

Spin, the Little Group and Spinor-Helicity **INFORMAL SCIENCE COFFEE 12 JANUARY 2021- ANDREW LIFSON**

Aim and Reason for these Seminars

[Wigner's Quantum](#page-2-0) Mechanics

Poincaré and little groups [Massive Particles and Spin](#page-11-0) [Massless Particles and Helicity](#page-12-0) [Covariant Operators P and W](#page-17-0)

[Spinor-Helicity](#page-19-0) Formalism

[Traditional ME example](#page-20-0) [Basics of Spinor Helicity](#page-24-0) [Simple Spinor-Hel Example](#page-27-0) [Gauge Bosons and Example](#page-30-0)

[Spinor-Helicity and](#page-35-0) the Little Group

[Three-Point Amplitudes](#page-37-0) [Amplitude Game](#page-44-0)

To try and share the interesting knowledge we have gained during my PhD

First (this) seminar:

- **Very informal (questions and** interruptions welcome!)
- Aim to discuss fundamental physics that I only recently understood
- Hopefully useful to all П
- Main topics are: П
	- **Wigner's Quantum Mechanics incl.** little group
	- Spinor-helicity formalism \mathcal{L}
	- How they link together to calculate \mathcal{L} amplitudes

Second (next) seminar:

- More of a standard seminar
- Show our unique research (chirality-flow method)
	- Go from Feynman diagram to number via flow lines
	- Requires minimal work compared to standard methods
- Builds on many concepts from first seminar
- Is really cool

Poincaré and little groups [Massive Particles and Spin](#page-11-0) [Massless Particles and Helicity](#page-12-0) [Covariant Operators P and W](#page-17-0)

[Spinor-Helicity](#page-19-0) Formalism

- [Traditional ME example](#page-20-0)
- [Basics of Spinor Helicity](#page-24-0)
- [Simple Spinor-Hel Example](#page-27-0)
- [Gauge Bosons and Example](#page-30-0)

[Spinor-Helicity and](#page-35-0) the Little Group

[Three-Point Amplitudes](#page-37-0) [Amplitude Game](#page-44-0)

[Wigner's Quantum Mechanics](#page-2-0)

[Wigner's Quantum](#page-2-0) Mechanics

Poincaré and little groups

[Massive Particles and Spin](#page-11-0) [Massless Particles and Helicity](#page-12-0) [Covariant Operators P and W](#page-17-0)

[Spinor-Helicity](#page-19-0) Formalism

[Traditional ME example](#page-20-0) [Basics of Spinor Helicity](#page-24-0) [Simple Spinor-Hel Example](#page-27-0) [Gauge Bosons and Example](#page-30-0)

[Spinor-Helicity and](#page-35-0) the Little Group

[Three-Point Amplitudes](#page-37-0) [Amplitude Game](#page-44-0)

How to classify different types of particles?

Consider particle (state vector) ψ with Poincaré the only symmetry

- Lorentz transformations: $p^{\mu} \rightarrow \Lambda^{\mu}_{\ \nu} p^{\nu}$, $U(\Lambda) = e^{-\frac{i}{2}J^{\mu\nu}\omega_{\mu\nu}}$
- Translations: $p^{\mu} \rightarrow p^{\mu} + a^{\mu}$, $U(a) = e^{-i\hat{P}^{\mu}a_{\mu}}$
- Generic representation of Poincaré transformation $U(Λ, a)$
- What information can we know about this particle???
	- QN from translation *p*
	- ON from Lorentz transformations σ
- Diagnonalise translation operator $P^{\mu}\psi_{\mathsf{p},\sigma} = \mathsf{p}^{\mu}\psi_{\mathsf{p},\sigma}$

Particle Definition in Wigner's Quantum Mechanics

[Wigner's Quantum](#page-2-0) Mechanics

Poincaré and little groups

[Massive Particles and Spin](#page-11-0) [Massless Particles and Helicity](#page-12-0) [Covariant Operators P and W](#page-17-0)

[Spinor-Helicity](#page-19-0) Formalism

[Traditional ME example](#page-20-0) [Basics of Spinor Helicity](#page-24-0) [Simple Spinor-Hel Example](#page-27-0) [Gauge Bosons and Example](#page-30-0)

[Spinor-Helicity and](#page-35-0) the Little Group

[Three-Point Amplitudes](#page-37-0) [Amplitude Game](#page-44-0)

- How to classify different types of particles $\psi_{p,q}$?
- Define 'standard', simple momentum k^{μ} (e.g. $k^{\mu} = (m, 0, 0, 0)$)
	- Define Lorentz transformation $L(p, k)$ s.t. $p^{\mu} = L(p, k)^{\mu}_{\ \nu} k^{\nu}$

Definition of a particle

 $\psi_{p,\sigma} = N(p)U(L(p,k))\psi_{k,\sigma}$

- $N(p) \equiv$ normalisation (not important in this discussion, will be ignored)
- *U*($L(p, k)$) s.t. ψ can have any representation of Lorentz group
	- σ quantum number(s) unchanged by definition

Poincaré and little groups

[Massive Particles and Spin](#page-11-0) [Massless Particles and Helicity](#page-12-0) [Covariant Operators P and W](#page-17-0)

[Spinor-Helicity](#page-19-0) Formalism

[Traditional ME example](#page-20-0) [Basics of Spinor Helicity](#page-24-0) [Simple Spinor-Hel Example](#page-27-0)

[Spinor-Helicity and](#page-35-0) the Little Group

[Three-Point Amplitudes](#page-37-0) [Amplitude Game](#page-44-0)

How to classify different types of particles $ψ_{p,σ}$?

Wigner Rotations and the Little Group

Consider Lorentz transformation *U*(Λ) on $\psi_{p,q}$

 $U(\Lambda)\psi_{p,\sigma} = U(\Lambda) U(L[p])\psi_{k,\sigma} =$ definition of $\psi_{p,\sigma}$ = *U*(Λ*L*[*p*]) representation ψ*k*,σ $= U(L[\Lambda p]) U(L^{-1}[\Lambda p]) U(\Lambda L[p]) \psi_{k,\sigma}$ \overline{a} $\overline{$ 1 $= U(L[\Lambda\rho])U(L^{-1}(\Lambda\rho)\Lambda L[\rho])\psi_{k,\sigma}$ $W(\Lambda,p)$ *W*(Λ , p) \equiv Wigner rotation

Takes *k* back to itself, i.e. $W^{\mu}_{\ \nu}k^{\nu} = k^{\mu}$

Wigner Rotations and the Little Group

[Wigner's Quantum](#page-2-0) Mechanics

Poincaré and little groups

[Massive Particles and Spin](#page-11-0) [Massless Particles and Helicity](#page-12-0) [Covariant Operators P and W](#page-17-0)

[Spinor-Helicity](#page-19-0) Formalism

[Traditional ME example](#page-20-0) [Basics of Spinor Helicity](#page-24-0) [Simple Spinor-Hel Example](#page-27-0) [Gauge Bosons and Example](#page-30-0)

[Spinor-Helicity and](#page-35-0) the Little Group

[Three-Point Amplitudes](#page-37-0) [Amplitude Game](#page-44-0)

How to classify different types of particles $ψ_{p,σ}$?

Consider Lorentz transformation *U*(Λ) on $\psi_{p,q}$ $U(\Lambda)\psi_{p,\sigma} = U(L[\Lambda p])U(L^{-1}[\Lambda p]\Lambda L[p])\psi_{k,\sigma}$ $W(\Lambda,p)$ $= U(L[\Lambda\rho]) \sum D_{\sigma,\sigma'}(W[\Lambda,\rho]) \psi_{k,\sigma'}$ σ' \sum σ' σ unchanged $\genfrac{}{}{0pt}{}{\sigma}{=}\sum D_{\sigma,\sigma'}(W[\Lambda,\rho])\psi_{\Lambda\rho,\sigma'}$ *k* unchanged

Wigner rotation: k

W(Λ, *p*) leaves *k* invariant, i.e. $W^{\mu}_{\nu}k^{\nu} = k^{\mu}$

- Wigner rotation generates the **'little group'**
	- Subset of Lorentz transformation leaving k^{μ} invariant \mathbf{r}
	- П Responsible for quantum numbers σ

Consequences for amplitudes

[Wigner's Quantum](#page-2-0) Mechanics

Poincaré and little groups

[Massive Particles and Spin](#page-11-0) [Massless Particles and Helicity](#page-12-0) [Covariant Operators P and W](#page-17-0)

[Spinor-Helicity](#page-19-0) Formalism

[Traditional ME example](#page-20-0) [Basics of Spinor Helicity](#page-24-0) [Simple Spinor-Hel Example](#page-27-0) [Gauge Bosons and Example](#page-30-0)

[Spinor-Helicity and](#page-35-0) the Little Group

[Three-Point Amplitudes](#page-37-0) [Amplitude Game](#page-44-0)

Lorentz transformation of a particle

 $U(\Lambda)\psi_{p,\sigma} = D_{\sigma,\sigma'}(W[\Lambda,p])\psi_{\Lambda p,\sigma'} \Leftrightarrow U(\Lambda)|p,\sigma\rangle = D_{\sigma,\sigma'}(W[\Lambda,p])|\Lambda p,\sigma'\rangle$

Scattering amplitudes are of the form $\mathcal{M}_n \sim \langle$ particles out|particles in) Each particle transforms under Lorentz/little groups

Lorentz transformation of an amplitude

$$
\mathcal{M}_{n}^{\Lambda}(p_i,\sigma_i) \sim \prod_{i=1}^{n} D_{\sigma_i,\sigma'_i}(W[\Lambda,p_i]) \mathcal{M}_{n}([\Lambda p]_i,\sigma'_i)
$$

- Can use the little group transformation to check consistency of an amplitude
	- \blacksquare Can sometimes be enough to fix the amplitude!!

