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Aim and Reason for these Seminars

To try and share the interesting knowledge we have gained during my PhD
wmomnerwsn | First (this) seminar:

, | . Second (next) seminar:
o - Yery |nfqrma (questions and m More of a standard seminar
S interruptions welcome!)

. . ) ) m Show our unique research
Gauge Bosons and Examp m Aim to discuss fundamental physics (chirality-flow method)

that I only recently understood m Go from Feynman diagram to number

- = Hopefully useful to all via flow lines
= Main topics are: m Requires minimal work compared to
m Wigner’'s Quantum Mechanics incl. standard methods
little group m Builds on many concepts from first
i m Spinor-helicity formalism seminar
Lu ND = How they link together to calculate | really cool

UNIVERSITY amplitudes
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Poincaré and little groups

Massive Particles 2 oir

LUN

UNIVERSITY

Wigner’s Quantum Mechanics

How to classify different types of particles?

m Consider particle (state vector) ¢» with Poincaré the only symmetry
m Lorentz transformations: p* — A“ p”, U(A) = e~ 2/ @
m Translations: p* — p* + a*, U(a) = e~ "2
m Generic representation of Poincaré transformation U(A, a)
m What information can we know about this particle???
= QN from translation p
m QN from Lorentz transformations o

m Diagnonalise translation operator Py, = pH1)p »

Andrew Lifson Spin Discussion 11th January 2021 4/36



UNIVERSITY

Particle Definition in Wigner’s Quantum Mechanics

m How to classify different types of particles ¢p ,?
m Define ‘standard’, simple momentum k* (e.g. k* = (m,0,0,0))
m Define Lorentz transformation L(p, k) s.t. p* = L(p, k)'L k"

Definition of a particle

Vp,c = N(P)U(L(p, k))tbk,o

m N(p) = normalisation (not important in this discussion, will be ignored)
m U(L(p, k)) s.t. ¢ can have any representation of Lorentz group
m o quantum number(s) unchanged by definition

Andrew Lifson Spin Discussion 11th January 2021 5/36



LUND

UNIVERSITY

Wigner Rotations and the Little Group

How to classify different types of particles p »?

m Consider Lorentz transformation U(A) on v »

UN)Yp,s = UN) U(L[P)Yko = U(AL[P]) Yk Wigner rotation:
definition of 1p, & representation

k
= UL UL IR U LR o 10 N

~~

1

= U(L[AR) UL~ (AR)AL[P]) vk o p Ap
W(A,p) e

m W(A, p) = Wigner rotation
m Takes k back to itself, i.e. W/ k¥ = k*
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Wigner Rotations and the Little Group

How to classify different types of particles p »?
Wigner rotation:

m Consider Lorentz transformation U(A) on v » k
- L(A
U(A)pr = U(LIND) U(L [NPIALIB]) v % N
N’
k unchanged / Win.p)
= U(LIAPD) Y Do (WA, Ptk o P Ap

— 7

A
W(A, p) leaves k invariant,
i.e. WhkV = kM

o unchanged

= Dy (WIA, p])tbnp,or

m Wigner rotation generates the ‘little group’
m Subset of Lorentz transformation leaving k* invariant
m Responsible for quantum numbers o
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Poincaré and little groups

LUND

UNIVERSITY

Consequences for amplitudes

Lorentz transformation of a particle

U(A)¢p,a = 0,0”( W[A7 p])wl\p,a/ e U(A) |P7 J> = Da,a’( W[Aa p])lAp7 OJ>

m Scattering amplitudes are of the form M, ~ (particles out|particles in)
m Each particle transforms under Lorentz/little groups

Lorentz transformation of an amplitude

M (pi; i) ~ H ot (WIA, pil) Ma([AP]i, o7)

m Can use the little group transformation to check consistency of an amplitude
m Can sometimes be enough to fix the amplitude!!
Andrew Lifson
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Poincaré and little groups

LUN
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Particle Classification

What are the different standard momenta k* = (E, kx, k,, k;)??
(Different k" cannot be (proper orthochronously) Lorentz transformed into one another)

Particle type | Standard momentum k | Little group
PP =mP.p° >0 | k¥ = (m,0,0,0) | s0(3)
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incaré and little groups
\ssive Particles and Spir

LUND

UNIVERSITY

Particle Classification

What are the different standard momenta k* =

(E, kx, ky, kz)??

