

Spin, the Little Group and Spinor-Helicity INFORMAL SCIENCE COFFEE 12 JANUARY 2021- ANDREW LIFSON

Aim and Reason for these Seminars

Wigner's Quantum Mechanics

Poincaré and little groups Massive Particles and Spin Massless Particles and Helicity Covariant Operators P and W

Spinor-Helicity Formalism

Traditional ME example Basics of Spinor Helicity Simple Spinor-Hel Example Gauge Bosons and Example

Spinor-Helicity and the Little Group

Three-Point Amplitudes Amplitude Game

To try and share the interesting knowledge we have gained during my PhD

First (this) seminar:

- Very informal (questions and interruptions welcome!)
- Aim to discuss fundamental physics that I only recently understood
- Hopefully useful to all
- Main topics are:
 - Wigner's Quantum Mechanics incl. little group
 - Spinor-helicity formalism
 - How they link together to calculate amplitudes

Second (next) seminar:

- More of a standard seminar
- Show our unique research (chirality-flow method)
 - Go from Feynman diagram to number via flow lines
 - Requires minimal work compared to standard methods
- Builds on many concepts from first seminar
- Is really cool

Poincaré and little groups Massive Particles and Spin Massless Particles and Helicity Covariant Operators P and W

Spinor-Helicity Formalism

Traditional ME example Basics of Spinor Helicity Simple Spinor-Hel Example Gauge Bosons and Example

Spinor-Helicity and the Little Group

Three-Point Amplitudes Amplitude Game

Wigner's Quantum Mechanics

Wigner's Quantum Mechanics

Poincaré and little groups

Massive Particles and Spin Massless Particles and Helicity Covariant Operators P and W

Spinor-Helicity Formalism

Traditional ME example Basics of Spinor Helicity Simple Spinor-Hel Example Gauge Bosons and Example

Spinor-Helicity and the Little Group

Three-Point Amplitudes Amplitude Game

How to classify different types of particles?

- Consider particle (state vector) ψ with Poincaré the only symmetry
 - Lorentz transformations: $p^{\mu} \rightarrow \Lambda^{\mu}_{\nu} p^{\nu}$, $U(\Lambda) = e^{-\frac{i}{2} J^{\mu\nu} \omega_{\mu\nu}}$
 - Translations: $p^{\mu} \rightarrow p^{\mu} + a^{\mu}$, $U(a) = e^{-i\dot{P}^{\mu}a_{\mu}}$
 - Generic representation of Poincaré transformation $U(\Lambda, a)$
- What information can we know about this particle???
 - QN from translation p
 - QN from Lorentz transformations σ
- Diagnonalise translation operator $P^{\mu}\psi_{p,\sigma}=p^{\mu}\psi_{p,\sigma}$

Particle Definition in Wigner's Quantum Mechanics

Wigner's Quantum Mechanics

Poincaré and little groups

Massive Particles and Spin Massless Particles and Helicity Covariant Operators P and W

Spinor-Helicity Formalism

Traditional ME example Basics of Spinor Helicity Simple Spinor-Hel Example Gauge Bosons and Example

Spinor-Helicity and the Little Group

Three-Point Amplitudes Amplitude Game

- How to classify different types of particles $\psi_{\rho,\sigma}$?
- Define 'standard', simple momentum k^{μ} (e.g. $k^{\mu} = (m, 0, 0, 0)$)
 - Define Lorentz transformation L(p,k) s.t. $p^{\mu} = L(p,k)^{\mu}_{\nu}k^{\nu}$

Definition of a particle

 $\psi_{p,\sigma} = N(p)U(L(p,k))\psi_{k,\sigma}$

- $N(p) \equiv$ normalisation (not important in this discussion, will be ignored)
- **U**(L(p, k)) s.t. ψ can have any representation of Lorentz group
- σ quantum number(s) unchanged by definition

Wigner Rotations and the Little Group

Wigner's Quantum Mechanics

Poincaré and little groups

Massive Particles and Spin Massless Particles and Helicity Covariant Operators P and W

Spinor-Helicity Formalism

Traditional ME example Basics of Spinor Helicity Simple Spinor-Hel Example Gauge Bosons and Example

Spinor-Helicity and the Little Group

Three-Point Amplitudes Amplitude Game

How to classify different types of particles $\psi_{p,\sigma}$?

Consider Lorentz transformation $U(\Lambda)$ on $\psi_{p,\sigma}$

 $U(\Lambda)\psi_{p,\sigma} = U(\Lambda)\underbrace{U(L[p])\psi_{k,\sigma}}_{\text{definition of }\psi_{p,\sigma}} = \underbrace{U(\Lambda L[p])}_{\text{representation}}\psi_{k,\sigma}$ $= \underbrace{U(L[\Lambda p])U(L^{-1}[\Lambda p])}_{1}U(\Lambda L[p])\psi_{k,\sigma}$ $= U(L[\Lambda p])U(\underbrace{L^{-1}(\Lambda p)\Lambda L[p]}_{W(\Lambda,p)})\psi_{k,\sigma}$

W(Λ, p) ≡ Wigner rotation
 Takes k back to itself, i.e. W^μ_νk^ν = k^μ

Andrew Lifson

Wigner rotation: L(p) $W(\Lambda, p)$ $L(\Lambda p)$ $M(\Lambda, p)$ Λp

Wigner Rotations and the Little Group

Wigner's Quantum Mechanics

Poincaré and little groups

Massive Particles and Spin Massless Particles and Helicity Covariant Operators P and W

Spinor-Helicity Formalism

Traditional ME example Basics of Spinor Helicity Simple Spinor-Hel Example Gauge Bosons and Example

Spinor-Helicity and the Little Group

Three-Point Amplitudes Amplitude Game

How to classify different types of particles $\psi_{p,\sigma}$? Consider Lorentz transformation $U(\Lambda)$ on $\psi_{p,\sigma}$ $U(\Lambda)\psi_{\boldsymbol{p},\sigma} = U(L[\Lambda \boldsymbol{p}])U(L^{-1}[\Lambda \boldsymbol{p}]\Lambda L[\boldsymbol{p}])\psi_{\boldsymbol{k},\sigma}$ $W(\Lambda, p)$ k unchanged $= U(L[\Lambda p]) \sum D_{\sigma,\sigma'}(W[\Lambda, p]) \psi_{k,\sigma'}$ $\sigma \text{ unchanged} = \sum D_{\sigma,\sigma'}(W[\Lambda,p])\psi_{\Lambda p,\sigma'}$

i.e. $W^{\mu}_{\nu}k^{\nu} = k^{\mu}$

- Wigner rotation generates the 'little group'
 - Subset of Lorentz transformation leaving k^{μ} invariant
 - Responsible for quantum numbers σ

Andrew Lifson

Spin Discussion

Consequences for amplitudes

Wigner's Quantum Mechanics

Poincaré and little groups

Massive Particles and Spin Massless Particles and Helicity Covariant Operators P and W

Spinor-Helicity Formalism

Traditional ME example Basics of Spinor Helicity Simple Spinor-Hel Example Gauge Bosons and Example

Spinor-Helicity and the Little Group

Three-Point Amplitudes Amplitude Game

Lorentz transformation of a particle

$$U(\Lambda)\psi_{\boldsymbol{\rho},\sigma} = D_{\sigma,\sigma'}(W[\Lambda,\boldsymbol{\rho}])\psi_{\Lambda\boldsymbol{\rho},\sigma'} \Leftrightarrow U(\Lambda)|\boldsymbol{\rho},\sigma\rangle = D_{\sigma,\sigma'}(W[\Lambda,\boldsymbol{\rho}])|\Lambda\boldsymbol{\rho},\sigma'\rangle$$

Scattering amplitudes are of the form M_n ~ (particles out|particles in)
 Each particle transforms under Lorentz/little groups

Lorentz transformation of an amplitude

$$\mathcal{M}_n^{\Lambda}(p_i,\sigma_i) \sim \prod_{i=1}^n D_{\sigma_i,\sigma_i'}(W[\Lambda,p_i])\mathcal{M}_n([\Lambda p]_i,\sigma_i')$$

- Can use the little group transformation to check consistency of an amplitude
 - Can sometimes be enough to fix the amplitude!!