Poincaré and little groups

[Massive Particles and Spin](#page-11-0) [Massless Particles and Helicity](#page-12-0) [Covariant Operators P and W](#page-17-0)

[Spinor-Helicity](#page-19-0) Formalism

[Traditional ME example](#page-20-0) [Basics of Spinor Helicity](#page-24-0) [Simple Spinor-Hel Example](#page-27-0) [Gauge Bosons and Example](#page-30-0)

[Spinor-Helicity and](#page-35-0) the Little Group

[Three-Point Amplitudes](#page-37-0) [Amplitude Game](#page-44-0)

What are the different standard momenta $k^\mu = (\mathit{E}, k_\mathsf{x}, k_\mathsf{y}, k_\mathsf{z})$?? (Different k^{μ} cannot be (proper orthochronously) Lorentz transformed into one another)

Particle Classification

Poincaré and little groups

[Massive Particles and Spin](#page-11-0) [Massless Particles and Helicity](#page-12-0) [Covariant Operators P and W](#page-17-0)

[Spinor-Helicity](#page-19-0) Formalism

[Traditional ME example](#page-20-0) [Basics of Spinor Helicity](#page-24-0) [Simple Spinor-Hel Example](#page-27-0) [Gauge Bosons and Example](#page-30-0)

[Spinor-Helicity and](#page-35-0) the Little Group

[Three-Point Amplitudes](#page-37-0) [Amplitude Game](#page-44-0)

What are the different standard momenta $k^\mu = (\mathit{E}, k_\mathsf{x}, k_\mathsf{y}, k_\mathsf{z})$?? (Different k^{μ} cannot be (proper orthochronously) Lorentz transformed into one another)

Particle Classification

Poincaré and little groups

[Massive Particles and Spin](#page-11-0) [Massless Particles and Helicity](#page-12-0) [Covariant Operators P and W](#page-17-0)

[Spinor-Helicity](#page-19-0) Formalism

[Traditional ME example](#page-20-0) [Basics of Spinor Helicity](#page-24-0) [Simple Spinor-Hel Example](#page-27-0) [Gauge Bosons and Example](#page-30-0)

[Spinor-Helicity and](#page-35-0) the Little Group

[Three-Point Amplitudes](#page-37-0) [Amplitude Game](#page-44-0)

What are the different standard momenta $k^\mu = (\mathit{E}, k_\mathsf{x}, k_\mathsf{y}, k_\mathsf{z})$?? (Different k^{μ} cannot be (proper orthochronously) Lorentz transformed into one another)

Particle Classification

Not just *U*(Λ) and *p*. Also important is *k* and little group quantum numbers!!

 M

The *SO*(3) Little Group of Massive Particles

[Wigner's Quantum](#page-2-0) Mechanics

- Poincaré and little groups [Massive Particles and Spin](#page-11-0)
- [Massless Particles and Helicity](#page-12-0) [Covariant Operators P and W](#page-17-0)

[Spinor-Helicity](#page-19-0) Formalism

[Traditional ME example](#page-20-0) [Basics of Spinor Helicity](#page-24-0) [Simple Spinor-Hel Example](#page-27-0) [Gauge Bosons and Example](#page-30-0)

[Spinor-Helicity and](#page-35-0) the Little Group

[Three-Point Amplitudes](#page-37-0) [Amplitude Game](#page-44-0)

Standard momentum $k^{\mu} = (m, 0, 0, 0)$ What are quantum numbers σ and reps $D(W)$??

- *D*($W(\Lambda, p)$) representations of *so*(3) \cong *su*(2)
- This group is well known from non-relativistic quantum mechanics
- For particle of total spin *j*: $\mathcal{L}_{\mathcal{A}}$
	- $\sigma = \{j^2 = j(j+1), j_s\}$ ($s \equiv$ some direction)
	- *j* ² unchanged under Lorentz and little groups, *j^s* changes
- For infinitesimal rotations $R_{ik} = \delta_{ik} + \theta_{ik}$

$$
D_{\sigma\sigma'}^{(j)}(1+\theta) = \delta_{\sigma\sigma'} + \frac{i}{2}\theta_{ik}(J_{ik}^{(j)})_{\sigma\sigma'}
$$

$$
\left(J_{23}^{(j)} \pm iJ_{31}^{(j)}\right)_{\sigma\sigma'} = \left(J_1^{(j)} \pm iJ_2^{(j)}\right)_{\sigma\sigma'} = \delta_{\sigma',\sigma\pm 1}\sqrt{(j\mp\sigma)(j\pm\sigma+1)}
$$

$$
\left(J_{12}^{(j)}\right)_{\sigma\sigma'} = \left(J_3^{(j)}\right)_{\sigma\sigma'} = \sigma\delta_{\sigma'\sigma}
$$

The *ISO*(2) Little Group of Massless Particles

[Wigner's Quantum](#page-2-0) Mechanics

- Poincaré and little groups [Massive Particles and Spin](#page-11-0)
- [Massless Particles and Helicity](#page-12-0)

[Covariant Operators P and W](#page-17-0)

[Spinor-Helicity](#page-19-0) Formalism

[Traditional ME example](#page-20-0) [Basics of Spinor Helicity](#page-24-0) [Simple Spinor-Hel Example](#page-27-0) [Gauge Bosons and Example](#page-30-0)

[Spinor-Helicity and](#page-35-0) the Little Group

[Three-Point Amplitudes](#page-37-0) [Amplitude Game](#page-44-0)

Standard momentum $k^{\mu} = (\omega, 0, 0, \omega)$ Quantum numbers are $\sigma = a, b, \theta$

It can be shown that $W^{\mu}_{\;\;\nu}$ is

$$
W(a, b, \theta) = \underbrace{\begin{pmatrix} 1+\xi & a & b & -\xi \\ a & 1 & 0 & -a \\ b & 0 & 1 & -b \\ \xi & a & b & 1-\xi \end{pmatrix}}_{\text{S}(a, b)} \underbrace{\begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & \cos \theta & -\sin \theta & 0 \\ 0 & \sin \theta & \cos \theta & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}}_{\text{R}(\theta)}, \quad \xi = \frac{a^2 + b^2}{2}
$$
\n
$$
\xrightarrow{\text{infinitesimally}} \begin{pmatrix} 1 & a & b & 0 \\ a & 1 & -\theta & -a \\ b & \theta & 1 & -b \\ 0 & a & b & 1 \end{pmatrix} = 1 + ia\underbrace{(J_2 + K_1)}_{A} + ib\underbrace{(-J_1 + K_2)}_{B} + i\theta J_3
$$

Quantum Numbers of Massless Little Group *ISO*(2)

[Wigner's Quantum](#page-2-0) Mechanics

Poincaré and little groups [Massive Particles and Spin](#page-11-0)

[Massless Particles and Helicity](#page-12-0)

[Covariant Operators P and W](#page-17-0)

[Spinor-Helicity](#page-19-0) Formalism

[Traditional ME example](#page-20-0) [Basics of Spinor Helicity](#page-24-0) [Simple Spinor-Hel Example](#page-27-0) [Gauge Bosons and Example](#page-30-0)

[Spinor-Helicity and](#page-35-0) the Little Group

[Three-Point Amplitudes](#page-37-0) [Amplitude Game](#page-44-0)

Standard momentum $k^\mu = (\omega, 0, 0, \omega)$ Little group generated by $\mathsf{W}^{\mu}_{\,\,\nu}(a,b,\theta) = 1 + ia\mathsf{A} + ib\mathsf{B} + i\theta \mathsf{J}_3$ Quantum numbers are $\sigma = a, b, \theta$ Commutation relations: $[J_3, A] = iB$, $[J_3, B] = iA$, $[A, B] = 0$

To calculate *a*, *b*, θ first diagonalise *a*, *b*:

$$
\blacksquare A\psi_{k,a,b}=a\psi_{k,a,b}
$$

$$
\blacksquare \; B \psi_{k,a,b} = b \psi_{k,a,b}
$$

Then define full state as:

$$
\mathbf{P} \psi_{k,a,b,\theta} \equiv \mathbf{e}^{-i\theta J_3} \psi_{k,a,b}
$$

$$
A\psi_{k,a,b,\theta} = \underbrace{e^{-i\theta J_3}e^{i\theta J_3}}_{1} A \underbrace{e^{-i\theta J_3}\psi_{k,a,b}}_{\text{definition}}
$$

=
$$
e^{-i\theta J_3} (A\cos\theta - B\sin\theta)\psi_{k,a,b}
$$

=
$$
(a\cos\theta - b\sin\theta)\psi_{k,a,b,\theta}
$$

Calculate eigenvalue of *A* on full state:

Quantum Numbers of Massless Little Group *ISO*(2)

[Wigner's Quantum](#page-2-0) Mechanics

- Poincaré and little groups [Massive Particles and Spin](#page-11-0)
- [Massless Particles and Helicity](#page-12-0)

