
FORM: an inFORMal introduction
MATTIAS SJÖ, DEPT. OF ASTRONOMY AND THEORETICAL PHYSICS, LUND UNIVERSITY

Introduction
vs. Mathematica

Capabilities

Examples

A simple program
Declarations

Operations

Output control

Ending a module

The output

The basics of FORM

Symbols and Functions

Wildcards

Repetition

Vectors and Tensors

The preprocessor

Resources

What is FORM?

Semi-specialised computer algebra system
Strong ties to (and originally developed for) particle physics

Image: chessprogramming.org

Created by Dutch physicist Jos Vermaseren
(also creator of Axodraw) in 1989
Contributions from many others
(it’s open source!)
Latest version (2018) is 4.2

Image: Accademia Degli Archi

Spiritual successor to 1960’s SCHOONSCHIP
by Martinus Veltman
Used renormalisation of Yang-Mills theory
→ Nobel Prize 1999
Similarly, FORM is used for all kinds of
research

Mattias Sjö, Lund ATP FORM: an inFORMal introduction January 28, 2021 2/26

Introduction
vs. Mathematica

Capabilities

Examples

A simple program
Declarations

Operations

Output control

Ending a module

The output

The basics of FORM

Symbols and Functions

Wildcards

Repetition

Vectors and Tensors

The preprocessor

Resources

FORM versus Mathematica (and Maple, etc.)

Mathematica FORM

Lots of features Limited features
Big and slow Small and fast

Proprietary and expensive Free and open source
Beautiful graphics and

interface
The same rugged charm as

FORTRAN

Lots of documentation
and support

Decent documentation,
mostly un-goolgleable

Mattias Sjö, Lund ATP FORM: an inFORMal introduction January 28, 2021 3/26

Introduction
vs. Mathematica

Capabilities

Examples

A simple program
Declarations

Operations

Output control

Ending a module

The output

The basics of FORM

Symbols and Functions

Wildcards

Repetition

Vectors and Tensors

The preprocessor

Resources

What can FORM do?

Arbitrary-precision complex rational arithmetic and tensor algebra
Special particle physics facilities
(Dirac matrices, diagram generation,. . .)
Complete procedural/declarative programming language
(basically anything can be emulated)
Simplify and modify HUMONGOUS expressions
Use hard drive very efficiently — not limited by RAM
Parallel and cluster computing (TFORM and ParFORM)

But. . .

No numerics, no plotting, no rich text
No “intelligent” algebra, no built-in calculus

The key point
FORM excels when things are straightforward,
but big enough to be immensely difficult!

Mattias Sjö, Lund ATP FORM: an inFORMal introduction January 28, 2021 4/26

Introduction
vs. Mathematica

Capabilities

Examples

A simple program
Declarations

Operations

Output control

Ending a module

The output

The basics of FORM

Symbols and Functions

Wildcards

Repetition

Vectors and Tensors

The preprocessor

Resources

Cool things done in FORM

“We’re typically one loop order higher
than we’d be without FORM”

— Common knowledge, quoted through Hans Bijnens

Much of Hans Bijnens’ research
My master’s project (incl. 12-point NLSM scattering)
and subsequent work
The high-order QCD β function
A multiple zeta value data mine
and many more. . .

Mattias Sjö, Lund ATP FORM: an inFORMal introduction January 28, 2021 5/26

Introduction
vs. Mathematica

Capabilities

Examples

A simple program
Declarations

Operations

Output control

Ending a module

The output

The basics of FORM

Symbols and Functions

Wildcards

Repetition

Vectors and Tensors

The preprocessor

Resources

A simple FORM program

Mattias Sjö, Lund ATP FORM: an inFORMal introduction January 28, 2021 6/26

Introduction
vs. Mathematica

Capabilities

Examples

A simple program
Declarations

Operations

Output control

Ending a module

The output

The basics of FORM

Symbols and Functions

Wildcards

Repetition

Vectors and Tensors

The preprocessor

Resources

A simple FORM program

Let’s evaluate an integral:∫ 1

0
(6x + 8x2 − 9x3)4(1− x) dx

symbols x, n;

local Q = (6*x + 8*x^2 - 9*x^3)^4 * (1-x);