Poincaré and little groups

Massive Particles and Spin Massless Particles and Helicity Covariant Operators P and W

Spinor-Helicity Formalism

Traditional ME example Basics of Spinor Helicity Simple Spinor-Hel Example Gauge Bosons and Example

Spinor-Helicity and the Little Group

Three-Point Amplitudes Amplitude Game

What are the different standard momenta $k^{\mu} = (E, k_x, k_y, k_z)$?? (Different k^{μ} cannot be (proper orthochronously) Lorentz transformed into one another)

Particle Classification

Particle type	Standard momentum k	Little group
$p^2 = m^2, p^0 > 0$	$k^\mu=(m,0,0,0)$	SO(3)

Poincaré and little groups

Massive Particles and Spin Massless Particles and Helicity Covariant Operators P and W

Spinor-Helicity Formalism

Traditional ME example Basics of Spinor Helicity Simple Spinor-Hel Example Gauge Bosons and Example

Spinor-Helicity and the Little Group

Three-Point Amplitudes Amplitude Game

What are the different standard momenta $k^{\mu} = (E, k_x, k_y, k_z)$? (Different k^{μ} cannot be (proper orthochronously) Lorentz transformed into one another)

Particle Classification

Particle type	Standard momentum k	Little group
$p^2 = m^2, p^0 > 0$	$k^\mu=(m,0,0,0)$	SO(3)
$p^2=m^2, p^0<0$	$k^{\mu}=(-m,0,0,0)$	SO(3)
$p^2=0, p^0>0$	$m{k}^{\mu}=(\omega,m{0},m{0},\omega)$	ISO(2)
$p^2=0, p^0<0$	$k^{\mu}=(-\omega,0,0,\omega)$	ISO(2)
$p^{2} = -m^{2}$	$k^{\mu}=(0,0,0,m)$	SO(2,1)
${oldsymbol ho}^\mu=0$	$k^{\mu}=(0,0,0,0)$	SO(3,1)

Poincaré and little groups

Massive Particles and Spin Massless Particles and Helicity Covariant Operators P and W

Spinor-Helicity Formalism

Traditional ME example Basics of Spinor Helicity Simple Spinor-Hel Example Gauge Bosons and Example

Spinor-Helicity and the Little Group

Three-Point Amplitude Amplitude Game

What are the different standard momenta $k^{\mu} = (E, k_x, k_y, k_z)$?? (Different k^{μ} cannot be (proper orthochronously) Lorentz transformed into one another)

Particle Classification

	Particle type	Standard momentum k	Little group
Massive	$p^2=m^2, p^0>0$	$k^\mu=(m,0,0,0)$	SO(3)
	$p^2 = m^2, p^0 < 0$	$k^{\mu} = (-m, 0, 0, 0)$	SO(3)
assless	$p^2=0, p^0>0$	$k^{\mu}=(\omega,0,0,\omega)$	ISO(2)
	$p^2=0, p^0<0$	$m{k}^{\mu}=(-\omega,m{0},m{0},\omega)$	ISO(2)
Tachyon	$p^2 = -m^2$	$k^{\mu}=(0,0,0,m)$	SO(2,1)
Vacuum	$oldsymbol{ ho}^{\mu}=0$	$k^{\mu}=(0,0,0,0)$	SO(3,1)

Not just $U(\Lambda)$ and p. Also important is k and little group quantum numbers!!

Andrew Lifson

Μ

Spin Discussion

The SO(3) Little Group of Massive Particles

Wigner's Quantum Mechanics

Poincaré and little groups Massive Particles and Spin Massless Particles and Helicity Covariant Operators P and W

Spinor-Helicity Formalism

Traditional ME example Basics of Spinor Helicity Simple Spinor-Hel Example Gauge Bosons and Example

Spinor-Helicity and the Little Group

Three-Point Amplitudes Amplitude Game

Standard momentum $k^{\mu} = (m, 0, 0, 0)$

What are quantum numbers σ and reps D(W)??

- $D(W(\Lambda, p))$ representations of $so(3) \cong su(2)$
- This group is well known from non-relativistic quantum mechanics
- For particle of total spin *j*:
 - $\sigma = \{j^2 = j(j+1), j_s\}$ ($s \equiv$ some direction)
 - **j**² unchanged under Lorentz and little groups, j_s changes
- For infinitesimal rotations $R_{ik} = \delta_{ik} + \theta_{ik}$

$$D_{\sigma\sigma'}^{(j)}(1+\theta) = \delta_{\sigma\sigma'} + \frac{i}{2}\theta_{ik}(J_{ik}^{(j)})_{\sigma\sigma'}$$
$$\left(J_{23}^{(j)} \pm iJ_{31}^{(j)}\right)_{\sigma\sigma'} = \left(J_1^{(j)} \pm iJ_2^{(j)}\right)_{\sigma\sigma'} = \delta_{\sigma',\sigma\pm 1}\sqrt{(j\mp\sigma)(j\pm\sigma+1)}$$
$$\left(J_{12}^{(j)}\right)_{\sigma\sigma'} = (J_3^{(j)})_{\sigma\sigma'} = \sigma\delta_{\sigma'\sigma}$$

The ISO(2) Little Group of Massless Particles

Wigner's Quantum Mechanics

Poincaré and little groups Massive Particles and Spin Massless Particles and Helicity Covariant Operators P and W

Spinor-Helicity Formalism

Traditional ME example Basics of Spinor Helicity Simple Spinor-Hel Example Gauge Bosons and Example

Spinor-Helicity and the Little Group

Three-Point Amplitudes Amplitude Game

Standard momentum $k^{\mu} = (\omega, 0, 0, \omega)$ Quantum numbers are $\sigma = a, b, \theta$

It can be shown that $W^{\mu}_{\ \nu}$ is

$$W(a, b, \theta) = \underbrace{\begin{pmatrix} 1+\xi & a & b & -\xi \\ a & 1 & 0 & -a \\ b & 0 & 1 & -b \\ \xi & a & b & 1-\xi \end{pmatrix}}_{S(a,b)} \underbrace{\begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & \cos \theta & -\sin \theta & 0 \\ 0 & \sin \theta & \cos \theta & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}}_{R(\theta)}, \quad \xi = \frac{a^2 + b^2}{2}$$
infinitesimally
$$\begin{pmatrix} 1 & a & b & 0 \\ a & 1 & -\theta & -a \\ b & \theta & 1 & -b \\ 0 & a & b & 1 \end{pmatrix} = 1 + ia\underbrace{(J_2 + K_1)}_{A} + ib\underbrace{(-J_1 + K_2)}_{B} + i\theta J_3$$

Andrew Lifson

Spin Discussion

Quantum Numbers of Massless Little Group ISO(2)

Wigner's Quantum Mechanics

Poincaré and little groups Massive Particles and Spin Massless Particles and Helicity

Covariant Operators P and W

Spinor-Helicity Formalism

Traditional ME example Basics of Spinor Helicity Simple Spinor-Hel Example Gauge Bosons and Example

Spinor-Helicity and the Little Group

Three-Point Amplitudes Amplitude Game

Standard momentum $k^{\mu} = (\omega, 0, 0, \omega)$ Little group generated by $W^{\mu}_{\nu}(a, b, \theta) = 1 + iaA + ibB + i\theta J_3$ Quantum numbers are $\sigma = a, b, \theta$ Commutation relations: $[J_3, A] = iB$, $[J_3, B] = iA$, [A, B] = 0