[Covariant Operators P and W](#page-17-0)

[Spinor-Helicity](#page-19-0) Formalism

[Traditional ME example](#page-20-0) [Basics of Spinor Helicity](#page-24-0) [Simple Spinor-Hel Example](#page-27-0) [Gauge Bosons and Example](#page-30-0)

[Spinor-Helicity and](#page-35-0) the Little Group

[Three-Point Amplitudes](#page-37-0) [Amplitude Game](#page-44-0)

Standard momentum $k^\mu = (\omega, 0, 0, \omega)$ Little group generated by $\mathsf{W}^{\mu}_{\,\,\nu}(a,b,\theta) = 1 + ia\mathsf{A} + ib\mathsf{B} + i\theta \mathsf{J}_3$ Quantum numbers are $\sigma = a, b, \theta$ Commutation relations: $[J_3, A] = iB$, $[J_3, B] = iA$, $[A, B] = 0$

To calculate *a*, *b*, θ first diagonalise *a*, *b*:

$$
\blacksquare A\psi_{k,a,b}=a\psi_{k,a,b}
$$

$$
\blacksquare \; B\psi_{k,a,b} = b\psi_{k,a,b}
$$

Then define full state as: $\psi_{\mathbf{k},\mathbf{a},\mathbf{b},\theta} \equiv \boldsymbol{e}^{-i\theta \boldsymbol{J}_3}\psi_{\mathbf{k},\mathbf{a},\mathbf{b}}$

$$
A\psi_{k,a,b,\theta} = \underbrace{e^{-i\theta J_3}e^{i\theta J_3}}_{1} A \underbrace{e^{-i\theta J_3}\psi_{k,a,b}}_{\text{definition}}
$$

=
$$
e^{-i\theta J_3}(\underbrace{A\cos\theta - B\sin\theta}_{e^{i\theta J_3}Ae^{-i\theta J_3}})\psi_{k,a,b}
$$

=
$$
(a\cos\theta - b\sin\theta)\psi_{k,a,b,\theta}
$$

Calculate eigenvalue of *A* on full state:

Conclusion: Unless $a = b = 0$, $\theta \equiv$ continuous and \exists infinity of states

Quantum Numbers of Massless Little Group *ISO*(2)

[Wigner's Quantum](#page-2-0) Mechanics

Poincaré and little groups [Massive Particles and Spin](#page-11-0)

[Massless Particles and Helicity](#page-12-0)

[Covariant Operators P and W](#page-17-0)

[Spinor-Helicity](#page-19-0) Formalism

[Traditional ME example](#page-20-0) [Basics of Spinor Helicity](#page-24-0) [Simple Spinor-Hel Example](#page-27-0) [Gauge Bosons and Example](#page-30-0)

[Spinor-Helicity and](#page-35-0) the Little Group

[Three-Point Amplitudes](#page-37-0) [Amplitude Game](#page-44-0)

Standard momentum $k^{\mu} = (\omega, 0, 0, \omega)$ Little group generated by $\mathsf{W}^{\mu}_{\,\,\nu}(\boldsymbol{a},\boldsymbol{b},\theta)=1+i\boldsymbol{a}\boldsymbol{A}+i\boldsymbol{b}\boldsymbol{B}+i\theta\boldsymbol{J}_3$ Quantum numbers are either $\sigma = a, b, \theta$, with θ continuous or Quantum numbers are $a = b = 0$ and $j_3 = \pm i =$ helicity

We don't see states with such a continuous parameter so two options: **1** Predict a new undiscovered type of particle

■ See e.g. [hep-th:1302.1198,](https://arxiv.org/pdf/1302.1198.pdf) [hep-th:1302.1577,](https://arxiv.org/pdf/1302.1577.pdf) [hep-th:1302.3225,](https://arxiv.org/pdf/1302.3225.pdf) and [hep-th:1404.0675](https://arxiv.org/pdf/1404.0675.pdf)

2 Assume $a = b = 0$ for physical states

- Use topology to conclude that $j_3 \equiv J_3$ eigenvalue is quantised
	- SL(2, C) is universal covering of SO(2) so rotation by $4\pi \equiv$ identity
- *J*³ measures spin along motion ≡ **helicity**

Conclusion: Only quantum number for massless is $\sigma = j_3$ = helicity

Massless particles

[Wigner's Quantum](#page-2-0) Mechanics

Poincaré and little groups [Massive Particles and Spin](#page-11-0)

[Massless Particles and Helicity](#page-12-0)

[Covariant Operators P and W](#page-17-0)

[Spinor-Helicity](#page-19-0) Formalism

[Traditional ME example](#page-20-0) [Basics of Spinor Helicity](#page-24-0) [Simple Spinor-Hel Example](#page-27-0) [Gauge Bosons and Example](#page-30-0)

[Spinor-Helicity and](#page-35-0) the Little Group

[Three-Point Amplitudes](#page-37-0) [Amplitude Game](#page-44-0)

Standard momentum $k^{\mu} = (\omega, 0, 0, \omega)$ Physical particles: little group generated by $W^{\mu}_{\;\nu}(a,b,\theta) = 1 + i\theta J_3$ Quantum number is $\sigma = j_3$ = helicity

Some notes:

It is entirely natural to consider $h = +$ as a different particle to $h = -$

- If parity conserved: $\psi_{\vec k,\sigma} \stackrel{\text{parity}}{\longrightarrow} \psi_{-\vec k,\sigma}$ so $h \to -h$
- \Rightarrow consider $h = \pm$ as two reps of same particle
- Any massless particles (e.g. graviton, photon) have exactly two d.o.f
- No concept of total spin and spin along a direction of motion

(Quadratic) Casimirs of Poincaré Algebra

[Wigner's Quantum](#page-2-0) Mechanics

Poincaré and little groups [Massive Particles and Spin](#page-11-0) [Massless Particles and Helicity](#page-12-0) [Covariant Operators P and W](#page-17-0)

[Spinor-Helicity](#page-19-0) Formalism

[Traditional ME example](#page-20-0) [Basics of Spinor Helicity](#page-24-0) [Simple Spinor-Hel Example](#page-27-0) [Gauge Bosons and Example](#page-30-0)

[Spinor-Helicity and](#page-35-0) the Little Group

[Three-Point Amplitudes](#page-37-0) [Amplitude Game](#page-44-0)

The two quadratic Casimirs of Poincaré algebra

$$
P^2 = m^2
$$
 and $W^2 = -m^2j(j+1) \stackrel{m=0}{=} -\omega^2(A^2 + B^2)$

 $P_\mu = i\frac{\partial}{\partial x}$ ∂*x* ^µ generates translations

$$
W^{\mu} = -\frac{1}{2} \epsilon^{\mu \nu \lambda \omega} P_{\nu} J_{\lambda \omega}
$$
 generates little group

- W^µ called Pauli-Lubanski pseudovector
- $(W^{\mu}/m)^2=-j(j+1)\Rightarrow W^{\mu}/m$ is a covariant spin operator!

Covariant (massive) spin-1/2 operator

[Wigner's Quantum](#page-2-0) Mechanics

Poincaré and little groups [Massive Particles and Spin](#page-11-0) [Massless Particles and Helicity](#page-12-0) [Covariant Operators P and W](#page-17-0)

[Spinor-Helicity](#page-19-0) Formalism

[Traditional ME example](#page-20-0) [Basics of Spinor Helicity](#page-24-0) [Simple Spinor-Hel Example](#page-27-0) [Gauge Bosons and Example](#page-30-0)

[Spinor-Helicity and](#page-35-0) the Little Group

[Three-Point Amplitudes](#page-37-0) [Amplitude Game](#page-44-0)

Using Pauli-Lubanski (pseudo)vector

$$
\frac{1}{2}\Sigma^{\mu} \equiv \frac{W^{\mu}}{m} = -\frac{1}{4m}\epsilon^{\mu\nu\lambda\omega}P_{\nu}\sigma_{\lambda\omega} , \qquad \sigma^{\mu\nu} = \frac{i}{2}\left[\gamma^{\mu},\gamma^{\nu}\right]^{\text{spin}-1/2}2J^{\mu\nu}
$$

\n- \n Check
$$
\Sigma^{\mu}
$$
 for the rest frame $P^{\mu} \to k^{\mu} = (m, 0, 0, 0)$ \n $\frac{1}{2} \Sigma^{i} \stackrel{\text{rest}}{=} \frac{i}{4} \epsilon^{ijk} \gamma^{j} \gamma^{k} = \frac{1}{2} \gamma^{5} \gamma^{0} \gamma^{j} = \frac{1}{2} \begin{pmatrix} \sigma^{i} & 0 \\ 0 & \sigma^{i} \end{pmatrix} \,, \qquad \frac{1}{2} \Sigma^{0} \stackrel{\text{rest}}{=} 0 \,,$ \n
\n

We can measure
$$
\Sigma^{\mu}
$$
 in direction s^{μ} , $s^{\mu} \stackrel{\text{rest}}{=} (0, \hat{\mathbf{s}})$ using $-\frac{\Sigma^{\mu} s_{\mu}}{2} = \frac{1}{4m} \epsilon^{\mu \nu \lambda \omega} s_{\mu} P_{\nu} \sigma_{\lambda \omega}$

Above shows $s \cdot P = \Sigma \cdot P = 0, s^2 = -1$ and (with a bit of algebra)