(Different k" cannot be (proper orthochronously) Lorentz transformed into one another)

Andrew Lifson

Particle type Standard momentum k | Little group
p? =m?,p° >0 k“:(mOOO) SO()
p?=m? p’ <0 (mOOO) SO(3)
p?=0,p° >0 k“—( ,w) ISO(2)
p?=0,p° <0 (wOOw) ISO(2)
p? = —nP k* = (0,0,0, m) SO(2,1)
pt=0 k* =(0,0,0,0) SO(3,1)
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Poincaré and little groups

LUND

UNIVERSITY

Particle Classification

What are the different standard momenta k* =

(E, kx, ky, kz)??

(Different k" cannot be (proper orthochronously) Lorentz transformed into one another)

Particle type Standard momentum k | Little group
Massive | o2 = m?,p° > o\ k* = (m,0,0,0) SO( )
p?=m?p° <0 (mOOO) SO(3)
Massless | p* =0,p° >0 | | k* = (w,0,0,w) 1SO(2)
p?=0,p°<0 (wOOw) ISO(2)
Tachyon | p? = —m? k* = (0,0,0, m) SO(2,1)
Vacuum | p* =0 k* =(0,0,0,0) SO(3,1)

Not just U(A) and p. Also important is k and little group quantum numbers!!

Andrew Lifson

Spin Discussion
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The SO(3) Little Group of Massive Particles

Standard momentum k* = (m, 0,0, 0)
What are quantum numbers o and reps D(W)??

m D(W(A, p)) representations of so(3) = su(2)

m This group is well known from non-relativistic quantum mechanics
m For particle of total spin j:

mo={?=j(+1)Js} (s = some direction)
m /2 unchanged under Lorentz and little groups, js changes
m For infinitesimal rotations Rjx = Jjx + ik

D((;j;/“ + 9) = 50’0' + Eoik(J,g))aU’
(Ja(,é) + iJéQ)UU, — <J1(j) + U"‘('j))aa' = 6otV F )£ +1)
(J‘I(jZ))UU = (J30))UU’ = 050’0

Spin Discussion

Andrew Lifson

11th January 2021 10/36



The /ISO(2) Little Group of Massless Particles

Standard momentum k* = (w, 0,0, w)
Quantum numbers are o = a, b, 0

It can be shown that W*, is

14+¢ ab —€\ /1 0 0 o
- B a 1 0 -a 0 cosf —sinf O a + b?
W(a,b,6) = b 01 —b 0 sinf cosfd O’ £= 2
o ¢ abi1-¢/\o o 0 1
S(ab) R(6)
1 a b 0
itesipaly @ 100 7AYo (s Ke) b (—dh + Kp) +i0s
b 6 1 —b ——— —_——
0 a b 1 A B

UNIVERSITY
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Massless Particles and Helicity

riant Operators P and W
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UNIVERSITY

Quantum Numbers of Massless Little Group /SO(2)

Standard momentum k* = (w, 0,0, w)

Little group generated by W*,(a, b, 0) = 1 + iaA + ibB + i6J3

Quantum numbers are 0 = a, b, 6

Commutation relations: [J3,A] = iB, [J3,B]=IA,

[A,B]=0

To calculate a, b, @ first diagonalise Calculate eigenvalue of A on full state:

a,b:
B Ak ap = akab

B By ap = bk ab
Then define full state as:

B Yk abo =€ By ap

Andrew Lifson Spin Discussion

0y 05 g i iB
Adkaps =8 72" Ae™ Sk ab

definition

= e ""5(Acost — Bsin )k ap
N\ / 1<
/03 Ae—i0Y3

= (acosf — bsin0)ix ap g
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Massive Particles
Massless Particles and Helicity
nt O P N
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Quantum Numbers of Massless Little Group /SO(2)

Standard momentum k* = (w, 0,0, w)
Little group generated by W*,(a, b, 0) = 1 + iaA + ibB + i6J3
Quantum numbers are 0 = a, b, 6

