

Experience of running ARC on big sites as part of Atlas production

AEC - Laboratory for High Energy Physics, University of Bern, Switzerland

NorduGrid Conference 2015
Tuesday 2 June 2015, University of Bern

ARC in ATLAS

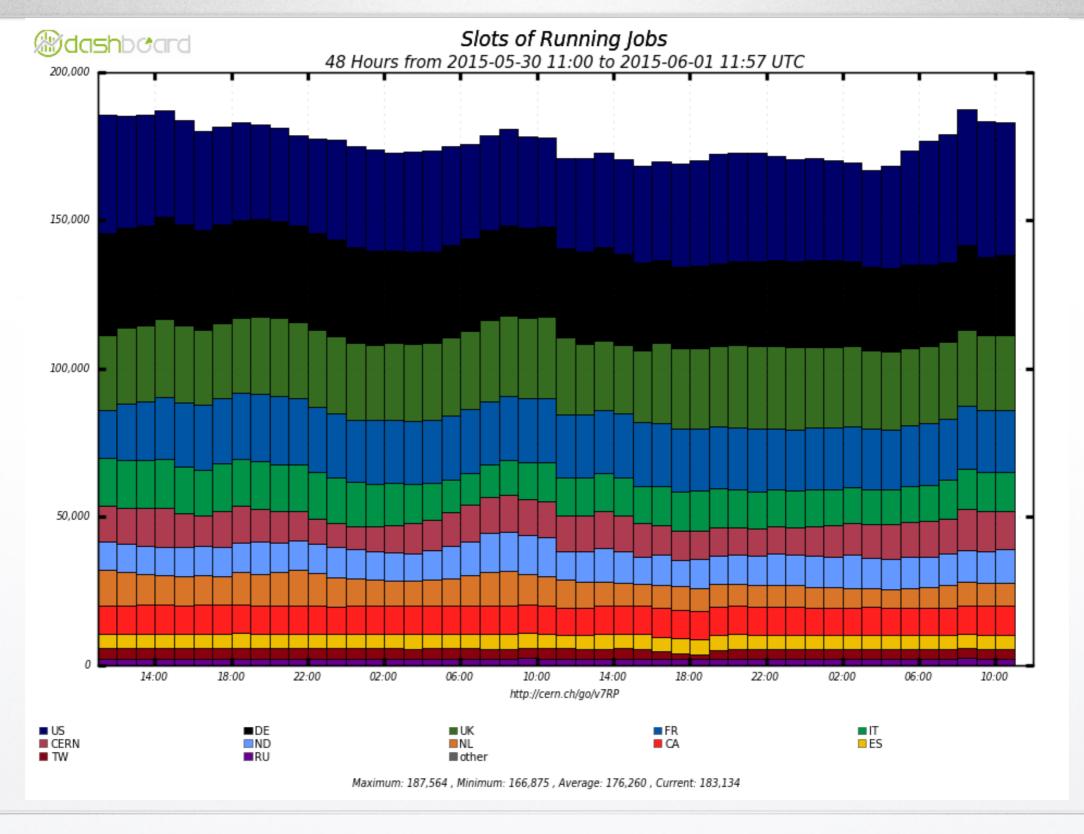
ATLAS Grid Monitor

2015-06-01 CEST 13:38:08

♡△?×

Processes: Grid Local	2 %	р 🖯	88

Country	Site	CPUs	Load (processe	es: Grid+local)	Queueing
Denmark	Steno Tier 1 (DCSC/KU)	16232		344+0	589+0
	LRZ-C2PAP	4072		<mark>26</mark> 22+1263	539+6
	LRZ-LMU lcg-lrz-ce0	1824		1454+0	486+13
Germany	LRZ-LMU lcg-lrz-ce3	1824		0+1454	13+485
Germany	LRZ-LMU_MUC	9489		0+83	0+0
	RZG ATLAS HYDRA	167848		0+145342	151+0
	wuppertalprod	3684		<mark>2168+</mark> 1141	84+160
₩ Norway	Abel C1(UiO/USIT)	11600		1190+8683	621+541
Norway	Abel C3(UiO/USIT)	11600		360+9569	481+670
- 01	Arnes	2164		1975+0	540+0
Slovenia	SIGNET	4224		2975+209	642+77
	Abisko (HPC2N)	15936		0+14913	777+0
Sweden	Alarik (SweGrid, Luna>	3776		192+2194	411+20
	Triolith - Atlas (NSC)	25472		355+24579	415 +3975
	ATLAS BOINC	33929		4064+1526	1315+0
	Bern ce01 (UNIBE-LHEP)	1368		336+0	423+0
	Bern ce02 (UNIBE-LHEP)	776		303+0	431+1
Switzerland	Bern LHEP HPC TEST	4208	0+3488	(queue inactive)	0+0
	Bern UBELIX T3	2472		528+980	433 +465
	Geneva (UNIGE-DPNC)	604		195+6	5+0
	Lugano PHOENIX T2	4058		0+3936	0+17
	arc-ce01 (RAL-LCG2)	13694		2425+10935	456+0
	arc-ce02 (RAL-LCG2)	13694		2384+11848	572 +0
See UK	arc-ce03 (RAL-LCG2)	13694		2354+11048	573 +0
	cetest01 (UKI-LT2-IC->	4		158+3790	120+193
	t2arc01 UKI-SOUTHGRID>	1200		231+735	181+0
TOTAL	26 sites	369446	25835 + 25692	2	10258 + 6623