− $\frac{\Sigma^{\mu}s_{\mu}}{2}=\frac{1}{2r}$ $\frac{1}{2m}\gamma^5$ \$ $\rlap{/}P=\frac{1}{2}$ $\frac{1}{2}\gamma^5$ \$ \equiv operator measuring spin of spinor along s^μ | {z } *P*/ψ=*m*ψ

Poincaré and little groups [Massive Particles and Spin](#page-11-0) [Massless Particles and Helicity](#page-12-0) [Covariant Operators P and W](#page-17-0)

[Spinor-Helicity](#page-19-0) Formalism

- [Traditional ME example](#page-20-0) [Basics of Spinor Helicity](#page-24-0)
- [Simple Spinor-Hel Example](#page-27-0)
- [Gauge Bosons and Example](#page-30-0)

[Spinor-Helicity and](#page-35-0) the Little Group

[Three-Point Amplitudes](#page-37-0) [Amplitude Game](#page-44-0)

[Spinor-Helicity Formalism](#page-19-0)

[Wigner's Quantum](#page-2-0) Mechanics

Poincaré and little groups [Massive Particles and Spin](#page-11-0) [Massless Particles and Helicity](#page-12-0) [Covariant Operators P and W](#page-17-0)

[Spinor-Helicity](#page-19-0) Formalism

[Traditional ME example](#page-20-0)

[Basics of Spinor Helicity](#page-24-0) [Simple Spinor-Hel Example](#page-27-0) [Gauge Bosons and Example](#page-30-0)

[Spinor-Helicity and](#page-35-0) the Little Group

[Three-Point Amplitudes](#page-37-0) [Amplitude Game](#page-44-0)

- Keep all particles unpolarised
- Obtain amplitude as matrix П

 $\sim [\bar{v}_r(p_2)\gamma^{\mu}u_s(p_1)][\bar{u}_t(p_4)\gamma_{\mu}v_{w}(p_3)]$

[Wigner's Quantum](#page-2-0) Mechanics

Poincaré and little groups [Massive Particles and Spin](#page-11-0) [Massless Particles and Helicity](#page-12-0) [Covariant Operators P and W](#page-17-0)

[Spinor-Helicity](#page-19-0) Formalism

[Traditional ME example](#page-20-0)

[Basics of Spinor Helicity](#page-24-0) [Simple Spinor-Hel Example](#page-27-0) [Gauge Bosons and Example](#page-30-0)

[Spinor-Helicity and](#page-35-0) the Little Group

[Three-Point Amplitudes](#page-37-0) [Amplitude Game](#page-44-0)

- Keep all particles unpolarised
- Obtain amplitude as matrix
- Square the matrix amplitude **Tale**
	- Spin states are orthogonal

 $\sim\;\sum\; [\bar{v}_r(\rho_2)\gamma^{\mu}u_s(\rho_1)][\bar{u}_t(\rho_4)\gamma_{\mu}v_{w}(\rho_3)]$ *r*,*s*,*t*,*w* $\times\ [\bar{u}_s(p_1)\gamma^\nu v_r(p_2)][\bar{v}_w(p_3)\gamma_\nu u_t(p_4)]$

[Wigner's Quantum](#page-2-0) Mechanics

Poincaré and little groups [Massive Particles and Spin](#page-11-0) [Massless Particles and Helicity](#page-12-0) [Covariant Operators P and W](#page-17-0)

[Spinor-Helicity](#page-19-0) Formalism

[Traditional ME example](#page-20-0)

[Basics of Spinor Helicity](#page-24-0) [Simple Spinor-Hel Example](#page-27-0) [Gauge Bosons and Example](#page-30-0)

[Spinor-Helicity and](#page-35-0) the Little Group

[Three-Point Amplitudes](#page-37-0) [Amplitude Game](#page-44-0)

- Keep all particles unpolarised **T**
- Obtain amplitude as matrix
- Square the matrix amplitude ■ Spin states are orthogonal
- Move components around

- $\sim\;\sum\; [\bar{v}_r(\rho_2)\gamma^{\mu}u_s(\rho_1)][\bar{u}_t(\rho_4)\gamma_{\mu}v_{w}(\rho_3)]$ *r*,*s*,*t*,*w*
	- $\times\ [\bar{u}_s(p_1)\gamma^\nu v_r(p_2)][\bar{v}_w(p_3)\gamma_\nu u_t(p_4)]$
- $\sim \sum \left[\gamma^{\nu} \nu_{\mathsf{r}}(\rho_2) \bar{\nu}_{\mathsf{r}}(\rho_2) \gamma^{\mu} u_{\mathsf{s}}(\rho_1) \bar{u}_{\mathsf{s}}(\rho_1) \right]$ *r*,*s*,*t*,*w*

 $\times [\gamma_{\nu} u_t(p_4) \bar{u}_t(p_4) \gamma_{\mu} v_w(p_3) \bar{v}_w(p_3)]$

[Wigner's Quantum](#page-2-0) Mechanics

Poincaré and little groups [Massive Particles and Spin](#page-11-0) [Massless Particles and Helicity](#page-12-0) [Covariant Operators P and W](#page-17-0)

[Spinor-Helicity](#page-19-0) Formalism

[Traditional ME example](#page-20-0)

[Basics of Spinor Helicity](#page-24-0) [Simple Spinor-Hel Example](#page-27-0) [Gauge Bosons and Example](#page-30-0)

[Spinor-Helicity and](#page-35-0) the Little Group

[Three-Point Amplitudes](#page-37-0) [Amplitude Game](#page-44-0)

- \blacksquare Keep all particles unpolarised
- Obtain amplitude as matrix r.
- Square the matrix amplitude П ■ Spin states are orthogonal
- Move components around $\mathcal{L}_{\mathcal{A}}$
- Use spin sums
- Take trace of fermionic structure
- Requires identities of γ^μ П
- Simplify П

$$
\sim \! \mathrm{Tr}\big[\gamma^\nu(\rlap{/}{p}_2 - m_e)\gamma^\mu(\rlap{/}{p}_1 + m_e)\big] \nonumber \\ \times \mathrm{Tr}\big[\gamma_\nu(\rlap{/}{p}_4 + m_\mu)\gamma_\mu(\rlap{/}{p}_3 + m_\mu)\big]
$$

$$
\begin{array}{l} \mathop{\rm Tr} \left[\gamma^{\mu_1} \gamma^{\mu_2} \right] = 4 g^{\mu_1 \mu_2} \\ \mathop{\rm Tr} \left[\gamma^{\mu_1} \ldots \gamma^{\mu_4} \right] = \\ 4 (g^{\mu_1 \mu_2} g^{\mu_3 \mu_4} - g^{\mu_1 \mu_3} g^{\mu_2 \mu_4} + g^{\mu_1 \mu_4} g^{\mu_3 \mu_2}) \\ \mathop{\rm Tr} \left[\gamma^{\mu_1} \ldots \gamma^{\mu_{2n+1}} \right] = 0 \end{array}
$$

The Helicity Basis: what and why?

[Wigner's Quantum](#page-2-0) Mechanics

Poincaré and little groups [Massive Particles and Spin](#page-11-0) [Massless Particles and Helicity](#page-12-0) [Covariant Operators P and W](#page-17-0)

[Spinor-Helicity](#page-19-0) Formalism

[Traditional ME example](#page-20-0)

[Basics of Spinor Helicity](#page-24-0) [Simple Spinor-Hel Example](#page-27-0) [Gauge Bosons and Example](#page-30-0)

[Spinor-Helicity and](#page-35-0) the Little Group

[Three-Point Amplitudes](#page-37-0) [Amplitude Game](#page-44-0)

Helicity basis means each particle has a specific helicity Lorentz algebra $so(3, 1) \cong su(2) \oplus su(2)$ Consider massless particles

- Ideal for (approximately) massless particles (e.g. most particles at LHC)
	- \blacksquare Helicity is the quantum number of the massless little group
	- For incoming (anti)spinors chirality ($(\frac{1}{2},0)$ or $(0,\frac{1}{2})) \sim$ helicity ($-\frac{1}{2}$ or $+\frac{1}{2}$)
	- For outgoing (anti)spinors chirality ($(\frac{1}{2}, 0)$ or $(0, \frac{1}{2})) \sim$ helicity $(-\frac{1}{2}$ or $+\frac{1}{2})$
- Amplitude itself is a number rather than a matrix
	- \blacksquare Easy to square
- Different helicity amplitudes are orthogonal
	- Only sum over helicities after squaring \mathbf{r}

Spinor-Helicity: its Building Blocks

[Wigner's Quantum](#page-2-0) Mechanics

Poincaré and little groups [Massive Particles and Spin](#page-11-0) [Massless Particles and Helicity](#page-12-0) [Covariant Operators P and W](#page-17-0)

[Spinor-Helicity](#page-19-0) Formalism

[Traditional ME example](#page-20-0)

[Basics of Spinor Helicity](#page-24-0)

[Simple Spinor-Hel Example](#page-27-0) [Gauge Bosons and Example](#page-30-0)

[Spinor-Helicity and](#page-35-0) the Little Group

[Three-Point Amplitudes](#page-37-0) [Amplitude Game](#page-44-0)

Lorentz algebra $so(3, 1) \cong su(2) \oplus su(2)$ Consider massless particles: chirality ∼ helicity

Spinors (use chiral basis):

\n
$$
u^{+}(p) = v^{-}(p) = \begin{pmatrix} 0 \\ |p\rangle \end{pmatrix} \qquad u^{-}(p) = v^{+}(p) = \begin{pmatrix} |p| \\ 0 \end{pmatrix}
$$
\n
$$
\bar{u}^{+}(p) = \bar{v}^{-}(p) = ([p \mid 0) \qquad \bar{u}^{-}(p) = \bar{v}^{+}(p) = \begin{pmatrix} |p| \\ 0 \end{pmatrix}
$$
\n
$$
\gamma^{5} = \begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix} \qquad P_{L/R} = \frac{1 \mp \gamma^{5}}{2}
$$

Amplitude written in terms of Lorentz-invariant spinor inner products

 $\langle i\hat{i}\rangle = -\langle i\hat{i}\rangle \equiv \langle i\hat{i}|i\rangle$ and $\langle ii\hat{i}\rangle = -\langle ii\hat{i}\rangle \equiv \langle i\hat{i}|i\rangle$

- These are well known complex numbers, $\langle ij \rangle \sim [ij] \sim \sqrt{2 \rho_i \cdot \rho_j}$
- Cannot contract left and right: $\langle i||j] \equiv \bar{u}(p_i)P_RP_Lu(p_j) = 0$

Objects live in different Lorentz reps so a contraction makes Objects live in different Lorentz reps so a contraction makes no sense!