Commutation relations: [J3, Al = iB, [J3,B]=IiA, [A,B]=0

To calculate a, b, @ first diagonalise Calculate eigenvalue of A on full state:

a, b: TR .
; Awk abo = € i0J3 el@Ja Ae i0J3 wk ab

o »d,U, N—— 'y
B Ak ap = akab y

B b definition
[ = i .
Vab = bikas = e "5 (Acost — Bsin )Yk .ap
i . )y
Then define full state as: T
eIGJsAe i6J3

— A0
" Ykabo =€ " Vkab = (acosf — bsin )y ap.0

Conclusion: Unless a = b = 0, 6 = continuous and 3 infinity of states
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Quantum Numbers of Massless Little Group /SO(2)

Standard momentum k* = (w, 0,0, w)

Little group generated by W*,(a, b,0) = 1 + iaA + ibB + i0Js
Quantum numbers are either o = a, b, 8, with 8 continuous or
Quantum numbers are a = b = 0 and j3 = 4j = helicity

We don’t see states with such a continuous parameter so two options:

Predict a new undiscovered type of particle

m See e.g. hep-th:1302.1198, hep-th:1302.1577, hep-th:1302.3225, and

hep-th:1404.0675

Assume a = b = 0 for physical states

m Use topology to conclude that j5 = J; eigenvalue is quantised

m SL(2, C) is universal covering of SO(2) so rotation by 47 = identity
B J; measures spin along motion = helicity

LU ND Conclusion: Only quantum number for massless is o = jz = helicity
UNIVERSITY
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and little groups

Massive Particles and Spi

Massless Particles and Helicity

LUND
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Massless particles

Standard momentum k* = (w, 0,0, w)
Physical particles: little group generated by W*,(a, b,0) = 1 + i0Js
Quantum number is o = j3 = helicity

Some notes:

m It is entirely natural to consider h = + as a different particle to h = —

parity
— ¢—E,a soh— —h

m If parity conserved: ¢
m = consider h = £ as two reps of same particle
m Any massless particles (e.g. graviton, photon) have exactly two d.o.f

m No concept of total spin and spin along a direction of motion
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(Quadratic) Casimirs of Poincaré Algebra

The two quadratic Casimirs of Poincaré algebra
= m?and W2 = —m?j(j + 1) "=" —w?(A? + B?)

m P, = "a% generates translations

m WH = —1e P, J,, generates little group

m W+ caIIed Pauli-Lubanski pseudovector

m (WH/m)? = —j(j+1) = WH/mis a covariant spin operator!

Andrew Lifson Spin Discussion
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Covariant (massive) spin-1/2 operator

Using Pauli-Lubanski (pseudo)vector

spin;1 /2 o Ji

1 —_ wr _ 1 VAW | v
XN =T = e POy, o =5 0]

m Check X* for the rest frame P* — k* = (m,0,0,0)

1 rest 1 1 Ui 0 1 rest
3T = 1 =020 =5 (o J/> ,  320=0,
m We can measure T* in direction s#, st &' (0, 8) using
_Z‘;Su — #E’LUAWSMPVO')M
m Above shows s- P =Y - P =0, s? = —1 and (with a bit of algebra)
1 . . :
—% = P8P = 575,5‘ = operator measuring spin of spinor along s*
——
Piy=my
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p\Sp r-Hel Ex
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Traditional QFT: a Simple Example

m Keep all particles unpolarised
m Obtain amplitude as matrix

Andrew Lifson

Spin Discussion

~ [Vr(p2)v" us(p1)][Te(pa) v viw(ps)]
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Traditional QFT: a Simple Example

m Keep all particles unpolarised

m Obtain amplitude as matrix

m Square the matrix amplitude
m Spin states are orthogonal

~ ) [ (p2)7" us(p1)][Ge(Pa) Y Vir (03)]

r,s,t,w

x [Us(p1)v" ve(p2)][Viw (P3) v Ut (pa)]

Andrew Lifson Spin Discussion 11th January 2021 18/36



Traditional QFT: a Simple Example

m Keep all particles unpolarised

m Obtain amplitude as matrix
m Square the matrix amplitude

o opnees @ ATIOONE 3 o) s I[BH(e v (3]