* Integrate
id x^n? = x^(n+1) / (n+1);

* Insert limits
multiply replace_(x, 1) - replace_(x, 0);

print;
.end

Mattias Sjö, Lund ATP FORM: an inFORMal introduction January 28, 2021 7/26

Introduction
vs. Mathematica

Capabilities

Examples

A simple program
Declarations

Operations

Output control

Ending a module

The output

The basics of FORM

Symbols and Functions

Wildcards

Repetition

Vectors and Tensors

The preprocessor

Resources

Declaring variables

symbols x, n;

* local Q = (6*x + 8*x^2 - 9*x^3)^4 * (1-x);

* Integrate
* id x^n? = x^(n+1) / (n+1);

* Insert limits
* multiply replace_(x, 1) - replace_(x, 0);

* print;
* .end

All variables must be declared
symbol: general-purpose commuting object

Mattias Sjö, Lund ATP FORM: an inFORMal introduction January 28, 2021 8/26

Introduction
vs. Mathematica

Capabilities

Examples

A simple program
Declarations

Operations

Output control

Ending a module

The output

The basics of FORM

Symbols and Functions

Wildcards

Repetition

Vectors and Tensors

The preprocessor

Resources

Declaring expressions

* symbols x, n;

local Q = (6*x + 8*x^2 - 9*x^3)^4 * (1-x);

* Integrate
* id x^n? = x^(n+1) / (n+1);

* Insert limits
* multiply replace_(x, 1) - replace_(x, 0);

* print;
* .end

Expressions are collections of terms
Terms are the target of all FORM operations
local: different scopes are possible in large programs

Mattias Sjö, Lund ATP FORM: an inFORMal introduction January 28, 2021 9/26

Introduction
vs. Mathematica

Capabilities

Examples

A simple program
Declarations

Operations

Output control

Ending a module

The output

The basics of FORM

Symbols and Functions

Wildcards

Repetition

Vectors and Tensors

The preprocessor

Resources

Identification statements

* symbols x, n;

* local Q = (6*x + 8*x^2 - 9*x^3)^4 * (1-x);

* Integrate
id x^n? = x^(n+1) / (n+1);

* Insert limits
* multiply replace_(x, 1) - replace_(x, 0);

* print;
* .end

id[entify]: apply substitution to all terms
Wildcards: n? matches any symbol (including numbers)
Matched value is substituted for n in RHS

Mattias Sjö, Lund ATP FORM: an inFORMal introduction January 28, 2021 10/26

Introduction
vs. Mathematica

Capabilities

Examples

A simple program
Declarations

Operations

Output control

Ending a module

The output

The basics of FORM

Symbols and Functions

Wildcards

Repetition

Vectors and Tensors

The preprocessor

Resources

Built-in functions

* symbols x, n;

* local Q = (6*x + 8*x^2 - 9*x^3)^4 * (1-x);

* Integrate
* id x^n? = x^(n+1) / (n+1);

* Insert limits
multiply replace_(x, 1) - replace_(x, 0);

* print;
* .end

multiply: multiply argument with all terms
Built-in functions end with an underscore
replace_: like id, do substitution in terms containing it
— compare to

∫
dx [δ(x − 1)− δ(x − 0)]Q

Mattias Sjö, Lund ATP FORM: an inFORMal introduction January 28, 2021 11/26

Introduction
vs. Mathematica

Capabilities

Examples

A simple program
Declarations

Operations

Output control

Ending a module

The output

The basics of FORM

Symbols and Functions

Wildcards

Repetition

Vectors and Tensors

The preprocessor

Resources

Output control

* symbols x, n;

* local Q = (6*x + 8*x^2 - 9*x^3)^4 * (1-x);

* Integrate
* id x^n? = x^(n+1) / (n+1);

* Insert limits
* multiply replace_(x, 1) - replace_(x, 0);

print;
* .end

print: Causes expressions to be printed after execution
Many options are available (formatting, selecting expressions,. . .)