Spinor-Helicity: Vectors and Removing μ Indices

[Wigner's Quantum](#page-2-0) Mechanics

Poincaré and little groups [Massive Particles and Spin](#page-11-0) [Massless Particles and Helicity](#page-12-0) [Covariant Operators P and W](#page-17-0)

[Spinor-Helicity](#page-19-0) Formalism

[Traditional ME example](#page-20-0)

[Basics of Spinor Helicity](#page-24-0) [Simple Spinor-Hel Example](#page-27-0) [Gauge Bosons and Example](#page-30-0)

[Spinor-Helicity and](#page-35-0) the Little Group

[Three-Point Amplitudes](#page-37-0) [Amplitude Game](#page-44-0)

Lorentz algebra $so(3, 1) \cong su(2) \oplus su(2)$ Consider massless particles: chirality ∼ helicity

Dirac matrices in chiral basis

$$
\gamma^\mu = \begin{pmatrix} 0 & \sqrt{2} \tau^\mu \\ \sqrt{2} \bar{\tau}^\mu & 0 \end{pmatrix}
$$

$$
\bigg)\qquad \sqrt{2}\tau^\mu=(1,\vec{\sigma}),\;\;\sqrt{2}\bar{\tau}^\mu=(1,-\vec{\sigma}),
$$

Remove $\tau/\bar{\tau}$ matrices in amplitude with

$$
\underbrace{\langle i|\bar\tau^\mu|j][k|\tau_\mu|l\rangle=\langle il\rangle[kj]}_{\text{Fierz identity}},
$$

$$
\langle i|\bar{\tau}^{\mu}|j] = [j|\tau^{\mu}|i\rangle
$$

Change Conjugation

Express (massless) p^{μ} in terms of spinors

$$
\rho^{\mu}=\frac{[\rho|\tau^{\mu}|\rho\rangle}{\sqrt{2}}=\frac{\langle \rho|\bar{\tau}^{\mu}|\rho]}{\sqrt{2}}\;,\quad \sqrt{2}\rho^{\mu}\tau_{\mu}\equiv \not\!\!p=|\rho|\langle\rho|\;,\quad \sqrt{2}\rho^{\mu}\bar{\tau}_{\mu}\equiv \bar{\not\!p}=|\rho\rangle[\rho|
$$

Our Simple Example using Spinor Helicity

[Wigner's Quantum](#page-2-0) Mechanics

Poincaré and little groups [Massive Particles and Spin](#page-11-0) [Massless Particles and Helicity](#page-12-0) [Covariant Operators P and W](#page-17-0)

[Spinor-Helicity](#page-19-0) Formalism

- [Traditional ME example](#page-20-0)
- [Basics of Spinor Helicity](#page-24-0)

[Simple Spinor-Hel Example](#page-27-0)

[Gauge Bosons and Example](#page-30-0)

[Spinor-Helicity and](#page-35-0) the Little Group

[Three-Point Amplitudes](#page-37-0) [Amplitude Game](#page-44-0)

Lorentz algebra $so(3, 1) \cong su(2) \oplus su(2)$ Consider massless particles: chirality ∼ helicity

- Explicit helicities for external particles **Tale** Now diagram is a complex number
	- \blacksquare Easy to square
	- Square first, then sum over helicities
	- Some helicity configurations vanish
	- CP-invariance relates helicity configurations

 $\sim \langle p_2|\bar{\tau}^{\mu} |p_1]\langle p_4|\bar{\tau}_{\mu}|p_3]$ $= [\rho_1|\tau^\mu|\rho_2\rangle\langle\rho_4|\bar{\tau}_\mu|\rho_3]$ $= \langle p_4 p_2 \rangle [p_1 p_3]$

In

Our Simple Example using Spinor Helicity

[Wigner's Quantum](#page-2-0) Mechanics

Poincaré and little groups [Massive Particles and Spin](#page-11-0) [Massless Particles and Helicity](#page-12-0) [Covariant Operators P and W](#page-17-0)

[Spinor-Helicity](#page-19-0) Formalism

- [Traditional ME example](#page-20-0)
- [Basics of Spinor Helicity](#page-24-0)
- [Simple Spinor-Hel Example](#page-27-0)
- [Gauge Bosons and Example](#page-30-0)

[Spinor-Helicity and](#page-35-0) the Little Group

[Three-Point Amplitudes](#page-37-0) [Amplitude Game](#page-44-0)

Lorentz algebra $so(3, 1) \cong su(2) \oplus su(2)$ Consider massless particles: chirality ∼ helicity

- Explicit helicities for external particles П
- Now diagram is a complex number
	- \blacksquare Easy to square
	- Square first, then sum over helicities
	- Some helicity configurations vanish
	- CP-invariance relates helicity configurations

 $\sim [\rho_2|\tau^{\mu}|\rho_1\rangle\langle\rho_4|\bar{\tau}_{\mu}|\rho_3]$ $= \langle p_4 p_1 \rangle$ [*p*₂*p*₃]

Our Simple Example using Spinor Helicity

[Wigner's Quantum](#page-2-0) Mechanics

Poincaré and little groups [Massive Particles and Spin](#page-11-0) [Massless Particles and Helicity](#page-12-0) [Covariant Operators P and W](#page-17-0)

[Spinor-Helicity](#page-19-0) Formalism

[Traditional ME example](#page-20-0)

[Basics of Spinor Helicity](#page-24-0)

[Simple Spinor-Hel Example](#page-27-0) [Gauge Bosons and Example](#page-30-0)

[Spinor-Helicity and](#page-35-0) the Little Group

[Three-Point Amplitudes](#page-37-0) [Amplitude Game](#page-44-0)

Lorentz algebra $so(3, 1) \cong su(2) \oplus su(2)$ Consider massless particles: chirality ∼ helicity

- Explicit helicities for external particles
- Now diagram is a complex number
	- \blacksquare Easy to square
- Square first, then sum over helicities
	- Some helicity configurations vanish
	- **CP-invariance relates helicity configurations**

Spinor-Helicity: Gauge Bosons in Terms of Spinors

[Wigner's Quantum](#page-2-0) Mechanics

Poincaré and little groups [Massive Particles and Spin](#page-11-0) [Massless Particles and Helicity](#page-12-0) [Covariant Operators P and W](#page-17-0)

[Spinor-Helicity](#page-19-0) Formalism

[Traditional ME example](#page-20-0) [Basics of Spinor Helicity](#page-24-0) [Simple Spinor-Hel Example](#page-27-0) [Gauge Bosons and Example](#page-30-0)

[Spinor-Helicity and](#page-35-0) the Little Group

[Three-Point Amplitudes](#page-37-0) [Amplitude Game](#page-44-0)

Lorentz algebra $so(3, 1) \cong su(2) \oplus su(2)$ Consider massless particles: chirality ∼ helicity

Outgoing polarisation vectors:

$$
\epsilon^{\mu}_{+}(p,r) = \frac{\langle r|\bar{\tau}^{\mu}|p\rangle}{\langle rp \rangle}, \qquad \epsilon^{\mu}_{-}(p,r) = \frac{[r|\tau^{\mu}|p\rangle}{[pr]}
$$
\n
$$
p \cdot \epsilon_{+}(p,r) = \frac{\langle r|p^{\mu}\bar{\tau}_{\mu}|p\rangle}{\langle rp \rangle} = 0 \qquad p \cdot \epsilon^{\mu}_{-}(p,r) = \frac{[r|p^{\mu}\tau_{\mu}|p\rangle}{[pr]} = 0
$$
\n
$$
\epsilon_{+}(p,r) \cdot (\epsilon_{-})^{*}(p,r) = \frac{\langle r|\bar{\tau}^{\mu}|p\rangle}{\langle rp \rangle} \frac{[r|\tau_{\mu}|p\rangle}{[pr]} = \frac{\langle rp \rangle [rp]}{\langle rp \rangle [pr]} = \frac{-1}{[pr]_{-}[rp]}
$$