X [Us(P1)7" vr(p2)][Vw(P3) Vv Ut (pa)]
~ Y [V ve(2) Vr(p2) us(p1 ) Ts(p1)]

r,s,t,w

x [y ut(pa)Tt(Pa) vy v (P3) Vin (P3)]

= Move components around

UNIVERSITY
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Traditional QFT: a Simple Example

m Keep all particles unpolarised

m Obtain amplitude as matrix
m Square the matrix amplitude
m Spin states are orthogonal

m Move components around

m Use spin sums

m Take trace of fermionic structure
m Requires identities of +*

m Simplify

~Tr [y (B, — Me)V (P + Me))]
X Tr [y (B, + Mu)vu(Py + my)]

Tr ,ym ,yuz] — 4gu1u2
Tr {’y”‘ ...7"4] =

4(gu1uzg#au4 _ gm Maguzm + gM #49#3H2)
Tr[’y“‘ “.,yllfzn+1] =0
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Traditional ME example
Basics of Spinor Helicity

Simple Spinor-Hel Exa

LUND
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The Helicity Basis: what and why?

Helicity basis means each particle has a specific helicity
Lorentz algebra so(3,1) = su(2) & su(2)
Consider massless particles

m |deal for (approximately) massless particles (e.g. most particles at LHC)
m Helicity is the quantum number of the massless little group
m For incoming (anti)spinors chirality ((1,0) or (0, 1)) ~ helicity (—3 or +1)
m For outgoing (anti)spinors chirality ((1,0) or (0, 1)) ~ helicity (—1 or +3)

m Amplitude itself is a number rather than a matrix
m Easy to square

m Different helicity amplitudes are orthogonal
m Only sum over helicities after squaring

Andrew Lifson Spin Discussion
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Traditional ME example
Basics of Spinor Helicity
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UNIVERSITY

Spinor-Helicity: its Building Blocks

Lorentz algebra so(3,1) = su(2) & su(2)
Consider massless particles: chirality ~ helicity

Spinors (use chiral basis):
ce=v o= (p)  ue =vier= ()
at(p)=v"(p) = (lpl 0) FmFV()(<m
(09 e Y

m Amplitude written in terms of Lorentz-invariant spinor inner products
(i) = —yi) = (illj) and [i] = —[ji] = [i|]]
m These are well known complex numbers, (ij) ~ [ij] ~ \/2pi - p;

m Cannot contract left and right: (i||j] = u(p;)PrPLu(p;) =0

m Objects live in different Lorentz reps so a contraction makes no sense!

Andrew Lifson Spin Discussion
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Spinor-Helicity: Vectors and Removing ;1 Indices

Lorentz algebra so(3,1) = su(2) & su(2)
Consider massless particles: chirality ~ helicity

Dirac matrices in chiral basis

w:< 0 ﬁT“) Vart = (1,8), V2R = (1,-5),

NG
Remove 7/7 matrices in amplitude with
T Tk ull) = (DIK) - 1P = [l
Fierz?aentity Charge C;njugation

Express (massless) p* in terms of spinors

o [p|\7/~§|p> _ <p|;;rp1, Vaphn, = p— ool V2R, =B p)lp

Andrew Lifson Spin Discussion 11th January 2021 21/36
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Our Simple Example using Spinor Helicity

Lorentz algebra so(3,1) = su(2) & su(2)
Consider massless particles: chirality ~ helicity

e oot
m Explicit helicities for external particles
m Now diagram is a complex number Vs NS
m Easy to square _ _
. - ~ (2| |p1]{pa| Tyl ps]
m Square first, then sum over helicities _ [01]7102) (a7 5]
m Some helicity configurations vanish = WPrIT1P2) \PalTu|Pa
m CP-invariance relates helicity configurations = (Pap2) [p1Ps]

UNIVERSITY
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Traditional ME example
Basic f Spir Helicity
Simple Spinor-Hel Example
Gauge Bosons and Example

