges

27

Improve electron efficiency

Improve conversion rejection

Applying Machine Learning techniques (BDTs, Neural Networks):

CERN-THESIS-2019-261
CERN-THESIS-2018-034

Method: dielectrons with ALICE at the LHC
● Identify electrons/positrons

○ Minimize hadron contamination
● Pair electrons and positrons in one event

○ Major contribution from photon conversion in detector material

Efficiency

Contamination

MVA

Traditional cuts

http://cds.cern.ch/record/2705740?ln=en
https://cds.cern.ch/record/2315615?ln=en
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Experimental approach and challenges

Method: dielectrons with ALICE at the LHC
● Identify electrons/positrons

○ Minimize hadron contamination 
● Pair electrons and positrons in one event

○ Major contribution from photon conversion in detector material

● Subtract combinatorial background B
○ S/B ~ 10-3 in Pb-Pb collisions

28
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Experimental approach and challenges

Method: dielectrons with ALICE at the LHC
● Identify electrons/positrons

○ Minimize hadron contamination 
● Pair electrons and positrons in one event

○ Major contribution from photon conversion in detector material

● Subtract combinatorial background B
○ S/B ~ 10-3 in Pb-Pb collisions

● Subtract “known” long-lived light- and heavy-flavour sources (“cocktail”)
○ Step 1: Reference systems → pp and p-Pb collisions  

29

Semileptonic decays of     
charm/beauty hadrons (cτ ~ O(100μm))
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Experimental approach and challenges

Method: dielectrons with ALICE at the LHC
● Identify electrons/positrons

○ Minimize hadron contamination 
● Pair electrons and positrons in one event

○ Major contribution from photon conversion in detector material

● Subtract combinatorial background B
○ S/B ~ 10-3 in Pb-Pb collisions

● Subtract “known” long-lived light- and heavy-flavour sources (“cocktail”) as well QED dielectron production
○ Step 1: Reference systems → pp and p-Pb collisions  
○ Step 2: Peripheral Pb-Pb collisions

30
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Understanding “hadronic sources” 

● Understand production and decay of light and heavy flavour hadrons  

31

ALICE, arXiv:2005.11995 [nucl-ex]

Nuclear modification factor:

RpPb = 1, if p-Pb simple superposition of pp/pn collisionsSemileptonic decays of 
charm/beauty hadrons (cτ ~ 100μm)

https://arxiv.org/abs/2005.11995
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Understanding “hadronic sources” 

32

ALICE, arXiv:2005.11995 [nucl-ex]

Nuclear modification factor:

RpPb = 1, if p-Pb simple superposition of pp/pn collisions

● Understand production and decay of light and heavy flavour hadrons
● Understand modifications not related to hot QCD matter

https://arxiv.org/abs/2005.11995
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Understanding “hadronic sources” 

33

ALICE, arXiv:2005.11995 [nucl-ex]

Nuclear modification factor:

RpPb = 1, if p-Pb simple superposition of pp/pn collisions

● Understand production and decay of light and heavy flavour hadrons
● Understand modifications not related to hot QCD matter
● Thermal radiation in small systems?

Nuclear modification factor:

RpPb = 1, if p-Pb simple superposition
of pp/pn collisions

https://arxiv.org/abs/2005.11995
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Understanding “QED sources”

34

b<R1+R2
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Understanding “QED sources”
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arXiv:1909.02508 [nucl-ex]

● Excess of dielectrons over hadronic cocktail 

b<R1+R2

https://arxiv.org/abs/1909.02508
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Understanding “QED sources”

36

arXiv:1909.02508 [nucl-ex]

● Excess of dielectrons over hadronic cocktail 
→ Continuum dilepton photo-production in Pb-Pb collisions at the LHC with nuclear overlap 

b<R1+R2

https://arxiv.org/abs/1909.02508
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‘Anomalous’ dileptons in pp collisions

37

CERN ISR – AFS (1987):
● Excess of dielectrons over expectation from known

hadronic sources in a ‘elementary’ collision system
→ Similar effects also observed in real-photon channel

Low-mass region (LMR) excess:
● 0.05 GeV/c2 < mee < 0.6 GeV/c2

● pT,ee < 1 GeV/c
→ No other experiment could probe this region
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‘Anomalous’ dileptons in pp collisions
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CERN ISR – AFS (1987):
● Excess of dielectrons over expectation from known

hadronic sources in a ‘elementary’ collision system
→ Similar effects also observed in real-photon channel

Low-mass region (LMR) excess:
● 0.05 GeV/c2 < mee < 0.6 GeV/c2

● pT,ee < 1 GeV/c
→ No other experiment could probe this region

Dedicated low B-field campaign (B = 0.5 T → 0.2 T):
● Electron selection down to pT > 0.075 GeV/c
● Better TOF acceptance & conversion rejection

→ Allows ALICE to challenge the AFS measurement
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Soft dielectrons in pp collisions at the LHC
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 arXiv:2005.14522 [nucl-ex]