Spinor-Helicity: Gauge Bosons in Terms of Spinors

[Wigner's Quantum](#page-2-0) Mechanics

Poincaré and little groups [Massive Particles and Spin](#page-11-0) [Massless Particles and Helicity](#page-12-0) [Covariant Operators P and W](#page-17-0)

[Spinor-Helicity](#page-19-0) Formalism

[Traditional ME example](#page-20-0) [Basics of Spinor Helicity](#page-24-0) [Simple Spinor-Hel Example](#page-27-0) [Gauge Bosons and Example](#page-30-0)

[Spinor-Helicity and](#page-35-0) the Little Group

[Three-Point Amplitudes](#page-37-0) [Amplitude Game](#page-44-0)

Lorentz algebra $so(3, 1) \cong su(2) \oplus su(2)$ Consider massless particles: chirality ∼ helicity

Outgoing polarisation vectors:

$$
\epsilon^{\mu}_{+}(p,r)=\frac{\langle r|\bar{\tau}^{\mu}|p]}{\langle rp \rangle}\;,\qquad \epsilon^{\mu}_{-}(p,r)=\frac{[r|\tau^{\mu}|p\rangle}{[pr]}
$$

r is a (massless) arbitrary reference momentum ($p \cdot r \neq 0$) Different *r* choices correspond to different gauges

$$
\epsilon^{\mu}_{+}(p,r') - \epsilon^{\mu}_{+}(p,r) = -p^{\mu} \frac{\langle r'r \rangle}{\langle r'p \rangle \langle rp \rangle}
$$

Gauge invariant quantities must be *r*-invariant **■** Choose *r* as conveniently as possible (remember $\langle i j \rangle = -\langle j i \rangle$ s.t. $\langle ii \rangle = 0$) Variance under $r \rightarrow r'$ good check of gauge invariance of (partial) amplitude \mathbf{r}

Another Spinor-Helicity Example: e^+e^- → γγ

[Wigner's Quantum](#page-2-0) Mechanics

Poincaré and little groups [Massive Particles and Spin](#page-11-0) [Massless Particles and Helicity](#page-12-0) [Covariant Operators P and W](#page-17-0)

[Spinor-Helicity](#page-19-0) Formalism

[Traditional ME example](#page-20-0) [Basics of Spinor Helicity](#page-24-0) [Simple Spinor-Hel Example](#page-27-0) [Gauge Bosons and Example](#page-30-0)

[Spinor-Helicity and](#page-35-0) the Little Group

[Three-Point Amplitudes](#page-37-0) [Amplitude Game](#page-44-0)

=

Another Spinor-Helicity Example e^+e^- **→ γγ**

[Wigner's Quantum](#page-2-0) Mechanics

Poincaré and little groups [Massive Particles and Spin](#page-11-0) [Massless Particles and Helicity](#page-12-0) [Covariant Operators P and W](#page-17-0)

[Spinor-Helicity](#page-19-0) Formalism

[Traditional ME example](#page-20-0) [Basics of Spinor Helicity](#page-24-0) [Simple Spinor-Hel Example](#page-27-0) [Gauge Bosons and Example](#page-30-0)

[Spinor-Helicity and](#page-35-0) the Little Group

[Three-Point Amplitudes](#page-37-0) [Amplitude Game](#page-44-0)

Add two diagrams together

Another Spinor-Helicity Example e^+e^- **→ γγ**

[Wigner's Quantum](#page-2-0) Mechanics

Poincaré and little groups [Massive Particles and Spin](#page-11-0) [Massless Particles and Helicity](#page-12-0) [Covariant Operators P and W](#page-17-0)

[Spinor-Helicity](#page-19-0) Formalism

[Traditional ME example](#page-20-0) [Basics of Spinor Helicity](#page-24-0) [Simple Spinor-Hel Example](#page-27-0) [Gauge Bosons and Example](#page-30-0)

[Spinor-Helicity and](#page-35-0) the Little Group

[Three-Point Amplitudes](#page-37-0) [Amplitude Game](#page-44-0)

Choose gauge d.o.f. wisely $(r_4 = p_1, r_3 = p_2 \text{ s.t. } \langle 1 r_4 \rangle = [r_3 2] = 0)$ Recall: $\langle ii \rangle = [ji] = 0$ due to antisymmetry

 γ_4^+ 4

 γ_3^- 3

Poincaré and little groups [Massive Particles and Spin](#page-11-0) [Massless Particles and Helicity](#page-12-0) [Covariant Operators P and W](#page-17-0)

[Spinor-Helicity](#page-19-0) Formalism

- [Traditional ME example](#page-20-0)
- [Basics of Spinor Helicity](#page-24-0)
- [Simple Spinor-Hel Example](#page-27-0)
- [Gauge Bosons and Example](#page-30-0)

[Spinor-Helicity and](#page-35-0) the Little Group

[Three-Point Amplitudes](#page-37-0) [Amplitude Game](#page-44-0)

[Spinor-Helicity and](#page-35-0) [the Little Group](#page-35-0)

Little Group and Spinor Helicity

[Wigner's Quantum](#page-2-0) Mechanics

Poincaré and little groups [Massive Particles and Spin](#page-11-0) [Massless Particles and Helicity](#page-12-0) [Covariant Operators P and W](#page-17-0)

[Spinor-Helicity](#page-19-0) Formalism

[Traditional ME example](#page-20-0) [Basics of Spinor Helicity](#page-24-0) [Simple Spinor-Hel Example](#page-27-0) [Gauge Bosons and Example](#page-30-0)

[Spinor-Helicity and](#page-35-0) the Little Group

[Three-Point Amplitudes](#page-37-0) [Amplitude Game](#page-44-0)

Little Group

Group of transformations that leaves p^{μ} invariant

\n- Recall:
$$
\not{p} = |p] \langle p |
$$
 and $\vec{p} = |p \rangle [p]$
\n

- \Rightarrow under little group transformation:
	- \blacksquare $\langle p | \rightarrow t \langle p |$ and $| p \rangle \rightarrow t | p \rangle$
	- $|p] \rightarrow t^{-1} |p]$ and $|p| \rightarrow t^{-1} |p|$ $p \in \mathbb{R} \Rightarrow t = e^{i\theta/2} = e^{i\theta|h|}$
	- $p \in \mathbb{C} \Rightarrow t$ more general
- Recall: $\epsilon^{\mu}_+(\rho,r) = \frac{\langle r|\bar{\tau}^{\mu}|p]}{\langle rp \rangle}$ $\frac{|\bar{\tau}^\mu|p|}{\langle rp \rangle}$ and $\epsilon_{-}^\mu(p,r) = \frac{[r|\tau^\mu|p\rangle}{[pr]}$ [*pr*] (*p* outgoing)
- \Rightarrow under little group transformation:
	- $\epsilon^{\mu}_+ \rightarrow t^{-2} \epsilon^{\mu}_+$ $\epsilon_{-}^{\mu} \rightarrow t^2 \epsilon_{-}^{\mu}$

[Wigner's Quantum](#page-2-0) Mechanics

Poincaré and little groups [Massive Particles and Spin](#page-11-0) [Massless Particles and Helicity](#page-12-0) [Covariant Operators P and W](#page-17-0)

[Spinor-Helicity](#page-19-0) Formalism

[Traditional ME example](#page-20-0) [Basics of Spinor Helicity](#page-24-0) [Simple Spinor-Hel Example](#page-27-0) [Gauge Bosons and Example](#page-30-0)

[Spinor-Helicity and](#page-35-0) the Little Group

[Three-Point Amplitudes](#page-37-0) [Amplitude Game](#page-44-0)

Transform (outgoing) particle *i* under little group $\mathcal{M}(|i\rangle, |i], h_i) \rightarrow \mathcal{M}(t|i\rangle, t^{-1}|i], h_i) = t^{-2h_i} \mathcal{M}(|i\rangle, |i], h_i)$

Ansatz: An amplitude can be written either entirely in terms of $\langle ij \rangle$ or $\langle ij \rangle$ ⇒ either:

■
$$
\mathcal{M}(1^{h_1}, 2^{h_2}, 3^{h_3}) = c_{\text{angle}} \langle 12 \rangle^{\chi_{12}} \langle 23 \rangle^{\chi_{23}} \langle 31 \rangle^{\chi_{31}} \text{ or } \mathcal{M}(1^{h_1}, 2^{h_2}, 3^{h_3}) = c_{\text{square}} [12]^{y_{12}} [23]^{y_{23}} [31]^{y_{31}}
$$

[Wigner's Quantum](#page-2-0) Mechanics

Poincaré and little groups [Massive Particles and Spin](#page-11-0) [Massless Particles and Helicity](#page-12-0) [Covariant Operators P and W](#page-17-0)

[Spinor-Helicity](#page-19-0) Formalism

[Traditional ME example](#page-20-0) [Basics of Spinor Helicity](#page-24-0) [Simple Spinor-Hel Example](#page-27-0) [Gauge Bosons and Example](#page-30-0)

[Spinor-Helicity and](#page-35-0) the Little Group

[Three-Point Amplitudes](#page-37-0) [Amplitude Game](#page-44-0)

Transform (outgoing) particle *i* under little group $\mathcal{M}(|i\rangle, |i], h_i) \rightarrow \mathcal{M}(t|i\rangle, t^{-1}|i], h_i) = t^{-2h_i} \mathcal{M}(|i\rangle, |i], h_i)$