UNIVERSITY

Our Simple Example using Spinor Helicity

Lorentz algebra so(3,1) = su(2) & su(2)
Consider massless particles: chirality ~ helicity

m Explicit helicities for external particles
m Now diagram is a complex number

e R 2, N\
= Easy to square % N

m Square first, then sum over helicities ~ [p2|7"|p1) (Pa| Tyulp3]
m Some helicity configurations vanish = (pap1)[p2ps]

m CP-invariance relates helicity configurations

Andrew Lifson Spin Discussion 11th January 2021 22/36



Traditional ME example
Basic f Spir Helicity
Simple Spinor-Hel Example
Gauge Bosons and Example
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Our Simple Example using Spinor Helicity

Lorentz algebra so(3,1) = su(2) & su(2)
Consider massless particles: chirality ~ helicity

m Explicit helicities for external particles
m Now diagram is a complex number

m Easy to square
m Square first, then sum over helicities

m Some helicity configurations vanish
m CP-invariance relates helicity configurations

Andrew Lifson Spin Discussion

~ 2|(pap2)[p1ps]|?
+ 2|(pap1) [P2ps] I?

11th January 2021
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Spinor-Helicity: Gauge Bosons in Terms of Spinors

Lorentz algebra so(3,1) = su(2) & su(2)
Consider massless particles: chirality ~ helicity

Outgoing polarisation vectors:

_ (rl™]p] (. ) = rTlp)
6IL—:‘-(p7 r) - <fp> ’ —(p7 I') [pf]
e _ (rlp"7ulpl . _ [rp*7ulp)
prelpn)= " T =0 Pl = T =0
Weyl eq. p#7,,|p]=0 Weyl eq. pt7,,|p)=0
Tl . _ (7 pl [rlTulp) (e[l
G I = IR s R
LUND o lprl=—{ro]

UNIVERSITY
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Spinor-Helicity: Gauge Bosons in Terms of Spinors

Lorentz algebra so(3,1) = su(2) & su(2)
Consider massless particles: chirality ~ helicity

Outgoing polarisation vectors:

o o (rl7Mp) o lrllp)
Gauge Bosons and Example 6+(p’ r) - <rp> ) € (p? r) - [pr]

S m ris a (massless) arbitrary reference momentum (p - r # 0)
m Different r choices correspond to different gauges
(r'r)

P =P = P

S m Gauge invariant quantities must be r-invariant
LU ND m Choose r as conveniently as possible (remember (ij) = —(ji) s.t. (i) = 0)

m Variance under r — r’ good check of gauge invariance of (partial) amplitude
Andrew Lifson Spin Discussion 11th January 2021 24/36
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Another Spinor-Helicity Example: ete™ — vy

2 s _
et 3
+
=
Diagram 1: L+
s
W=
e V4
) )
—

~ (p1 |7 (Ip1)(p1| + |pa] (pa) 7" |o] U5 7o lps) (14|74 s)

~ (r38) [pad]
p,+p, \_\_,_/\_\:_/
_ (1ra)([41](13) + [44](43))[r32] _ (1r4)[41](13)[rs2]
N (r33)[4r4] . (r33)[4r4]
Fierz identities like (i|7#|j][k|7.|)=il)[kf] [ii]zo
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Another Spinor-Helicity Example ete™ — v

Add two diagrams together

P2 p3 p2 pq

e —5 - . = — +
N AAVAVAVAVLE N AV VL
a = 3
S—— vlz + i
L T w _
. " I YAVAVAV AV VL
I P P 3
_ {1ra)[41](13)[rs2] L (18)((r1)(1ra) + [rs3](3ra))[42]
(r3ps)[para] (r33)[414]
LUN
UNIVERSITY
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Another Spinor-Helicity Example ete™ — v

Choose gauge d.o.f. wisely (r4 = p1,r3 = p2 s.t. (1r4) = [r32] = 0)
Recall: (i) = [jj] = 0 due to antisymmetry

P2 p3
S AN TS
+

=

[ 'er

p1 2!