Mattias Sjö, Lund ATP FORM: an inFORMal introduction January 28, 2021 12/26

Introduction
vs. Mathematica

Capabilities

Examples

A simple program
Declarations

Operations

Output control

Ending a module

The output

The basics of FORM

Symbols and Functions

Wildcards

Repetition

Vectors and Tensors

The preprocessor

Resources

Ending a module

* symbols x, n;

* local Q = (6*x + 8*x^2 - 9*x^3)^4 * (1-x);

* Integrate
* id x^n? = x^(n+1) / (n+1);

* Insert limits
* multiply replace_(x, 1) - replace_(x, 0);

* print;
.end

FORM programs are compiled and executed as modules
Statements beginning with a period end modules
.end: end module and terminate program

Mattias Sjö, Lund ATP FORM: an inFORMal introduction January 28, 2021 13/26

Introduction
vs. Mathematica

Capabilities

Examples

A simple program
Declarations

Operations

Output control

Ending a module

The output

The basics of FORM

Symbols and Functions

Wildcards

Repetition

Vectors and Tensors

The preprocessor

Resources

To recap...

Let’s evaluate an integral:∫ 1

0
(6x + 8x2 − 9x3)4(1− x) dx

symbols x, n;

local Q = (6*x + 8*x^2 - 9*x^3)^4 * (1-x);

* Integrate
id x^n? = x^(n+1) / (n+1);

* Insert limits
multiply replace_(x, 1) - replace_(x, 0);

print;
.end

Mattias Sjö, Lund ATP FORM: an inFORMal introduction January 28, 2021 14/26

Introduction
vs. Mathematica

Capabilities

Examples

A simple program
Declarations

Operations

Output control

Ending a module

The output

The basics of FORM

Symbols and Functions

Wildcards

Repetition

Vectors and Tensors

The preprocessor

Resources

The output

Run with $ form <program>.frm
Echo input (can be turned off)
Print statistics for module
Print expressions as specified

Mattias Sjö, Lund ATP FORM: an inFORMal introduction January 28, 2021 15/26

Introduction
vs. Mathematica

Capabilities

Examples

A simple program
Declarations

Operations

Output control

Ending a module

The output

The basics of FORM

Symbols and Functions

Wildcards

Repetition

Vectors and Tensors

The preprocessor

Resources

The output. . .×100!

Mattias Sjö, Lund ATP FORM: an inFORMal introduction January 28, 2021 16/26

Introduction
vs. Mathematica

Capabilities

Examples

A simple program
Declarations

Operations

Output control

Ending a module

The output

The basics of FORM

Symbols and Functions

Wildcards

Repetition

Vectors and Tensors

The preprocessor

Resources

The basics of FORM

Mattias Sjö, Lund ATP FORM: an inFORMal introduction January 28, 2021 17/26

Introduction
vs. Mathematica

Capabilities

Examples

A simple program
Declarations

Operations

Output control

Ending a module

The output

The basics of FORM

Symbols and Functions

Wildcards

Repetition

Vectors and Tensors

The preprocessor

Resources

Symbols

Symbols are the most general objects:
Plain numbers symbols pi, e, googol;
Scalar constants/variables symbols x, y, Zmass, Wmass;
Tags to aid manipulation symbols ONELOOP, TWOLOOP;
etc. . .

Symbols do not have values, everything is substitutions!

Wrong
symbol sqrt2 = 1.4142136;

* (Also, remember that
* there are no floats,
* only rationals!)

Right
symbol sqrt2;

... calculations ...

id sqrt2 ^ 2 = 2;

There is a built-in symbol i_, the imaginary unit;
FORM automatically substitutes i_ˆ2 → -1.