To calculate a, b, θ first diagonalise a, b:

$$\mathbf{A}\psi_{\mathbf{k},\mathbf{a},\mathbf{b}} = \mathbf{a}\psi_{\mathbf{k},\mathbf{a},\mathbf{b}}$$

$$B\psi_{k,a,b}=b\psi_{k,a,b}$$

Then define full state as:

$$\psi_{k,a,b,\theta} \equiv e^{-i\theta J_3} \psi_{k,a,b}$$

$$A\psi_{k,a,b,\theta} = \underbrace{e^{-i\theta J_3} e^{i\theta J_3}}_{1} A \underbrace{e^{-i\theta J_3} \psi_{k,a,b}}_{\text{definition}}$$
$$= e^{-i\theta J_3} (\underbrace{A\cos\theta - B\sin\theta}_{e^{i\theta J_3} A e^{-i\theta J_3}}) \psi_{k,a,b}$$
$$= (a\cos\theta - b\sin\theta) \psi_{k,a,b,\theta}$$

Calculate eigenvalue of A on full state:

Quantum Numbers of Massless Little Group ISO(2)

Wigner's Quantum Mechanics

Poincaré and little groups Massive Particles and Spin Massless Particles and Helicity

Covariant Operators P and W

Spinor-Helicity Formalism

Traditional ME example Basics of Spinor Helicity Simple Spinor-Hel Example Gauge Bosons and Example

Spinor-Helicity and the Little Group

Three-Point Amplitudes Amplitude Game

Standard momentum $k^{\mu} = (\omega, 0, 0, \omega)$ Little group generated by $W^{\mu}_{\nu}(a, b, \theta) = 1 + iaA + ibB + i\theta J_3$ Quantum numbers are $\sigma = a, b, \theta$ Commutation relations: $[J_3, A] = iB$, $[J_3, B] = iA$, [A, B] = 0

To calculate a, b, θ first diagonalise a, b:

•
$$A\psi_{k,a,b} = a\psi_{k,a,b}$$

$$B\psi_{k,a,b}=b\psi_{k,a,b}$$

Then define full state as:

•
$$\psi_{\mathbf{k},\mathbf{a},\mathbf{b},\theta} \equiv \mathbf{e}^{-i\theta J_3} \psi_{\mathbf{k},\mathbf{a},\mathbf{b}}$$

$$A\psi_{k,a,b,\theta} = \underbrace{e^{-i\theta J_3} e^{i\theta J_3}}_{1} A \underbrace{e^{-i\theta J_3} \psi_{k,a,b}}_{\text{definition}}$$
$$= e^{-i\theta J_3} (\underbrace{A\cos\theta - B\sin\theta}_{e^{i\theta J_3}Ae^{-i\theta J_3}}) \psi_{k,a,b}$$
$$= (a\cos\theta - b\sin\theta) \psi_{k,a,b,\theta}$$

Calculate eigenvalue of A on full state:

Conclusion: Unless a = b = 0, $\theta \equiv$ continuous and \exists infinity of states

Andrew Lifson

Spin Discussion

Quantum Numbers of Massless Little Group ISO(2)

Wigner's Quantum Mechanics

Poincaré and little groups Massive Particles and Spin Massless Particles and Helicity

Covariant Operators P and W

Spinor-Helicity Formalism

Traditional ME example Basics of Spinor Helicity Simple Spinor-Hel Example Gauge Bosons and Example

Spinor-Helicity and the Little Group

Three-Point Amplitudes Amplitude Game

Standard momentum $k^{\mu} = (\omega, 0, 0, \omega)$ Little group generated by $W^{\mu}_{\nu}(a, b, \theta) = 1 + iaA + ibB + i\theta J_3$ Quantum numbers are either $\sigma = a, b, \theta$, with θ continuous or Quantum numbers are a = b = 0 and $j_3 = \pm j$ = helicity

We don't see states with such a continuous parameter so two options: Predict a new undiscovered type of particle

See e.g. hep-th:1302.1198, hep-th:1302.1577, hep-th:1302.3225, and hep-th:1404.0675

2 Assume a = b = 0 for physical states

- Use topology to conclude that $j_3 \equiv J_3$ eigenvalue is quantised
 - SL(2, \mathbb{C}) is universal covering of SO(2) so rotation by $4\pi \equiv$ identity
- J₃ measures spin along motion \equiv helicity

Conclusion: Only quantum number for massless is $\sigma = j_3$ = helicity

Massless particles

Wigner's Quantum Mechanics

Poincaré and little groups Massive Particles and Spin Massless Particles and Helicity

Spinor-Helicity Formalism

Traditional ME example Basics of Spinor Helicity Simple Spinor-Hel Example Gauge Bosons and Example

Spinor-Helicity and the Little Group

Three-Point Amplitudes Amplitude Game

Standard momentum $k^{\mu} = (\omega, 0, 0, \omega)$ Physical particles: little group generated by $W^{\mu}_{\ \nu}(a, b, \theta) = 1 + i\theta J_3$ Quantum number is $\sigma = j_3$ = helicity

Some notes:

- It is entirely natural to consider h = + as a different particle to h = -
- If parity conserved: $\psi_{\vec{k},\sigma} \stackrel{\text{parity}}{\longrightarrow} \psi_{-\vec{k},\sigma}$ so $h \to -h$
- \Rightarrow consider $h = \pm$ as two reps of same particle
- Any massless particles (e.g. graviton, photon) have exactly two d.o.f
- No concept of total spin and spin along a direction of motion

(Quadratic) Casimirs of Poincaré Algebra

Wigner's Quantum Mechanics

Poincaré and little groups Massive Particles and Spin Massless Particles and Helicity Covariant Operators P and W

Spinor-Helicity Formalism

Traditional ME example Basics of Spinor Helicity Simple Spinor-Hel Example Gauge Bosons and Example

Spinor-Helicity and the Little Group

Three-Point Amplitudes Amplitude Game

The two quadratic Casimirs of Poincaré algebra

$$P^{2} = m^{2}$$
 and $W^{2} = -m^{2}j(j+1) \stackrel{m=0}{=} -\omega^{2}(A^{2} + B^{2})$

• $P_{\mu} = i \frac{\partial}{\partial x^{\mu}}$ generates translations

•
$$W^{\mu}=-rac{1}{2}\epsilon^{\mu
u\lambda\omega}P_{
u}J_{\lambda\omega}$$
 generates little group

- W^µ called Pauli-Lubanski pseudovector
- $(W^{\mu}/m)^2 = -j(j+1) \Rightarrow W^{\mu}/m$ is a covariant spin operator!

Covariant (massive) spin-1/2 operator

Wigner's Quantum Mechanics

Poincaré and little groups Massive Particles and Spin Massless Particles and Helicity Covariant Operators P and W

Spinor-Helicity Formalism

Traditional ME example Basics of Spinor Helicity Simple Spinor-Hel Example Gauge Bosons and Example

Spinor-Helicity and the Little Group

Three-Point Amplitudes Amplitude Game

Using Pauli-Lubanski (pseudo)vector

$$\frac{1}{2}\Sigma^{\mu} \equiv \frac{W^{\mu}}{m} = -\frac{1}{4m} \epsilon^{\mu\nu\lambda\omega} \mathcal{P}_{\nu}\sigma_{\lambda\omega} , \qquad \sigma^{\mu\nu} = \frac{i}{2} \left[\gamma^{\mu}, \gamma^{\nu}\right] \stackrel{\text{spin}-1/2}{=} 2J^{\mu\nu}$$

• Check
$$\Sigma^{\mu}$$
 for the rest frame $P^{\mu} \to k^{\mu} = (m, 0, 0, 0)$
 $\frac{1}{2}\Sigma^{i} \stackrel{\text{rest}}{=} \frac{i}{4} \epsilon^{ijk} \gamma^{j} \gamma^{k} = \frac{1}{2} \gamma^{5} \gamma^{0} \gamma^{i} = \frac{1}{2} \begin{pmatrix} \sigma^{i} & 0 \\ 0 & \sigma^{i} \end{pmatrix}, \qquad \frac{1}{2}\Sigma^{0} \stackrel{\text{rest}}{=} 0,$