Ansatz: An amplitude can be written either entirely in terms of $\langle ij \rangle$ or $\langle ij \rangle$ ⇒ either:

■
$$
\mathcal{M}(1^{h_1}, 2^{h_2}, 3^{h_3}) = c_{\text{angle}}\langle 12 \rangle^{x_{12}}\langle 23 \rangle^{x_{23}}\langle 31 \rangle^{x_{31}}
$$
 or
■ $\mathcal{M}(1^{h_1}, 2^{h_2}, 3^{h_3}) = c_{\text{square}}[12]^{y_{12}}[23]^{y_{23}}[31]^{y_{31}}$

■ Scale particle 1:
$$
\Rightarrow
$$
 either:

$$
M \to t^{-2h_1} \mathcal{M} = t^{x_{12}+x_{31}} \mathcal{M} \Rightarrow -2h_1 = x_{12}+x_{31} \text{ or }
$$

$$
M \rightarrow t^{-2h_1} \mathcal{M} = t^{-y_{12}-y_{31}} \mathcal{M} \Rightarrow 2h_1 = y_{12} + y_{31}
$$

[Wigner's Quantum](#page-2-0) Mechanics

Poincaré and little groups [Massive Particles and Spin](#page-11-0) [Massless Particles and Helicity](#page-12-0) [Covariant Operators P and W](#page-17-0)

[Spinor-Helicity](#page-19-0) Formalism

[Traditional ME example](#page-20-0) [Basics of Spinor Helicity](#page-24-0) [Simple Spinor-Hel Example](#page-27-0) [Gauge Bosons and Example](#page-30-0)

[Spinor-Helicity and](#page-35-0) the Little Group

[Three-Point Amplitudes](#page-37-0) [Amplitude Game](#page-44-0)

Transform (outgoing) particle *i* under little group $\mathcal{M}(|i\rangle, |i], h_i) \rightarrow \mathcal{M}(t|i\rangle, t^{-1}|i], h_i) = t^{-2h_i} \mathcal{M}(|i\rangle, |i], h_i)$

Ansatz: An amplitude can be written either entirely in terms of $\langle ij \rangle$ or $\langle ij \rangle$ ⇒ either:

■
$$
\mathcal{M}(1^{h_1}, 2^{h_2}, 3^{h_3}) = c_{\text{angle}}(12)^{\chi_{12}}\langle 23\rangle^{\chi_{23}}\langle 31\rangle^{\chi_{31}} \text{ or } \mathcal{M}(1^{h_1}, 2^{h_2}, 3^{h_3}) = c_{\text{square}}[12]^{y_{12}}[23]^{y_{23}}[31]^{y_{31}}
$$

Scale particle $1: \Rightarrow$ either:

$$
M \to t^{-2h_1} \mathcal{M} = t^{x_{12}+x_{31}} \mathcal{M} \Rightarrow -2h_1 = x_{12}+x_{31} \text{ or }
$$

$$
M \rightarrow t^{-2h_1} \mathcal{M} = t^{-y_{12}-y_{31}} \mathcal{M} \Rightarrow 2h_1 = y_{12} + y_{31}
$$

Solving for all particles gives:

■
$$
\mathcal{M}(1^{h_1}, 2^{h_2}, 3^{h_3}) = c_{\text{angle}} \langle 12 \rangle^{h_3 - h_1 - h_2} \langle 23 \rangle^{h_1 - h_2 - h_3} \langle 31 \rangle^{h_2 - h_1 - h_3}
$$
 or
■ $\mathcal{M}(1^{h_1}, 2^{h_2}, 3^{h_3}) = c_{\text{square}} [12]^{h_1 + h_2 - h_3} [23]^{h_2 + h_3 - h_1} [31]^{h_1 + h_3 - h_2}$

[Wigner's Quantum](#page-2-0) Mechanics

Poincaré and little groups [Massive Particles and Spin](#page-11-0) [Massless Particles and Helicity](#page-12-0) [Covariant Operators P and W](#page-17-0)

[Spinor-Helicity](#page-19-0) Formalism

[Traditional ME example](#page-20-0) [Basics of Spinor Helicity](#page-24-0) [Simple Spinor-Hel Example](#page-27-0) [Gauge Bosons and Example](#page-30-0)

[Spinor-Helicity and](#page-35-0) the Little Group

[Three-Point Amplitudes](#page-37-0)

[Amplitude Game](#page-44-0)

Three-point amplitude possible solutions

$$
\mathcal{M}(1^{h_1}, 2^{h_2}, 3^{h_3}) = c_{\text{angle}} \langle 12 \rangle^{h_3 - h_1 - h_2} \langle 23 \rangle^{h_1 - h_2 - h_3} \langle 31 \rangle^{h_2 - h_1 - h_3} \text{ or } \\ \mathcal{M}(1^{h_1}, 2^{h_2}, 3^{h_3}) = c_{\text{square}}[12]^{h_1 + h_2 - h_3} [23]^{h_2 + h_3 - h_1} [31]^{h_1 + h_3 - h_2}
$$

- Which of our two solutions to choose??
- Use mass dimension: $[\langle ij \rangle] = [[ij]] = [p]$ and $[{\cal M}_n] = [p]^{4-n}$
	- Three-point amplitudes \mathcal{M}_3 have $[\mathcal{M}_3] = [\rho]$
	- Choose whichever option gives correct mass dimension of coupling *c*

[Wigner's Quantum](#page-2-0) Mechanics

Poincaré and little groups [Massive Particles and Spin](#page-11-0) [Massless Particles and Helicity](#page-12-0) [Covariant Operators P and W](#page-17-0)

[Spinor-Helicity](#page-19-0) Formalism

[Traditional ME example](#page-20-0) [Basics of Spinor Helicity](#page-24-0) [Simple Spinor-Hel Example](#page-27-0) [Gauge Bosons and Example](#page-30-0)

[Spinor-Helicity and](#page-35-0) the Little Group

[Three-Point Amplitudes](#page-37-0) [Amplitude Game](#page-44-0)

Three-point amplitude possible solutions

$$
\mathcal{M}(1^{h_1}, 2^{h_2}, 3^{h_3}) = c_{\text{angle}} \langle 12 \rangle^{h_3 - h_1 - h_2} \langle 23 \rangle^{h_1 - h_2 - h_3} \langle 31 \rangle^{h_2 - h_1 - h_3} \text{ or } \\ \mathcal{M}(1^{h_1}, 2^{h_2}, 3^{h_3}) = c_{\text{square}}[12]^{h_1 + h_2 - h_3} [23]^{h_2 + h_3 - h_1} [31]^{h_1 + h_3 - h_2}
$$

- Which of our two solutions to choose??
- Use mass dimension: $[\langle ij \rangle] = [[ij]] = [p]$ and $[{\cal M}_n] = [p]^{4-n}$
	- Three-point amplitudes \mathcal{M}_3 have $[\mathcal{M}_3] = [p]$

■ Choose whichever option gives correct mass dimension of coupling c

Example: $h_1 = -h_2 = -h_3 = 1$ (e.g. three-gluon amplitude)

 $\mathcal{M}(1^+,2^-,3^-)=c_{\rm angle}\langle12\rangle^{-1}\langle23\rangle^3 \langle31\rangle^{-1} \Rightarrow c_{\rm angle}$ dimensionless $\mathcal{M}(1^+,2^-,3^-)=c_{\text{square}}[12]^1[23]^{-3}[31]^1 \Rightarrow c_{\text{square}}$ has dim 2

[Wigner's Quantum](#page-2-0) Mechanics

Poincaré and little groups [Massive Particles and Spin](#page-11-0) [Massless Particles and Helicity](#page-12-0) [Covariant Operators P and W](#page-17-0)

[Spinor-Helicity](#page-19-0) Formalism

[Traditional ME example](#page-20-0) [Basics of Spinor Helicity](#page-24-0) [Simple Spinor-Hel Example](#page-27-0) [Gauge Bosons and Example](#page-30-0)

[Spinor-Helicity and](#page-35-0) the Little Group

[Three-Point Amplitudes](#page-37-0) [Amplitude Game](#page-44-0)

Three-point amplitude possible solutions

$$
\mathcal{M}(1^{h_1}, 2^{h_2}, 3^{h_3}) = c_{\text{angle}} \langle 12 \rangle^{h_3 - h_1 - h_2} \langle 23 \rangle^{h_1 - h_2 - h_3} \langle 31 \rangle^{h_2 - h_1 - h_3} \text{ or } \\ \mathcal{M}(1^{h_1}, 2^{h_2}, 3^{h_3}) = c_{\text{square}}[12]^{h_1 + h_2 - h_3} [23]^{h_2 + h_3 - h_1} [31]^{h_1 + h_3 - h_2}
$$

- Which of our two solutions to choose??
- Use mass dimension: $[\langle ij \rangle] = [[ij]] = [p]$ and $[{\cal M}_n] = [p]^{4-n}$
	- Three-point amplitudes \mathcal{M}_3 have $[\mathcal{M}_3] = [\rho]$
	- Choose whichever option gives correct mass dimension of coupling c

Example: $h_1 = -h_2 = -h_3 = 1$ (e.g. three-gluon amplitude) Correct 3-gluon amp

$$
\text{LM}(1^+,2^-,3^-)=c_{\text{angle}}\langle12\rangle^{-1}\langle23\rangle^3\langle31\rangle^{-1}\Rightarrow c_{\text{angle}}\text{ dimensionless}\\ \text{LM}(1^+,2^-,3^-)=c_{\text{square}}[12]^1[23]^{-3}[31]^1\Rightarrow c_{\text{square}}\text{ has dim }2
$$

Three-point amplitudes completely fixed by little group!