da de en fi fr hu no ru sk sv uk



ARC in ATLAS

ARC in ATLAS: the ++

Ease of deployment

modest hardware requirements

I metapackage+dependencies (all in e.g. epe1)

(relative) Ease of configuration

I config file arc.conf
finely documented arc.conf.reference
no "configuration tool" required

Ease of maintenance

Can upgrade on a live system (since **arc** 4.1.0-1, at least for me)

I config file **arc.conf**

Versatile

Not RH/SL only
Plenty of batch system support
Flexible configuration setup for cache and session dirs

Non "invasive" setup

No middleware/services required on WNs No outbound connectivity strictly required on WNs (with aCT)

ARC in ATLAS: the ++

Ease of deployment

modest hardware requirements

I metapackage+dependencies (all in e.g. epe1)

(relative) Ease of configuration

I config file arc.conf
finely documented arc.conf.reference
no "configuration tool" required

config tile arc. conf

Versatile

Not RH/SL only
Plenty of batch system support
Flexible configuration setup for cache and session dirs

Non "invasive" setup

No middleware/services required on WNs No outbound connectivity strictly required on WNs (with aCT)

ARC in ATLAS: the - - (stability/bugs 1/2)

a-rex crashes/stalls - plenty of scenarios

- controldir corrupted (joblinks ...)
- rm -rf <controldir>/gm.fifo
- cache/session under heavy load
- gm-hearbeat timeouts
- failed DTRs
- logrotate
- glibmm-ERROR
- "Maybe another instance of A-REX is already running"
- <defunct> processes (also gridftpd) (twice with ARC 4.2) cache full (related to the joblinks issue?) (cachesize="40 25")

UNIBE-LHEP: 17 recorded crashes since mid February - Same trend since ARC 4

Infoproviders more stable since ARC 4 (but see next slide)

- before arc 4, CEinfo.pl often slow/crashing
- cleanup sessiondir (cron)

Jura

- Transition to Jura not trivial
- with urbatch: 1000, many job summaries with >3k jobs changed to 500

ARC in ATLAS: the - - (stability/bugs 2/2)

Latest (since ARC 5)

- Job priority out of range for gridengine in submit-sge-jobs
- CE drops out of infosys regularly (all services running): add cron every 4h
- grid-manager.log exploding: full partitions, recovery is fiddly/time-consuming
- cache-clean <defunct> (also arched and gridftpd): all night to recover

[root@ce01 joblinks]# for i in `find /grid/lustre/cache/joblinks/ -maxdepth 1 -type d
-mtime +14 -print`; do echo -e "Deleting directory \$i";rm -rf \$i; done

ARC in ATLAS: the sysadmin view

Stability required - the pragmatic approach

ATLAS demands are quite challenging: new features, bugfixes, rushed upgrades Bugs creep in regularly

Strong dependancy on the shared file-system (cache/session) performance Service downtime/recovery is expensive (partitions full, systems jammed, re-boots, etc) Dealing with system instabilities/failures requires a certain amount of "insider" help arc.conf - some config complexities daunting for the entry-level admin Fear of upgrades introducing new instabilities/fail modes

crons crons, hacks hacks hacks, is this the way?

```
controldir cleanup (1/week)
                   sessiondir cleanup (1/week)
a-rex, gridftpd, nordugrid-arc-ldap-infosys clean/restart (6/day)
                   hacks to submit-<lrms>-job
                  hacks to SGEmod.pm, CEinfo.pl
```


ARC in ATLAS: way forward

Stability required - how to improve?

ATLAS computing is a demanding and continuously evolving environment System/service stability is crucial for an effective management of the resources Use base is expanding and ARC faces new challenges in the face of it

Ideas?

Most cron workarounds ported to the services?

Script hacks as arc.conf parameters?

Resilience against file-system degradation?

Quality control/staged rollout? How expensive is an upgrade ...

Some/many bugs seem obscure or hardly reproducible on different systems: is the code base fully under control?