— —
N (1r4)[41](13)[r32] n

<f33> [4f4]

=0 +

Andrew Lifson

Spin Discussion

L2
AN
+

=
Yy |+
L3

(13)([r31](1ra) + [rs3](314))[42]

<I’33> [4[’4]

(13)[23](31)[42]

(23)[41]
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Spinor-Helicity and
the Little Group
plitudes

LUND

Little Group and Spinor Helicity

Little Group
Group of transformations that leaves p* invariant

m Recall: p = |p](p| and p = |p)[p|
m = under little group transformation:

m (p| — t(p| and [p) — t|p)
® |p] = t~"|p] and [p| — t“[pl
BpeR=t=gl?=¢fh
m p € C = t more general

m Recall: ¢/ (p,r) = <’|<T >|p] and ¢ (p, r) = ["f;ﬂ‘m (p outgoing)

m = under little group transformation:
[ ] ei — 2!

m e’ — et

UNIVERSITY
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Amplitude Gam
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UNIVERSITY

Little Group and Three-Point Amplitudes

Transform (outgoing) particle i under little group

M(Ji), 1], bi) = M(t]i), i, hy) = £72M(i), |i], hi)

m Ansatz: An amplitude can be written either entirely in terms of (ij) or [ij]
m = either:

m M(10, 2% 3 = 0 (12)%2(23) % (31)% or
u M(-] hy , 2’72’ 3h3) — quuare[1 2]}’12 [23]}’23 [31 ]}’31

Andrew Lifson Spin Discussion 11th January 2021 30/36



Little Group and Three-Point Amplitudes

Transform (outgoing) particle i under little group

M), 1], br) = M(t]i), t711), by) = t20 M (i), |i], i)

m Ansatz: An amplitude can be written either entirely in terms of (ij) or [ij]
m = either:
M1, 2% 3M) = ¢,,0(12)%12(23)*(31)%" or
B MM 2P 3M) = ¢ are[12]712[23]2[31]7
e ot Al m Scale particle 1: = either:
B M= 72 M = pete M = —2h = Xqp + Xz OF
M = MM = Ve M = 20y = yip + Ya

LUN

UNIVERSITY
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Little Group and Three-Point Amplitudes

Transform (outgoing) particle / under little group

M), 1], br) = M(t]i), t711), by) = t20 M (i), |i], i)

m Ansatz: An amplitude can be written either entirely in terms of (ij) or [ij]
m = either:
M1, 2% 3M) = ¢,,0(12)%12(23)*(31)%" or
B MM 2P 3M) = ¢ are[12]712[23]2[31]7
m Scale particle 1: = either:
B M = 72 M = et M = —2hy = Xgp + X31 OF
B Mt M =tV M = 2hy = yip + s
m Solving for all particles gives:
m M(1h 2 3Mh) = ¢, 00 (12)M =M =P (23) M =ha=hs (31)ha=Mm =hs o
m M(1 h , 2/72’ 3h3) — quuare“ 2]h1 +ha—hs [23]h2+/73—h1 [31 ]h1+/73—h2

Andrew Lifson Spin Discussion 11th January 2021 30/36
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Little Group and Three-Point Amplitudes

Three-point amplitude possible solutions

MM 2he 3hs) = g, 10 (12)Me=M=he (23)Mm—he=hs (31 ) he=M—hs op
M(1 hy : 2h27 3h3) _ quuare[1 2]’71 +ho—hg [23]h2+h3—h1 [31 ]h1+h3—h2

m Which of our two solutions to choose??
= Use mass dimension: [(ij)] = [[ij]] = [p] and [M,] = [p]*~"
m Three-point amplitudes M3 have [M3] = [p]
m Choose whichever option gives correct mass dimension of coupling ¢
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Little Group and Three-Point Amplitudes

Three-point amplitude possible solutions

MM 2he 3hs) = g, 10 (12)Me=M=he (23)Mm—he=hs (31 ) he=M—hs op
M(1 hy : 2h27 3/"3) _ quuare[1 2]h1+h2—h3 [23]h2+h3—h1 [31 ]h1+h3—h2

m Which of our two solutions to choose??
= Use mass dimension: [(ij)] = [[if]] = [p] and [M,] = [p]*~"
m Three-point amplitudes M3 have [M3] = [p]
m Choose whichever option gives correct mass dimension of coupling ¢
Example: hy = —h, = —h3 = 1 (e.g. three-gluon amplitude)
B M(17,27,37) = Cangle(12)71(23)3(31) ! = cypg1e dimensionless
B M(11,27,37) = quuawe[12]1 [23]7%[31]' = Csquare has dim 2
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Little Group and Three-Point Amplitudes