● Enhancement also observed at LHC energies
○ 0.14 GeV/c2 < mee < 0.6 GeV/c2

○ pT,ee < 0.4 GeV/c

https://arxiv.org/abs/2005.14522
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Soft dielectrons in pp collisions at the LHC
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● Enhancement also observed at LHC energies
○ 0.14 GeV/c2 < mee < 0.6 GeV/c2

○ pT,ee < 0.4 GeV/c
● η contribution dominating source of the cocktail uncertainties

○ ALICE measurement only down to pT < 0.4 GeV/c
○ mT scaling overshoots η at low pT

→ CERES/TAPS measurement used to constrain low pT
Eur.Phys.J.C 4 (1998) 249-257

 arXiv:2005.14522 [nucl-ex]

https://link.springer.com/article/10.1007/s100529800804
https://arxiv.org/abs/2005.14522
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Soft dielectrons in pp collisions at the LHC
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 arXiv:2005.14522 [nucl-ex]

● Enhancement also observed at LHC energies

● Study control regions and multiplicity dependence

https://arxiv.org/abs/2005.14522
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Soft dielectrons in pp collisions at the LHC
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 arXiv:2005.14522 [nucl-ex]

● Enhancement also observed at LHC energies

● Study control regions and multiplicity dependence
→ No excess at lower mee or higher pT,ee
→ No clear multiplicity dependence within uncertainties

● Most consistent with linear scaling
→ Future ALICE pp programme: Large MB data set with an 
integrated luminosity of about 3 pb−1 (factor 300)

ALICE-PUBLIC-2020-005

https://arxiv.org/abs/2005.14522
https://cds.cern.ch/record/2724925
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Status: thermal radiation in Pb-Pb collisions at LHC 

43
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Status: thermal radiation in Pb-Pb collisions at LHC 

44

● Central Pb-Pb collisions (2015 data only)
● Still large uncertainties (analysis of 2018 data with ~10 times larger sample ongoing)
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Status: thermal radiation in Pb-Pb collisions at LHC 

45

● Central Pb-Pb collisions (2015 data only)
● Still large uncertainties (analysis of 2018 data with ~10 times larger sample ongoing)
● Comparisons to pure hadronic cocktail, nPDFs, and thermal scenarios inconclusive so far

(similar conclusion from Run 1 data)
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The next decade

46

arXiv:1902.01211 [physics.ins-det]Major ALICE upgrade
● Continuous (triggerless) data taking 
● TPC readout: MWPC -> GEM 
● New inner tracking system (ITS2)
● New event characterization detectors (FIT)

https://arxiv.org/abs/1902.01211
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The next decade

47

arXiv:1902.01211 [physics.ins-det]Major ALICE upgrade
● Continuous (triggerless) data taking 
● TPC readout: MWPC -> GEM 
● New inner tracking system (ITS2)
● New event characterization detectors (FIT)

● Improved pointing resolution (x3)
● Reduced material budget (less photon conversions)
● More statistics (up to x100)
● Dedicated low B field run(s): improved efficiency at low 

pT, better conversion rejection

dileptons

https://arxiv.org/abs/1902.01211
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Physics performance with ITS2
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HL-LHC WG5 yellow report

Invariant mass of dielectrons + “cocktail”

https://arxiv.org/abs/1812.06772
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Physics performance with ITS2

49

HL-LHC WG5 yellow report

Excess spectrum
→ first measurement of ρ spectral shape 
→ first measurement of temperature 

Invariant mass of dielectrons + “cocktail”

https://arxiv.org/abs/1812.06772
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The next decade

50

arXiv:1902.01211 [physics.ins-det]Major ALICE upgrade
● Continuous (triggerless) data taking 
● TPC readout: MWPC -> GEM 
● New inner tracking system (ITS2)
● New event characterization detectors (FIT)

FoCal and ITS3

https://arxiv.org/abs/1902.01211
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Towards a massless detector

51
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Towards a massless detector

● Exchange inner 3 ITS layers with truly cylindrical Si-pixel layers based on 
ultra-thin, curved sensors (based on ALPIDE developed for ITS2):

○ Reduce material budget from 0.35% X/X0 to ≈ 0.05% X/X0 
and remove its inhomogeneities

52



Science Coffee, Lund, 15 Dec 2020 Michael Weber (SMI)

Towards a massless detector

● Exchange inner 3 ITS layers with truly cylindrical Si-pixel layers based on 
ultra-thin, curved sensors (based on ALPIDE developed for ITS2):

○ Reduce material budget from 0.35% X/X0 to ≈ 0.05% X/X0 
and remove its inhomogeneities

● Move layers closer to the primary vertex, innermost layer at R = 1.8 cm 
(new beam-bipe with inner radius R = 1.6 cm)

○ Improves pointing resolution by a factor ~3

53

CERN-LHCC-2019-018

https://cds.cern.ch/record/2703140
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Physics performance with ITS2
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HL-LHC WG5 yellow report

Excess spectrum
→ first measurement of ρ spectral shape 
→ first measurement of temperature  
 