• We can measure
$$\Sigma^{\mu}$$
 in direction $s^{\mu}, s^{\mu} \stackrel{\text{rest}}{=} (0, \hat{\mathbf{s}})$ using $-\frac{\Sigma^{\mu}s_{\mu}}{2} = \frac{1}{4m} \epsilon^{\mu\nu\lambda\omega} s_{\mu} P_{\nu} \sigma_{\lambda\omega}$

Above shows $s \cdot P = \Sigma \cdot P = 0$, $s^2 = -1$ and (with a bit of algebra)

 $-\frac{\Sigma^{\mu}s_{\mu}}{2} = \frac{1}{2m}\gamma^{5} \not s \not P = \underbrace{\frac{1}{2}\gamma^{5} \not s}_{\not P \psi = m\psi} \equiv operator \text{ measuring spin of spinor along } s^{\mu}$

Poincaré and little groups Massive Particles and Spin Massless Particles and Helicity Covariant Operators P and W

Spinor-Helicity Formalism

Traditional ME example Basics of Spinor Helicity Simple Spinor-Hel Example Gauge Bosons and Example

Spinor-Helicity and the Little Group

Three-Point Amplitudes Amplitude Game

Spinor-Helicity Formalism

Traditional QFT: a Simple Example

Wigner's Quantum Mechanics

Poincaré and little groups Massive Particles and Spin Massless Particles and Helicity Covariant Operators P and W

Spinor-Helicity Formalism

Traditional ME example

Basics of Spinor Helicity Simple Spinor-Hel Example Gauge Bosons and Example

Spinor-Helicity and the Little Group

Three-Point Amplitudes Amplitude Game

- Keep all particles unpolarised
- Obtain amplitude as matrix

 $\sim [ar{v}_r(p_2)\gamma^\mu u_s(p_1)][ar{u}_t(p_4)\gamma_\mu v_w(p_3)]$

Traditional QFT: a Simple Example

Wigner's Quantum Mechanics

Poincaré and little groups Massive Particles and Spin Massless Particles and Helicity Covariant Operators P and W

Spinor-Helicity Formalism

Traditional ME example

Basics of Spinor Helicity Simple Spinor-Hel Example Gauge Bosons and Example

Spinor-Helicity and the Little Group

Three-Point Amplitudes Amplitude Game

- Keep all particles unpolarised
- Obtain amplitude as matrix
- Square the matrix amplitude
 - Spin states are orthogonal

 $\sim \sum_{r,s,t,w} [\bar{v}_r(\rho_2)\gamma^{\mu}u_s(\rho_1)][\bar{u}_t(\rho_4)\gamma_{\mu}v_w(\rho_3)]$ $\times [\bar{u}_s(\rho_1)\gamma^{\nu}v_r(\rho_2)][\bar{v}_w(\rho_3)\gamma_{\nu}u_t(\rho_4)]$

Traditional QFT: a Simple Example

Wigner's Quantum Mechanics

Poincaré and little groups Massive Particles and Spin Massless Particles and Helicity Covariant Operators P and W

Spinor-Helicity Formalism

Traditional ME example

Basics of Spinor Helicity Simple Spinor-Hel Example Gauge Bosons and Example

Spinor-Helicity and the Little Group

Three-Point Amplitudes Amplitude Game

- Keep all particles unpolarised
- Obtain amplitude as matrix
- Square the matrix amplitude
 - Spin states are orthogonal
- Move components around

- $\sim \sum_{r,s,t,w} [\bar{v}_r(\rho_2)\gamma^{\mu}u_s(\rho_1)][\bar{u}_t(\rho_4)\gamma_{\mu}v_w(\rho_3)]$ $\times [\bar{u}_s(\rho_1)\gamma^{\nu}v_r(\rho_2)][\bar{v}_w(\rho_3)\gamma_{\nu}u_t(\rho_4)]$
- $\sim \sum_{r,s,t,w} [\gamma^{\nu} v_r(p_2) \bar{v}_r(p_2) \gamma^{\mu} u_s(p_1) \bar{u}_s(p_1)]$

 $\times [\gamma_{\nu} u_t(p_4) \overline{u}_t(p_4) \gamma_{\mu} v_w(p_3) \overline{v}_w(p_3)]$

Poincaré and little groups Massive Particles and Spin Massless Particles and Helicity Covariant Operators P and W

Spinor-Helicity Formalism

Traditional ME example

Basics of Spinor Helicity Simple Spinor-Hel Example Gauge Bosons and Example

Spinor-Helicity and the Little Group

Three-Point Amplitudes Amplitude Game

- Keep all particles unpolarised
- Obtain amplitude as matrix
- Square the matrix amplitude
 Spin states are orthogonal
- Move components around
- Use spin sums
- Take trace of fermionic structure
- Requires identities of γ^{μ}
- Simplify

$$\begin{split} & \sim & \mathrm{Tr} \big[\gamma^{\nu} (\not\!\!p_2 - m_{\!\!\!e}) \gamma^{\mu} (\not\!\!p_1 + m_{\!\!\!e}) \big] \\ & \times & \mathrm{Tr} \big[\gamma_{\nu} (\not\!\!p_4 + m_{\!\!\!\mu}) \gamma_{\mu} (\not\!\!p_3 + m_{\!\!\!\mu}) \big] \end{split}$$

$$\begin{split} &\operatorname{Tr} \big[\gamma^{\mu_1} \gamma^{\mu_2} \big] = 4 g^{\mu_1 \mu_2} \\ &\operatorname{Tr} \big[\gamma^{\mu_1} \dots \gamma^{\mu_4} \big] = \\ & 4 \big(g^{\mu_1 \mu_2} g^{\mu_3 \mu_4} - g^{\mu_1 \mu_3} g^{\mu_2 \mu_4} + g^{\mu_1 \mu_4} g^{\mu_3 \mu_2} \big) \\ &\operatorname{Tr} \big[\gamma^{\mu_1} \dots \gamma^{\mu_{2n+1}} \big] = 0 \end{split}$$

Andrew Lifson

Spin Discussion

The Helicity Basis: what and why?

Wigner's Quantum Mechanics

Poincaré and little groups Massive Particles and Spin Massless Particles and Helicity Covariant Operators P and W

Spinor-Helicity Formalism

Traditional ME example

Basics of Spinor Helicity Simple Spinor-Hel Example Gauge Bosons and Example

Spinor-Helicity and the Little Group

Three-Point Amplitudes Amplitude Game

Helicity basis means each particle has a specific helicity Lorentz algebra $so(3, 1) \cong su(2) \oplus su(2)$ Consider massless particles

I ldeal for (approximately) massless particles (e.g. most particles at LHC)

- Helicity is the quantum number of the massless little group
- For incoming (anti)spinors chirality $((\frac{1}{2}, 0) \text{ or } (0, \frac{1}{2})) \sim \text{helicity } (-\frac{1}{2} \text{ or } +\frac{1}{2})$
- For outgoing (anti)spinors chirality $((\frac{1}{2}, 0) \text{ or } (0, \frac{1}{2})) \sim \text{helicity } (-\frac{1}{2} \text{ or } +\frac{1}{2})$
- Amplitude itself is a number rather than a matrix
 - Easy to square
- Different helicity amplitudes are orthogonal
 - Only sum over helicities after squaring

Spinor-Helicity: its Building Blocks

Wigner's Quantum Mechanics

Poincaré and little groups Massive Particles and Spin Massless Particles and Helicity Covariant Operators P and W

Spinor-Helicity Formalism

Traditional ME example

```
Basics of Spinor Helicity
```

Simple Spinor-Hel Example Gauge Bosons and Example

Spinor-Helicity and the Little Group

Three-Point Amplitudes Amplitude Game

Lorentz algebra $so(3, 1) \cong su(2) \oplus su(2)$ Consider massless particles: chirality ~ helicity