Three-point amplitude possible solutions

MM 2he 3hs) = g, 10 (12)Me=M=he (23)Mm—he=hs (31 ) he=M—hs op
M(1 hy : 2h27 3/73) _ quuare[1 2]h1+h2—h3 [23]h2+h3—h1 [31 ]h1+h3—h2

m Which of our two solutions to choose??
m Use mass dimension: [(ij)] = [[ij]] = [p] and [M,] = [p]*~"
m Three-point amplitudes M3 have [M3] = [p]
m Choose whichever option gives correct mass dimension of coupling ¢

Example: hy = —h» = —hy = 1 (e.q. three-gluon amplitude) Correct 3-gluon amp

B M(17,27,37) = Cangle(12)71(23)3(31) ! = cypg1e dimensionless

B M(17,27,37) = Gquare[12]'[23] °[31]" = Csquare has dim 2

Three-point amplitudes completely fixed by little group!
Note: Requires complex momenta for non-zero amplitude
Andrew Lifson
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BCFW Recursion and the MHV amplitudes

Recall: three-point amplitudes completely fixed by little group

Basic (oversimplified) idea of BCFW:
m Take known compact form of n-point amplitude
m Sum over all possible three-point amplitude attachments
m Write down compact form of (n + 1)-point amplitude

m Recurse

Example: MHV (Maximally Helicity Violating) amplitude for n-gluon scattering

Mn(1_:2_’3+7' o 7n+) =

(12)*

(12)(28) --- (n1)

(see hep-th:0501052 and hep-ph:1308.1697 for BCFW details)
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https://arxiv.org/pdf/1308.1697.pdf

Game Time: Guess the Theory from the Amplitude

Required Knowledge

MJi), |11, b)) "SI M), £, By) = 2 M), |7, B
[My] = [pl*=" and [(if)] = [[i1] = [o]
All particles outgoing

Questions: (i) What are helicities? (ii) What dimension is coupling? (iii)
What theory?
13]4

. Amplltude 1: M5 =3 W
. . - (14) (24)?
Ampll’[ude 2: M4 = QQW
Amplitude 3: My = (12)7[12]
plitu - Ma =03 (13) (14 (23) (24) (342

5o
L u N D Game taken from section 2.6 of hep-ph:1308.1697

UNIVERSITY
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Game Time: Answer to First Amplitude

Required Knowledge

MJi), 11, by) " Mty 1, b)) = A0, |1, )
[My] = [p]*=" and [(ij)] = [[i]] = [o]
All particles outgoing

Questions: (i) What are helicities? (ii) What dimension is coupling? (iii)

What theory?

; . _ 13]*4
Amplitude 1: M5 = g

[12] [23][[34] [45][51]

—4
(i) E.g. particle 1 under little group: M5 — ?,—zMs = hy =1
All particles: hy = hg = —hp = —hy = —hs — 1

- 13]4
(i) [Ms] = —1 = —[12][23][[34]][45][51] = [9] =0
(iii) Yang Mills (spin-1 massless particles interacting)
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Game Time: Answers

Required Knowledge

M, 1, ) IS M), 1, ) = 2R, |, hy)
[Mo] = [pl*=" and [(i)] = [[il] = [p]

All particles outgoing

S Questions: (i) What are helicities? (ii) What dimension is coupling? (iii)
What theory?
[13]*

Three-Point Amplitude Ampll’[ude 1: MS = 01 T2][23][34][45][51]

(i) hy = hg = —ho = —hy = —hs = 1 (ii) dimensionless (iii) Yang Mills
Amplitude 2: My = gg%

(i) hy = ho = 0 and hs = —hy4 = 1 (ii) dimensionless (iii) Scalar QED/QCD

Amphtude 3 My = g3< 3)(14 <;<2> >[1<211><34>2

LUND | ()h =h = —hg = —hy = —2 (i) dim —2 (iii) Effective gravity

UNIVERSITY
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Conclusions

m Particles classified by their representation under both Lorentz and little
groups

m Massive particles have total spin and spin along a given direction

m Massless particles only have helicity

m Spinor-helicity formalism simplifies amplitude calculations since amplitude is
a complex number

m Using both spinor-helicity and the little group recursive amplitude
calculations possible
m These skip Feynman diagram step
m Far more efficient
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