Mattias Sjö, Lund ATP FORM: an inFORMal introduction January 28, 2021 18/26

Introduction
vs. Mathematica

Capabilities

Examples

A simple program
Declarations

Operations

Output control

Ending a module

The output

The basics of FORM

Symbols and Functions

Wildcards

Repetition

Vectors and Tensors

The preprocessor

Resources

Functions

Functions take arbitrarily many (or zero) arguments
Symmetry information can be given
Functions are not evaluated, everything is substitutions!

Wrong
symbols x, y, z;
function kallen(x,y,z)

= (x^2 - y^2 - z^2)^2
- 4 * y^2 * z^2;

* Note: only ASCII, so no
* ‘Källén’, unfortunately

Right
symbols x, y, z;
function kallen(symmetric);

... calculations ...

id kallen(x?, y?, z?)
= (x^2 - y^2 - z^2)^2
- 4 * y^2 * z^2;

There are many useful built-in functions:
binom_, fac_, sum_, replace_. . .

Automatically substituted, just like i_.
Mattias Sjö, Lund ATP FORM: an inFORMal introduction January 28, 2021 19/26

Introduction
vs. Mathematica

Capabilities

Examples

A simple program
Declarations

Operations

Output control

Ending a module

The output

The basics of FORM

Symbols and Functions

Wildcards

Repetition

Vectors and Tensors

The preprocessor

Resources

Wildcards and identification

Symbol wildcards
match most things
A symbol can be
both “itself” and a
wildcard
simultaneously

Function wildcards
match functions
Argument field
wildcards like ?a
match sequences of
arguments

symbols x, n;
local expr = x^5 - n*x^3;

id x^n? = n * x^(n-1);
id n = 11;
* Result: 5*x^4 - 33*x^2

functions f, g;
symbols x, y, z;
local A = f(x,y,z);
local B = g(z,z,f(x,y));

id f?(x?, ?a) = f(?a, x);
* A: f(y,z,x)
* B: g(z,f(x,y),z)

Mattias Sjö, Lund ATP FORM: an inFORMal introduction January 28, 2021 20/26

Introduction
vs. Mathematica

Capabilities

Examples

A simple program
Declarations

Operations

Output control

Ending a module

The output

The basics of FORM

Symbols and Functions

Wildcards

Repetition

Vectors and Tensors

The preprocessor

Resources

Repetition

Let’s compute Fibonacci numbers!

symbol n;
function F;
local fib36 = F(36);

* Repeats until no more changes are made
repeat;

id F(0) = 0;
id F(1) = 1;
id F(n?) = F(n-1) + F(n-2);

endrepeat;

print;
.end

Returns 14 930 352 after summing 14 930 352 terms (about 30
seconds) — Perhaps not the smartest solution. . .
Mattias Sjö, Lund ATP FORM: an inFORMal introduction January 28, 2021 21/26

Introduction
vs. Mathematica

Capabilities

Examples

A simple program
Declarations

Operations

Output control

Ending a module

The output

The basics of FORM

Symbols and Functions

Wildcards

Repetition

Vectors and Tensors

The preprocessor

Resources

Repetition

Let’s compute Fibonacci numbers without using an
exponential-time algorithm!

symbol n, m, dummy;
function F;
local fib36 = F(1,0) * dummy^36;

* Inline version for single-statement repeats
repeat id F(m?,n?) * dummy = F(n, m+n);
id F(m?,n?) = n;

print;
.end

Happily computes Fibonacci numbers hundreds of digits long.