Spinors (use chiral basis):

$$u^{+}(p) = v^{-}(p) = \begin{pmatrix} 0 \\ |p \rangle \end{pmatrix} \qquad u^{-}(p) = v^{+}(p) = \begin{pmatrix} |p] \\ 0 \end{pmatrix}$$

$$\bar{u}^{+}(p) = \bar{v}^{-}(p) = ([p| \ 0) \qquad \bar{u}^{-}(p) = \bar{v}^{+}(p) = (0 \ \langle p|)$$

$$\gamma^{5} = \begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix} \qquad P_{L/R} = \frac{1 \mp \gamma^{5}}{2}$$

Amplitude written in terms of Lorentz-invariant spinor inner products

 $\langle ij \rangle = -\langle ji \rangle \equiv \langle i||j \rangle$ and $[ij] = -[ji] \equiv [i||j]$

- These are well known complex numbers, $\langle ij \rangle \sim [ij] \sim \sqrt{2p_i \cdot p_j}$
- Cannot contract left and right: $\langle i | | j \rangle \equiv \bar{u}(p_i) P_R P_L u(p_j) = 0$
 - Objects live in different Lorentz reps so a contraction makes no sense!

Spinor-Helicity: Vectors and Removing μ Indices

Wigner's Quantum Mechanics

Poincaré and little groups Massive Particles and Spin Massless Particles and Helicity Covariant Operators P and W

Spinor-Helicity Formalism

Traditional ME example

Basics of Spinor Helicity Simple Spinor-Hel Example Gauge Bosons and Example

Spinor-Helicity and the Little Group

Three-Point Amplitude Amplitude Game

Lorentz algebra $so(3, 1) \cong su(2) \oplus su(2)$ Consider massless particles: chirality ~ helicity

Dirac matrices in chiral basis

$$\gamma^\mu = egin{pmatrix} 0 & \sqrt{2} au^\mu \ \sqrt{2} ar{ au}^\mu & 0 \end{pmatrix} \qquad \sqrt{2} au^\mu = (1,ec{\sigma}), \ \sqrt{2} ar{ au}^\mu = (1,-ec{\sigma}),$$

Remove $\tau/\bar{\tau}$ matrices in amplitude with

$$\underbrace{\langle \boldsymbol{i} | \bar{\tau}^{\mu} | \boldsymbol{j}] [\boldsymbol{k} | \tau_{\mu} | \boldsymbol{l} \rangle = \langle \boldsymbol{i} \boldsymbol{l} \rangle [\boldsymbol{k} \boldsymbol{j}]}_{\text{Fierz identity}},$$

$$\underbrace{\langle i|\bar{\tau}^{\mu}|j] = [j|\tau^{\mu}|i\rangle}_{\text{Transform}}$$

Charge Conjugation

Express (massless) p^{μ} in terms of spinors

$$p^{\mu} = rac{[p| au^{\mu}|p
angle}{\sqrt{2}} = rac{\langle p|ar{ au}^{\mu}|p]}{\sqrt{2}}, \quad \sqrt{2}p^{\mu} au_{\mu} \equiv p = |p]\langle p|, \quad \sqrt{2}p^{\mu}ar{ au}_{\mu} \equiv ar{p} = |p
angle[p]$$

Andrew Lifson

Spin Discussion

Our Simple Example using Spinor Helicity

Wigner's Quantum Mechanics

Poincaré and little groups Massive Particles and Spin Massless Particles and Helicity Covariant Operators P and W

Spinor-Helicity Formalism

- Traditional ME example Basics of Spinor Helicity
- Simple Spinor-Hel Example

Gauge Bosons and Example

Spinor-Helicity and the Little Group

Three-Point Amplitudes Amplitude Game

Lorentz algebra $so(3, 1) \cong su(2) \oplus su(2)$ Consider massless particles: chirality ~ helicity

- Explicit helicities for external particles
- Now diagram is a complex number
 - Easy to square
 - Square first, then sum over helicities
 - Some helicity configurations vanish
 - CP-invariance relates helicity configurations

 $\sim \langle p_2 | \bar{\tau}^{\mu} | p_1] \langle p_4 | \bar{\tau}_{\mu} | p_3]$ = $[p_1 | \tau^{\mu} | p_2 \rangle \langle p_4 | \bar{\tau}_{\mu} | p_3]$ = $\langle p_4 p_2 \rangle [p_1 p_3]$

Our Simple Example using Spinor Helicity

Wigner's Quantum Mechanics

Poincaré and little groups Massive Particles and Spin Massless Particles and Helicity Covariant Operators P and W

Spinor-Helicity Formalism

- Traditional ME example Basics of Spinor Helicity Simple Spinor-Hel Example
- Gauge Bosons and Example

Spinor-Helicity and the Little Group

Three-Point Amplitudes Amplitude Game

Lorentz algebra $so(3, 1) \cong su(2) \oplus su(2)$ Consider massless particles: chirality ~ helicity

- Explicit helicities for external particles
- Now diagram is a complex number
 - Easy to square
 - Square first, then sum over helicities
 - Some helicity configurations vanish
 - CP-invariance relates helicity configurations

 $\sim [p_2 | \tau^\mu | p_1
angle \langle p_4 | ar au_\mu | p_3] = \langle p_4 p_1
angle [p_2 p_3]$

Our Simple Example using Spinor Helicity

Wigner's Quantum Mechanics

Poincaré and little groups Massive Particles and Spin Massless Particles and Helicity Covariant Operators P and W

Spinor-Helicity Formalism

Traditional ME example Basics of Spinor Helicity Simple Spinor-Hel Example

Gauge Bosons and Example

Spinor-Helicity and the Little Group

Three-Point Amplitude Amplitude Game

Lorentz algebra $so(3,1) \cong su(2) \oplus su(2)$ Consider massless particles: chirality ~ helicity

- Explicit helicities for external particles
- Now diagram is a complex number
 - Easy to square
- Square first, then sum over helicities
 - Some helicity configurations vanish
 - CP-invariance relates helicity configurations

Spinor-Helicity: Gauge Bosons in Terms of Spinors

Wigner's Quantum Mechanics

Poincaré and little groups Massive Particles and Spin Massless Particles and Helicity Covariant Operators P and W

Spinor-Helicity Formalism

Traditional ME example Basics of Spinor Helicity Simple Spinor-Hel Example Gauge Bosons and Example

Spinor-Helicity and the Little Group

Three-Point Amplitude Amplitude Game

Lorentz algebra $so(3, 1) \cong su(2) \oplus su(2)$ Consider massless particles: chirality ~ helicity

Outgoing polarisation vectors:

$$\epsilon_{\pm}^{\mu}(p,r) = \frac{\langle r|\bar{\tau}^{\mu}|p\rangle}{\langle rp\rangle}, \qquad \epsilon_{\pm}^{\mu}(p,r) = \frac{[r|\tau^{\mu}|p\rangle}{[pr]}$$

$$p \cdot \epsilon_{\pm}(p,r) = \underbrace{\frac{\langle r|p^{\mu}\bar{\tau}_{\mu}|p]}{\langle rp\rangle}}_{\text{Weyl eq. } p^{\mu}\bar{\tau}_{\mu}|p]=0} \qquad p \cdot \epsilon_{\pm}^{\mu}(p,r) = \underbrace{\frac{[r|p^{\mu}\tau_{\mu}|p\rangle}{[pr]}}_{\text{Weyl eq. } p^{\mu}\tau_{\mu}|p\rangle=0}$$

$$\epsilon_{\pm}(p,r) \cdot (\epsilon_{-})^{*}(p,r) = \underbrace{\frac{\langle r|\bar{\tau}^{\mu}|p]}{\langle rp\rangle}}_{\epsilon_{\pm}=(\epsilon_{\pm})^{*}} = \frac{\langle rp\rangle[rp]}{\langle rp\rangle[pr]} = \underbrace{-1}_{[pr]=-[rp]}$$