Invariant mass of dielectrons + “cocktail”

https://arxiv.org/abs/1812.06772
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Physics performance with ITS3
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Excess spectrum
→ Improved measurement of ρ spectral shape 
 

Invariant mass of dielectrons + “cocktail”

CERN-LHCC-2019-018

https://cds.cern.ch/record/2703140
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Physics performance with ITS3
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Excess spectrum
→ Improved measurement of ρ spectral shape
→ Improved temperature measurement
→ Differential measurements (pT, flow, polarization)

 

Fit to excess spectrum: 
1.1 < Mee (GeV/c2) < 2.0

CERN-LHCC-2019-018

https://cds.cern.ch/record/2703140
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Putting into the big picture
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Why important?
● System temperature > critical temperature?
● Experimentally established: saturation in the 

chemical freeze-out temperature        
(after/at hadronisation)

● Initial/average temperature: 
largely unmeasured, predicted to exceed 
critical temperature

Goal: 
● high precision measurements vs collision 

energy ranging over three orders of magnitude

Strategy:
● Last five years: understand hadronic 

“background” in pp and p-Pb collisions, first 
feasibility studies in heavy-ion collisions

● Next ten years: measure T, vector meson 
spectral functions (and much more)

At LHC

NA60, AIP Conf.Proc. 1322 (2010) 1, 1-10
HADES, Nature Physics 15 (2019) 10, 1040-1045
Lattice QCD, Phys. Lett. B 795 (2019) 15
SHM, Nature 561 (2018) 7723, 321-330

?

https://aip.scitation.org/doi/abs/10.1063/1.3541982
https://www.nature.com/articles/s41567-019-0583-8
https://www.sciencedirect.com/science/article/pii/S0370269319303223?via%3Dihub
https://www.nature.com/articles/s41586-018-0491-6
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Putting into the big picture
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NA60, AIP Conf.Proc. 1322 (2010) 1, 1-10
HADES, Nature Physics 15 (2019) 10, 1040-1045
ALICE, CERN-LHCC-2019-018
CBM, Nucl. Phys. A 982 (2019) 163
NA60+, SPSC-EOI-019

 

R. Rapp et al., Phys. Lett. B 753 (2016) 568
T. Galatyuk et al., Eur. Phys. J. A52 (5) (2016) 131
Lattice QCD, Phys. Lett. B 795 (2019) 15
SHM, Nature 561 (2018) 7723, 321-330

LHCWhy important?
● System temperature > critical temperature?
● Experimentally established: saturation in the 

chemical freeze-out temperature        
(after/at hadronisation)

● Initial/average temperature: 
largely unmeasured, predicted to exceed 
critical temperature

Goal: 
● high precision measurements vs collision 

energy ranging over three orders of magnitude

Strategy:
● Last five years: understand hadronic 

“background” in pp and p-Pb collisions, first 
feasibility studies in heavy-ion collisions

● Next ten years: measure T, vector meson 
spectral functions (and much more)

→ measuring the hottest temperature 
ever achieved by mankind

https://aip.scitation.org/doi/abs/10.1063/1.3541982
https://www.nature.com/articles/s41567-019-0583-8
https://cds.cern.ch/record/2703140
https://www.sciencedirect.com/science/article/pii/S0375947418304172?via%3Dihub
https://cds.cern.ch/record/2673280
https://www.sciencedirect.com/science/article/pii/S0370269315010138
https://link.springer.com/article/10.1140/epja/i2016-16131-1
https://www.sciencedirect.com/science/article/pii/S0370269319303223?via%3Dihub
https://www.nature.com/articles/s41586-018-0491-6
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Heavy-ion physics after 2030:
● Construct the ultimate soft dilepton and photon detector (based on ITS3 technology): p ~ 1/RNucleus ~ 10 MeV/c 

arXiv:1902.01211 [physics.ins-det]

https://arxiv.org/abs/1902.01211
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Heavy-ion physics after 2030:
● Construct the ultimate soft dilepton and photon detector (based on ITS3 technology): p ~ 1/RNucleus ~ 10 MeV/c 

arXiv:1902.01211 [physics.ins-det]

https://arxiv.org/abs/1902.01211
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Bright future at the LHC

61

Heavy-ion physics after 2030:
● Construct the ultimate soft dilepton and photon detector (based on ITS3 technology): p ~ 1/RNucleus ~ 10 MeV/c 
● Precision measurement of EM radiation multi-differentially and down to lowest momenta, e.g. electric conductivity
● BSM physics

→ Letter of Intent planned for end 2021 

arXiv:1902.01211 [physics.ins-det]

https://arxiv.org/abs/1902.01211
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Summary
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arXiv:1902.01211 [physics.ins-det]

● Objectives: Chiral symmetry and temperature of QCD matter
● Method: Thermal dilepton production with ALICE at the CERN-LHC
● Accomplished: Understand your background (+ excess at low transverse momenta in pp) 
● Future: Expected performance with ALICE and next-generation particle detectors 

https://arxiv.org/abs/1902.01211
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Thank you!