Important technique
“Dummy” tricks are key to “thinking in FORM”!
Mattias Sjö, Lund ATP FORM: an inFORMal introduction January 28, 2021 22/26

Introduction
vs. Mathematica

Capabilities

Examples

A simple program
Declarations

Operations

Output control

Ending a module

The output

The basics of FORM

Symbols and Functions

Wildcards

Repetition

Vectors and Tensors

The preprocessor

Resources

Vectors, Tensors and Indices

FORM uses Einstein summation notation:
vectors u,v;
tensor T;
indices mu, nu;

local X = u(mu) * v(mu) + T(mu, nu) * u(mu) * v(nu);

means X = uµvµ + Tµνuµvν

No distinction between upper and lower indices
(but can be emulated)
Alternatively, dot products can be used:
* Same as u(mu) * v(mu)
local Y = u.v;

Or the so-called SCHOONSCHIP notation:
* Same as T(mu, nu) * u(mu) * v(nu)
local Z = T(u, v);

There are built-in tensors e_ (Levi-Civita ε, antisymmetric) and
d_ (Kronecker δ, symmetric).

Mattias Sjö, Lund ATP FORM: an inFORMal introduction January 28, 2021 23/26

Introduction
vs. Mathematica

Capabilities

Examples

A simple program
Declarations

Operations

Output control

Ending a module

The output

The basics of FORM

Symbols and Functions

Wildcards

Repetition

Vectors and Tensors

The preprocessor

Resources

Example: Gram determinant

Let’s compute the Gram determinant

G(v1, v2, . . . , vn) =

∣∣∣∣∣∣∣∣∣
v1 · v1 v1 · v2 . . . v1 · vn
v2 · v1 v2 · v2 . . . v2 · vn

...
...

. . .
...

vn · v1 vn · v2 . . . vn · v2

∣∣∣∣∣∣∣∣∣
for n = 12, using |A| = εi1i2...εj1j2...Ai1j1Ai2j2 . . .

vectors v1,...,v10;
local G10 = e_(v1,...,v10)^2;
* Apply built-in tensor algebra
contract;
.end;

500 million terms (170 million in result) — 10 minutes of FORM!

Mattias Sjö, Lund ATP FORM: an inFORMal introduction January 28, 2021 24/26

Introduction
vs. Mathematica

Capabilities

Examples

A simple program
Declarations

Operations

Output control

Ending a module

The output

The basics of FORM

Symbols and Functions

Wildcards

Repetition

Vectors and Tensors

The preprocessor

Resources

The FORM preprocessor

FORM has a C-style
preprocessor
— but better!
A full procedural
language with loops,
recursion, etc.
Can define #procedures
for code reuse
Also does a lot of I/O
for combining FORM with
external programs

Our Gram program, generalised

#define N "12"

vectors v1,...,v‘N’;
local G‘N’ = e_(v1,...,v‘N’)^2;
contract;

* Only print small determinants
#if(‘N’ < 7)

print;
#endif
.end;

Mattias Sjö, Lund ATP FORM: an inFORMal introduction January 28, 2021 25/26

Introduction
vs. Mathematica

Capabilities

Examples

A simple program
Declarations

Operations

Output control

Ending a module

The output

The basics of FORM

Symbols and Functions

Wildcards

Repetition

Vectors and Tensors

The preprocessor

Resources

Some FORM resources

Official FORM webpage — download, manuals, references, etc.
www.nikhef.nl/~form/
Editor support:

Vermaseren’s own super-obscure editor (not recommended)
Vi/Vim has full support
Hans has a hacky Emacs mode
For Gnome editors: www.github.com/vsht/form.lang
For KDE editors: www.github.com/mssjo/form-utils (my own)

My repository also has other homebrew FORM utilities.
FormCalc: a Mathematica interface for loop calculations
www.feynarts.de/formcalc/

There will be a follow-up talk
(based on your interest and your questions)

If you need any FORM assistance, just ask me!

Mattias Sjö, Lund ATP FORM: an inFORMal introduction January 28, 2021 26/26

www.nikhef.nl/~form/
www.github.com/vsht/form.lang
www.github.com/mssjo/form-utils
www.feynarts.de/formcalc/

	Introduction
	vs. Mathematica
	Capabilities
	Examples

	A simple program
	Declarations
	Operations
	Output control
	Ending a module
	The output

	The basics of FORM
	Symbols and Functions
	Wildcards
	Repetition
	Vectors and Tensors
	The preprocessor

	Resources