Andrew Lifson

Spin Discussion

Spinor-Helicity: Gauge Bosons in Terms of Spinors

Wigner's Quantur Mechanics

Poincaré and little groups Massive Particles and Spin Massless Particles and Helicity Covariant Operators P and W

Spinor-Helicity Formalism

Traditional ME example Basics of Spinor Helicity Simple Spinor-Hel Example Gauge Bosons and Example

Spinor-Helicity and the Little Group

Three-Point Amplitudes Amplitude Game

Lorentz algebra $so(3, 1) \cong su(2) \oplus su(2)$ Consider massless particles: chirality ~ helicity

Outgoing polarisation vectors:

$$\epsilon^{\mu}_{+}(p,r) = rac{\langle r| ar{ au}^{\mu} | p]}{\langle r p
angle} , \qquad \epsilon^{\mu}_{-}(p,r) = rac{[r| au^{\mu} | p
angle}{[pr]}$$

- **r** is a (massless) arbitrary reference momentum ($p \cdot r \neq 0$)
- Different r choices correspond to different gauges

$$\epsilon^{\mu}_{+}(p,r') - \epsilon^{\mu}_{+}(p,r) = -p^{\mu} rac{\langle r'r
angle}{\langle r'p
angle \langle rp
angle}$$

Gauge invariant quantities must be *r*-invariant
 Choose *r* as conveniently as possible (remember ⟨*ij*⟩ = −⟨*ji*⟩ s.t. ⟨*ii*⟩ = 0)
 Variance under *r* → *r*′ good check of gauge invariance of (partial) amplitude

Another Spinor-Helicity Example: $e^+e^- \rightarrow \gamma\gamma$

Wigner's Quantum Mechanics

Poincaré and little groups Massive Particles and Spin Massless Particles and Helicity Covariant Operators P and W

Spinor-Helicity Formalism

Traditional ME example Basics of Spinor Helicity Simple Spinor-Hel Example Gauge Bosons and Example

Spinor-Helicity and the Little Group

Three-Point Amplitudes Amplitude Game

Another Spinor-Helicity Example $e^+e^- \rightarrow \gamma\gamma$

Wigner's Quantum Mechanics

Poincaré and little groups Massive Particles and Spin Massless Particles and Helicity Covariant Operators P and W

Spinor-Helicity Formalism

Traditional ME example Basics of Spinor Helicity Simple Spinor-Hel Example Gauge Bosons and Example

Spinor-Helicity and the Little Group

Three-Point Amplitudes Amplitude Game

Add two diagrams together

Another Spinor-Helicity Example $e^+e^- \rightarrow \gamma\gamma$

Wigner's Quantum Mechanics

Poincaré and little groups Massive Particles and Spin Massless Particles and Helicity Covariant Operators P and W

Spinor-Helicity Formalism

Traditional ME example Basics of Spinor Helicity Simple Spinor-Hel Example Gauge Bosons and Example

Spinor-Helicity and the Little Group

Three-Point Amplitudes Amplitude Game

Choose gauge d.o.f. wisely $(r_4 = p_1, r_3 = p_2 \text{ s.t. } \langle 1r_4 \rangle = [r_32] = 0)$ Recall: $\langle ii \rangle = [jj] = 0$ due to antisymmetry

Poincaré and little groups Massive Particles and Spin Massless Particles and Helicity Covariant Operators P and W

Spinor-Helicity Formalism

Traditional ME example Basics of Spinor Helicity Simple Spinor-Hel Example Gauge Bosons and Example

Spinor-Helicity and the Little Group

Three-Point Amplitudes Amplitude Game

Spinor-Helicity and the Little Group

Little Group and Spinor Helicity

Wigner's Quantum Mechanics

Poincaré and little groups Massive Particles and Spin Massless Particles and Helicity Covariant Operators P and W

Spinor-Helicity Formalism

Traditional ME example Basics of Spinor Helicity Simple Spinor-Hel Example Gauge Bosons and Example

Spinor-Helicity and the Little Group

Three-Point Amplitudes Amplitude Game

Little Group

Group of transformations that leaves p^{μ} invariant

- Recall: $p = |p] \langle p|$ and $\overline{p} = |p\rangle [p|$
- \blacksquare \Rightarrow under little group transformation:
 - $\langle \rho | \to t \langle \rho | \text{ and } | \rho \rangle \to t | \rho \rangle$
 - $|\rho] \to t^{-1}|\rho] \text{ and } [\rho] \to t^{-1}[\rho]$ $\rho \in \mathbb{R} \Rightarrow t = e^{i\theta/2} = e^{i\theta|h|}$
 - $p \in \mathbb{C} \Rightarrow t$ more general
- Recall: $\epsilon^{\mu}_{+}(p,r) = \frac{\langle r|\bar{\tau}^{\mu}|p\rangle}{\langle rp\rangle}$ and $\epsilon^{\mu}_{-}(p,r) = \frac{[r|\tau^{\mu}|p\rangle}{[pr]}$ (p outgoing)
- $\blacksquare \Rightarrow$ under little group transformation:
 - $\begin{array}{c} \epsilon^{\mu}_{+} \rightarrow t^{-2} \epsilon^{\mu}_{+} \\ \epsilon^{\mu}_{-} \rightarrow t^{2} \epsilon^{\mu}_{-} \end{array}$

Wigner's Quantum Mechanics

Poincaré and little groups Massive Particles and Spin Massless Particles and Helicity Covariant Operators P and W

Spinor-Helicity Formalism

Traditional ME example Basics of Spinor Helicity Simple Spinor-Hel Example Gauge Bosons and Example

Spinor-Helicity and the Little Group

Three-Point Amplitudes Amplitude Game

Transform (outgoing) particle *i* under little group $\mathcal{M}(|i\rangle, |i], h_i) \rightarrow \mathcal{M}(t|i\rangle, t^{-1}|i], h_i) = t^{-2h_i} \mathcal{M}(|i\rangle, |i], h_i)$

Ansatz: An amplitude can be written either entirely in terms of $\langle ij \rangle$ or $[ij] \Rightarrow$ either:

$$\begin{array}{l} \blacksquare \ \mathcal{M}(1^{h_1}, 2^{h_2}, 3^{h_3}) = c_{\text{angle}} \langle 12 \rangle^{x_{12}} \langle 23 \rangle^{x_{23}} \langle 31 \rangle^{x_{31}} \text{ or} \\ \blacksquare \ \mathcal{M}(1^{h_1}, 2^{h_2}, 3^{h_3}) = c_{\text{square}} [12]^{y_{12}} [23]^{y_{23}} [31]^{y_{31}} \end{array}$$

Wigner's Quantum Mechanics

Poincaré and little groups Massive Particles and Spin Massless Particles and Helicity Covariant Operators P and W

Spinor-Helicity Formalism

Traditional ME example Basics of Spinor Helicity Simple Spinor-Hel Example Gauge Bosons and Example

Spinor-Helicity and the Little Group

Amplitude Game

Transform (outgoing) particle *i* under little group $\mathcal{M}(|i\rangle, |i|, h_i) \rightarrow \mathcal{M}(t|i\rangle, t^{-1}|i|, h_i) = t^{-2h_i}\mathcal{M}(|i\rangle, |i|, h_i)$

Ansatz: An amplitude can be written either entirely in terms of $\langle ij \rangle$ or $[ij] \Rightarrow$ either:

$$\begin{array}{l} \bullet \ \mathcal{M}(1^{h_1}, 2^{h_2}, 3^{h_3}) = c_{\text{angle}} \langle 12 \rangle^{x_{12}} \langle 23 \rangle^{x_{23}} \langle 31 \rangle^{x_{31}} \text{ or} \\ \bullet \ \mathcal{M}(1^{h_1}, 2^{h_2}, 3^{h_3}) = c_{\text{square}} [12]^{y_{12}} [23]^{y_{23}} [31]^{y_{31}} \end{array}$$