Note: Requires complex momenta for non-zero amplitude

BCFW Recursion and the MHV amplitudes

[Wigner's Quantum](#page-2-0) Mechanics

Poincaré and little groups [Massive Particles and Spin](#page-11-0) [Massless Particles and Helicity](#page-12-0) [Covariant Operators P and W](#page-17-0)

[Spinor-Helicity](#page-19-0) Formalism

[Traditional ME example](#page-20-0) [Basics of Spinor Helicity](#page-24-0) [Simple Spinor-Hel Example](#page-27-0) [Gauge Bosons and Example](#page-30-0)

[Spinor-Helicity and](#page-35-0) the Little Group [Three-Point Amplitudes](#page-37-0)

[Amplitude Game](#page-44-0)

Recall: three-point amplitudes completely fixed by little group

Basic (oversimplified) idea of BCFW:

- Take known compact form of *n*-point amplitude
- Sum over all possible three-point amplitude attachments
- Write down compact form of $(n + 1)$ -point amplitude
- **Recurse**

Example: MHV (Maximally Helicity Violating) amplitude for *n*-gluon scattering

$$
\mathcal{M}_n(1^-, 2^-, 3^+, \cdots, n^+) = \frac{\langle 12 \rangle^4}{\langle 12 \rangle \langle 23 \rangle \cdots \langle n1 \rangle}
$$

(see [hep-th:0501052](https://arxiv.org/pdf/hep-th/0501052.pdf) and [hep-ph:1308.1697](https://arxiv.org/pdf/1308.1697.pdf) for BCFW details)

Game Time: Guess the Theory from the Amplitude

[Wigner's Quantum](#page-2-0) Mechanics

Poincaré and little groups [Massive Particles and Spin](#page-11-0) [Massless Particles and Helicity](#page-12-0) [Covariant Operators P and W](#page-17-0)

[Spinor-Helicity](#page-19-0) Formalism

[Traditional ME example](#page-20-0) [Basics of Spinor Helicity](#page-24-0) [Simple Spinor-Hel Example](#page-27-0) [Gauge Bosons and Example](#page-30-0)

[Spinor-Helicity and](#page-35-0) the Little Group [Three-Point Amplitudes](#page-37-0) [Amplitude Game](#page-44-0)

Required Knowledge

$$
\mathcal{M}(|i\rangle, |i], h_i) \overset{\text{little group}}{\longrightarrow} \mathcal{M}(t|i\rangle, t^{-1}|i], h_i) = t^{-2h_i} \mathcal{M}(|i\rangle, |i], h_i)
$$

$$
[\mathcal{M}_n] = [p]^{4-n} \text{ and } [\langle ij \rangle] = [[ij]] = [p]
$$

All particles outgoing

Questions: (i) What are helicities? (ii) What dimension is coupling? (iii) What theory?

Amplitude 1: $\mathcal{M}_5 = g_1 \frac{[13]^4}{[12][23][34]}$ [12][23][34][45][51] Amplitude 2: $\mathcal{M}_4 = g_2 \frac{\langle 14 \rangle \langle 24 \rangle^2}{\langle 12 \rangle \langle 23 \rangle \langle 3 \rangle}$ $\langle 12 \rangle \langle 23 \rangle \langle 34 \rangle$ Amplitude 3: $\mathcal{M}_4 = g_3 \frac{\langle 12 \rangle^7 [12]}{\langle 13 \rangle \langle 14 \rangle \langle 23 \rangle \langle 24 \rangle}$ $\langle 13 \rangle \langle 14 \rangle \langle 23 \rangle \langle 24 \rangle \langle 34 \rangle$ 2

Game taken from section 2.6 of [hep-ph:1308.1697](https://arxiv.org/pdf/1308.1697.pdf)

Game Time: Answer to First Amplitude

[Wigner's Quantum](#page-2-0) Mechanics

Poincaré and little groups [Massive Particles and Spin](#page-11-0) [Massless Particles and Helicity](#page-12-0) [Covariant Operators P and W](#page-17-0)

[Spinor-Helicity](#page-19-0) Formalism

[Traditional ME example](#page-20-0) [Basics of Spinor Helicity](#page-24-0) [Simple Spinor-Hel Example](#page-27-0) [Gauge Bosons and Example](#page-30-0)

[Spinor-Helicity and](#page-35-0) the Little Group [Three-Point Amplitudes](#page-37-0)

[Amplitude Game](#page-44-0)

Required Knowledge

$$
\mathcal{M}(|i\rangle, |i], h_i) \stackrel{\text{little group}}{\longrightarrow} \mathcal{M}(t|i\rangle, t^{-1}|i], h_i) = t^{-2h_i} \mathcal{M}(|i\rangle, |i], h_i)
$$

$$
[\mathcal{M}_n] = [p]^{4-n} \text{ and } [\langle ij \rangle] = [[ij]] = [p]
$$

All particles outgoing

Questions: (i) What are helicities? (ii) What dimension is coupling? (iii) What theory?

Amplitude 1: $\mathcal{M}_5 = g_1 \frac{[13]^4}{[12][23][34]}$ [12][23][34][45][51] (i) E.g. particle 1 under little group: $\mathcal{M}_5 \rightarrow \frac{t_1^{-4}}{t_1^{-2}} \mathcal{M}_5 \Rightarrow h_1 = 1$ All particles: $h_1 = h_3 = -h_2 = -h_4 = -h_5 = 1$ (ii) $[\mathcal{M}_5] = -1 = \begin{bmatrix} \frac{[13]^4}{[12][23][34]} \end{bmatrix}$ $\frac{[13]^4}{[12][23][34][45][51]} \Big\} \Rightarrow [g_2] = 0$ (iii) Yang Mills (spin-1 massless particles interacting)

Game Time: Answers

[Wigner's Quantum](#page-2-0) Mechanics

Poincaré and little groups [Massive Particles and Spin](#page-11-0) [Massless Particles and Helicity](#page-12-0) [Covariant Operators P and W](#page-17-0)

[Spinor-Helicity](#page-19-0) Formalism

[Traditional ME example](#page-20-0) [Basics of Spinor Helicity](#page-24-0) [Simple Spinor-Hel Example](#page-27-0) [Gauge Bosons and Example](#page-30-0)

[Spinor-Helicity and](#page-35-0) the Little Group [Three-Point Amplitudes](#page-37-0)

[Amplitude Game](#page-44-0)

Required Knowledge

$$
\mathcal{M}(|i\rangle, |i], h_i) \stackrel{\text{little group}}{\longrightarrow} \mathcal{M}(t|i\rangle, t^{-1}|i], h_i) = t^{-2h_i} \mathcal{M}(|i\rangle, |i], h_i)
$$

$$
[\mathcal{M}_n] = [p]^{4-n} \text{ and } [\langle ij \rangle] = [[ij]] = [p]
$$

All particles outgoing

Questions: (i) What are helicities? (ii) What dimension is coupling? (iii) What theory?

Amplitude 1: $\mathcal{M}_5 = g_1 \frac{[13]^4}{[12][23][34]}$ (i) $h_1 = h_3 = -h_2 = -h_4 = -h_5 = 1$ (ii) dimensionless (iii) Yang Mills Amplitude 2: $\mathcal{M}_4 = g_2 \frac{\langle 14 \rangle \langle 24 \rangle^2}{\langle 12 \rangle \langle 23 \rangle \langle 34 \rangle^2}$ $\langle 12 \rangle \langle 23 \rangle \langle 34 \rangle$ (i) $h_1 = h_2 = 0$ and $h_3 = -h_4 = 1$ (ii) dimensionless (iii) Scalar QED/QCD Amplitude 3: $\mathcal{M}_4 = g_3 \frac{\langle 12 \rangle^7 [12]}{\langle 13 \rangle \langle 14 \rangle \langle 23 \rangle \langle 24 \rangle}$ $\langle 13 \rangle \langle 14 \rangle \langle 23 \rangle \langle 24 \rangle \langle 34 \rangle^2$ (i) $h_1 = h_2 = -h_3 = -h_4 = -2$ (ii) dim −2 (iii) Effective gravity

Conclusions

[Wigner's Quantum](#page-2-0) Mechanics

Poincaré and little groups [Massive Particles and Spin](#page-11-0) [Massless Particles and Helicity](#page-12-0) [Covariant Operators P and W](#page-17-0)

[Spinor-Helicity](#page-19-0) Formalism

[Traditional ME example](#page-20-0) [Basics of Spinor Helicity](#page-24-0) [Simple Spinor-Hel Example](#page-27-0) [Gauge Bosons and Example](#page-30-0)

[Spinor-Helicity and](#page-35-0) the Little Group

[Three-Point Amplitudes](#page-37-0) [Amplitude Game](#page-44-0)

- Particles classified by their representation under *both* Lorentz and little groups
- Massive particles have total spin and spin along a given direction
- Massless particles only have helicity
- Spinor-helicity formalism simplifies amplitude calculations since amplitude is a complex number
- Using both spinor-helicity and the little group recursive amplitude calculations possible
	- \blacksquare These skip Feynman diagram step
	- Far more efficient m,