Scale particle 1:
$$\Rightarrow$$
 either:

$$\blacksquare \ \mathcal{M} \rightarrow t^{-2h_1}\mathcal{M} = t^{x_{12}+x_{31}}\mathcal{M} \Rightarrow -2h_1 = x_{12}+x_{31} \text{ or }$$

$$\blacksquare \mathcal{M} \to t^{-2h_1}\mathcal{M} = t^{-y_{12}-y_{31}}\mathcal{M} \Rightarrow 2h_1 = y_{12} + y_{31}$$

Wigner's Quantum Mechanics

Poincaré and little groups Massive Particles and Spin Massless Particles and Helicity Covariant Operators P and W

Spinor-Helicity Formalism

Traditional ME example Basics of Spinor Helicity Simple Spinor-Hel Example Gauge Bosons and Example

Spinor-Helicity and the Little Group Three-Point Amplitudes

Amplitude Game

Transform (outgoing) particle *i* under little group $\mathcal{M}(|i\rangle, |i], h_i) \rightarrow \mathcal{M}(t|i\rangle, t^{-1}|i], h_i) = t^{-2h_i}\mathcal{M}(|i\rangle, |i], h_i)$

Ansatz: An amplitude can be written either entirely in terms of $\langle ij \rangle$ or $[ij] \Rightarrow$ either:

$$\begin{array}{l} \blacksquare \ \mathcal{M}(1^{h_1}, 2^{h_2}, 3^{h_3}) = c_{\text{angle}} \langle 12 \rangle^{x_{12}} \langle 23 \rangle^{x_{23}} \langle 31 \rangle^{x_{31}} \text{ or} \\ \blacksquare \ \mathcal{M}(1^{h_1}, 2^{h_2}, 3^{h_3}) = c_{\text{square}} [12]^{y_{12}} [23]^{y_{23}} [31]^{y_{31}} \end{array}$$

Scale particle
$$1: \Rightarrow$$
 either:

•
$$\mathcal{M}
ightarrow t^{-2h_1}\mathcal{M} = t^{x_{12}+x_{31}}\mathcal{M} \Rightarrow -2h_1 = x_{12}+x_{31}$$
 or

$$\blacksquare \mathcal{M} \to t^{-2h_1}\mathcal{M} = t^{-y_{12}-y_{31}}\mathcal{M} \Rightarrow 2h_1 = y_{12} + y_{31}$$

Solving for all particles gives:

$$\begin{array}{l} \blacksquare \ \mathcal{M}(1^{h_1}, 2^{h_2}, 3^{h_3}) = c_{\text{angle}} \langle 12 \rangle^{h_3 - h_1 - h_2} \langle 23 \rangle^{h_1 - h_2 - h_3} \langle 31 \rangle^{h_2 - h_1 - h_3} \text{ or} \\ \blacksquare \ \mathcal{M}(1^{h_1}, 2^{h_2}, 3^{h_3}) = c_{\text{square}} [12]^{h_1 + h_2 - h_3} [23]^{h_2 + h_3 - h_1} [31]^{h_1 + h_3 - h_2} \end{aligned}$$

Wigner's Quantum Mechanics

Poincaré and little groups Massive Particles and Spin Massless Particles and Helicity Covariant Operators P and W

Spinor-Helicity Formalism

Traditional ME example Basics of Spinor Helicity Simple Spinor-Hel Example Gauge Bosons and Example

Spinor-Helicity and the Little Group

Three-Point Amplitudes

Amplitude Game

Three-point amplitude possible solutions

$$\mathcal{M}(1^{h_1}, 2^{h_2}, 3^{h_3}) = c_{ ext{angle}} \langle 12
angle^{h_3 - h_1 - h_2} \langle 23
angle^{h_1 - h_2 - h_3} \langle 31
angle^{h_2 - h_1 - h_3} \text{ or} \ \mathcal{M}(1^{h_1}, 2^{h_2}, 3^{h_3}) = c_{ ext{square}} [12]^{h_1 + h_2 - h_3} [23]^{h_2 + h_3 - h_1} [31]^{h_1 + h_3 - h_2}$$

- Which of our two solutions to choose??
- Use mass dimension: $[\langle ij \rangle] = [[ij]] = [p]$ and $[\mathcal{M}_n] = [p]^{4-n}$
 - Three-point amplitudes \mathcal{M}_3 have $[\mathcal{M}_3] = [p]$
 - Choose whichever option gives correct mass dimension of coupling *c*

Wigner's Quantum Mechanics

Poincaré and little groups Massive Particles and Spin Massless Particles and Helicity Covariant Operators P and W

Spinor-Helicity Formalism

Traditional ME example Basics of Spinor Helicity Simple Spinor-Hel Example Gauge Bosons and Example

Spinor-Helicity and the Little Group Three-Point Amplitudes Amplitude Game

Three-point amplitude possible solutions

$$\mathcal{M}(1^{h_1}, 2^{h_2}, 3^{h_3}) = c_{ ext{angle}} \langle 12
angle^{h_3 - h_1 - h_2} \langle 23
angle^{h_1 - h_2 - h_3} \langle 31
angle^{h_2 - h_1 - h_3} \text{ or} \ \mathcal{M}(1^{h_1}, 2^{h_2}, 3^{h_3}) = c_{ ext{square}} [12]^{h_1 + h_2 - h_3} [23]^{h_2 + h_3 - h_1} [31]^{h_1 + h_3 - h_2}$$

- Which of our two solutions to choose??
- Use mass dimension: $[\langle ij \rangle] = [[ij]] = [p]$ and $[\mathcal{M}_n] = [p]^{4-n}$
 - Three-point amplitudes \mathcal{M}_3 have $[\mathcal{M}_3] = [p]$

Choose whichever option gives correct mass dimension of coupling c

Example: $h_1 = -h_2 = -h_3 = 1$ (e.g. three-gluon amplitude)

 $\begin{array}{l} \blacksquare \ \mathcal{M}(1^+,2^-,3^-) = c_{\text{angle}} \langle 12 \rangle^{-1} \langle 23 \rangle^3 \langle 31 \rangle^{-1} \Rightarrow c_{\text{angle}} \text{ dimensionless} \\ \blacksquare \ \mathcal{M}(1^+,2^-,3^-) = c_{\text{square}} [12]^1 [23]^{-3} [31]^1 \Rightarrow c_{\text{square}} \text{ has dim } 2 \end{array}$

Wigner's Quantun Mechanics

Poincaré and little groups Massive Particles and Spin Massless Particles and Helicity Covariant Operators P and W

Spinor-Helicity Formalism

Traditional ME example Basics of Spinor Helicity Simple Spinor-Hel Example Gauge Bosons and Example

Spinor-Helicity and the Little Group Three-Point Amplitudes Amplitude Game

Three-point amplitude possible solutions

$$\mathcal{M}(1^{h_1}, 2^{h_2}, 3^{h_3}) = c_{ ext{angle}} \langle 12
angle^{h_3 - h_1 - h_2} \langle 23
angle^{h_1 - h_2 - h_3} \langle 31
angle^{h_2 - h_1 - h_3} \text{ or} \ \mathcal{M}(1^{h_1}, 2^{h_2}, 3^{h_3}) = c_{ ext{square}} [12]^{h_1 + h_2 - h_3} [23]^{h_2 + h_3 - h_1} [31]^{h_1 + h_3 - h_2}$$

- Which of our two solutions to choose??
- Use mass dimension: $[\langle ij \rangle] = [[ij]] = [p]$ and $[\mathcal{M}_n] = [p]^{4-n}$
 - Three-point amplitudes \mathcal{M}_3 have $[\mathcal{M}_3] = [p]$
 - Choose whichever option gives correct mass dimension of coupling *c*

Example: $h_1 = -h_2 = -h_3 = 1$ (e.g. three-gluon amplitude) Correct 3-gluon amp

$$\mathcal{M}(1^+, 2^-, 3^-) = c_{\text{angle}} \langle 12 \rangle^{-1} \langle 23 \rangle^3 \langle 31 \rangle^{-1} \Rightarrow c_{\text{angle}} \text{ dimensionless}$$

$$\mathcal{M}(1^+, 2^-, 3^-) = c_{\text{square}} [12]^1 [23]^{-3} [31]^1 \Rightarrow c_{\text{square}}$$
 has dim 2

Three-point amplitudes completely fixed by little group!

Note: Requires complex momenta for non-zero amplitude

Andrew Lifson

Spin Discussion

BCFW Recursion and the MHV amplitudes

Wigner's Quantum Mechanics

Poincaré and little groups Massive Particles and Spin Massless Particles and Helicity Covariant Operators P and W

Spinor-Helicity Formalism

Traditional ME example Basics of Spinor Helicity Simple Spinor-Hel Example Gauge Bosons and Example

Spinor-Helicity and the Little Group Three-Point Amplitudes Amplitude Game

Recall: three-point amplitudes completely fixed by little group

Basic (oversimplified) idea of BCFW:

- Take known compact form of n-point amplitude
- Sum over all possible three-point amplitude attachments
- Write down compact form of (n + 1)-point amplitude
- Recurse

Example: MHV (Maximally Helicity Violating) amplitude for n-gluon scattering

$$\mathcal{M}_n(1^-, 2^-, 3^+, \cdots, n^+) = \frac{\langle 12 \rangle^4}{\langle 12 \rangle \langle 23 \rangle \cdots \langle n1 \rangle}$$

(see hep-th:0501052 and hep-ph:1308.1697 for BCFW details)

Andrew Lifson

Spin Discussion

Game Time: Guess the Theory from the Amplitude

Wigner's Quantum Mechanics

Poincaré and little groups Massive Particles and Spin Massless Particles and Helicity Covariant Operators P and W

Spinor-Helicity Formalism

Traditional ME example Basics of Spinor Helicity Simple Spinor-Hel Example Gauge Bosons and Example

Spinor-Helicity and the Little Group Three-Point Amplitudes Amplitude Game

Required Knowledge

$$\begin{array}{l} \mathcal{M}(|i\rangle,|i],h_i) \stackrel{\text{little group}}{\longrightarrow} \mathcal{M}(t|i\rangle,t^{-1}|i],h_i) = t^{-2h_i}\mathcal{M}(|i\rangle,|i],h_i) \\ [\mathcal{M}_n] = [p]^{4-n} \text{ and } [\langle ij \rangle] = [[ij]] = [p] \\ \text{All particles outgoing} \end{array}$$

Questions: (i) What are helicities? (ii) What dimension is coupling? (iii) What theory?

 $\begin{array}{l} \text{Amplitude 1: } \mathcal{M}_{5} = g_{1} \frac{[13]^{4}}{[12][23][34][45][51]} \\ \text{Amplitude 2: } \mathcal{M}_{4} = g_{2} \frac{\langle 14 \rangle \langle 24 \rangle^{2}}{\langle 12 \rangle \langle 23 \rangle \langle 34 \rangle} \\ \text{Amplitude 3: } \mathcal{M}_{4} = g_{3} \frac{\langle 12 \rangle^{7}[12]}{\langle 13 \rangle \langle 14 \rangle \langle 23 \rangle \langle 24 \rangle \langle 34 \rangle^{2}} \end{array}$

Game taken from section 2.6 of hep-ph:1308.1697

Game Time: Answer to First Amplitude

Wigner's Quantum Mechanics

Poincaré and little groups Massive Particles and Spin Massless Particles and Helicity Covariant Operators P and W

Spinor-Helicity Formalism

Traditional ME example Basics of Spinor Helicity Simple Spinor-Hel Example Gauge Bosons and Example

Spinor-Helicity and the Little Group Three-Point Amplitudes

Amplitude Game

Required Knowledge

$$\begin{split} \mathcal{M}(|i\rangle, |i], h_i) & \stackrel{\text{little group}}{\longrightarrow} \mathcal{M}(t|i\rangle, t^{-1}|i], h_i) = t^{-2h_i} \mathcal{M}(|i\rangle, |i], h_i) \\ [\mathcal{M}_n] &= [p]^{4-n} \text{ and } [\langle ij \rangle] = [[ij]] = [p] \\ \text{All particles outgoing} \end{split}$$

Questions: (i) What are helicities? (ii) What dimension is coupling? (iii) What theory?

Amplitude 1: $\mathcal{M}_5 = g_1 \frac{[13]^4}{[12][23][34][45][51]}$ (i) E.g. particle 1 under little group: $\mathcal{M}_5 \to \frac{t_1^{-4}}{t_1^{-2}}\mathcal{M}_5 \Rightarrow h_1 = 1$ All particles: $h_1 = h_3 = -h_2 = -h_4 = -h_5 = 1$ (ii) $[\mathcal{M}_5] = -1 = \begin{bmatrix} [13]^4 \\ [12][23][34][45][51] \end{bmatrix} \Rightarrow [g_2] = 0$ (iii) Yang Mills (spin-1 massless particles interacting)

Game Time: Answers

Wigner's Quantum Mechanics

Poincaré and little groups Massive Particles and Spin Massless Particles and Helicity Covariant Operators P and W

Spinor-Helicity Formalism

Traditional ME example Basics of Spinor Helicity Simple Spinor-Hel Example Gauge Bosons and Example

Spinor-Helicity and the Little Group

Amplitude Game

Required Knowledge

$$\begin{array}{l} \mathcal{M}(|i\rangle,|i],h_i) \stackrel{\text{little group}}{\longrightarrow} \mathcal{M}(t|i\rangle,t^{-1}|i],h_i) = t^{-2h_i}\mathcal{M}(|i\rangle,|i],h_i) \\ [\mathcal{M}_n] = [p]^{4-n} \text{ and } [\langle ij \rangle] = [[ij]] = [p] \\ \text{All particles outgoing} \end{array}$$

Questions: (i) What are helicities? (ii) What dimension is coupling? (iii) What theory?

Amplitude 1: $\mathcal{M}_5 = g_1 \frac{[13]^4}{[12][23][34][45][51]}$ (i) $h_1 = h_3 = -h_2 = -h_4 = -h_5 = 1$ (ii) dimensionless (iii) Yang Mills Amplitude 2: $\mathcal{M}_4 = g_2 \frac{\langle 14 \rangle \langle 24 \rangle^2}{\langle 12 \rangle \langle 23 \rangle \langle 34 \rangle}$ (i) $h_1 = h_2 = 0$ and $h_3 = -h_4 = 1$ (ii) dimensionless (iii) Scalar QED/QCD Amplitude 3: $\mathcal{M}_4 = g_3 \frac{\langle 12 \rangle^7 [12]}{\langle 13 \rangle \langle 14 \rangle \langle 23 \rangle \langle 24 \rangle \langle 34 \rangle^2}$ (i) $h_1 = h_2 = -h_3 = -h_4 = -2$ (ii) dim -2 (iii) Effective gravity

Conclusions

Wigner's Quantum Mechanics

Poincaré and little groups Massive Particles and Spin Massless Particles and Helicity Covariant Operators P and W

Spinor-Helicity Formalism

Traditional ME example Basics of Spinor Helicity Simple Spinor-Hel Example Gauge Bosons and Example

Spinor-Helicity and the Little Group

Amplitude Game

- Particles classified by their representation under *both* Lorentz and little groups
- Massive particles have total spin and spin along a given direction
- Massless particles only have helicity
- Spinor-helicity formalism simplifies amplitude calculations since amplitude is a complex number
- Using both spinor-helicity and the little group recursive amplitude calculations possible
 - These skip Feynman diagram step
 - Far more efficient