N\

chun)) ATLAS

NS EXPERIMENT

Using (GPU) Accelerators
iIn HEP Software

Attila Krasznahorkay

Outline

e An overview of computing and accelerators
o And why HEP is interested in them

e Programming heterogeneous/GPU hardware
o Including some amount of technicalities

(High Performance) Computing in 2021

“Classical” computer architecture

e Computing has been getting more and cpU Main Memory
more complicated in the last decades — — o
o A modern CPU has a very complicated design, P —p— dni
mainly to make sure that (our!) imperfect Lol
programs would execute fast on it o
e Complexity shows up both “inside of single | —— |
computers”, but also in the structure of |Disk:mve| [Disk Orive] IDislerivel
computing clusters

o A modern computing cluster has different
nodes connected to each other in a non-trivial o
network : i System

e All the added complexity is there to
achieve the highest possible theoretical
throughput “for certain calculations” on

these machines o e en
Intel® Skylake™ Oak Ridge Summit 3

GBYs
HBM
6GB.
GPU
7TF
0
" ﬁ l

T (C
o
2 P —
6.0 GB/s Read
NVM |21 GBls Write
@
&8
@l o
LRIR

<—> X-Bus (SMP) <—» EDRIB
le Gend

https://www.olcf.ornl.gov/summit/
https://ark.intel.com/content/www/us/en/ark/products/codename/37572/skylake.html

(High Performance) Computing in 2021

e Supercomputers all use accelerators
< e Which come in many shapes and sizes
o NVidia GPUs are the most readily available in
general, used/will be in Summit, Perlmultter,

LEONARDO and MeluXina
nVI D I A o AMD GPUs are not used too widely in

comparison, but will be in Frontier, EI Capitan
and LUMI

o Intel GPUs are used even less at the moment,
but will get center stage in Aurora

o FPGAs are getting more and more attention,
and if anything, they are even more tricky to
write (good) code for

e Beside HPCs, commercial cloud providers
also offer an increasingly heterogeneous
infrastructure

https://www.olcf.ornl.gov/summit/
https://www.nersc.gov/systems/perlmutter/
https://eurohpc-ju.europa.eu/news/leonardo-new-eurohpc-world-class-pre-exascale-supercomputer-italy
https://eurohpc-ju.europa.eu/news/meluxina-new-eurohpc-world-class-supercomputer-luxembourg
https://www.olcf.ornl.gov/frontier/
https://www.hpe.com/us/en/compute/hpc/cray/doe-el-capitan-press-release.html
https://eurohpc-ju.europa.eu/news/lumi-new-eurohpc-world-class-supercomputer-finland
https://www.cray.com/customers/argonne-national-laboratory
https://www.cray.com/customers/argonne-national-laboratory
https://www.olcf.ornl.gov/frontier/
https://www.intel.com/
https://www.amd.com/
https://www.nvidia.com/

Luminosity [cm2s1]

8.0E+34

7.0E+34

6.0E+34

5.0E+34

w &
o °
7 7
Yy 7
& &
® ®

2.0E+34

1.0E+34

0.0E+00

Why Should HEP Care”?

o Peak luminosi d luminosi
— —_I. ———— _.r. 4000
i 1 3500
1 . : 3000
1 oo ’ 2500
| i 2000
| K I
“1 jeerf - | 1500
e reieie i /- I 1000
1 | 500
I 1
B _h_1

0 1112 13 14 15 16 17,58 15 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35§46 37 38
- N
P Year
- ~\
-~ Run 3 5! R 88-140) Run 5 165

un 3 (u=55) un 4 (p=! 4 un 5 (u=165-2001

e e B e A s
£ ATLASPreliminary

- 2020 Computing Model - CPU

E o Baseline g
[& Conservative R&D =
E v Aggressive R&D 7
[— Sustained budget model -
E (+10% +20% capacity/year) :A;L’/"'

— & LHCC common scenario
- (Conservative R&D, n=200)

Year

Integrated luminosity [fb1]

As described in
CERN-LHCC-2020-015, being able to
process the data collected in LHC
Run 4 (and beyond) in ATLAS

requires major software developments

o Inorder to fit into our “CPU budget”, we
need to consider new approaches in our
data processing

One of these areas is to look at
non-CPU resources

http://cdsweb.cern.ch/record/2729668
https://lhc-commissioning.web.cern.ch/schedule/LHC-long-term.htm
https://lhc-commissioning.web.cern.ch/schedule/LHC-long-term.htm
https://atlas.cern/
https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/UPGRADE/CERN-LHCC-2020-015/
https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/UPGRADE/CERN-LHCC-2020-015/

Multiprocessing, Multithreading

“Simple” applications are almost always

single threaded

o This is what you get by default out of most
programming languages. A single execution
thread performing tasks one by one.

Luckily many tasks in HEP are
embarrassingly parallel

o We can just start N instances of the
application, all doing different things.

Usually (at least in HEP) when memory
usage becomes an issue, the
application needs to become

multi-threaded

o Where a single process executes calculations
on multiple threads in parallel.

./run-sim

--rand-seed=1

./run-sim

—-—rand-seed=2

./run-sim

—-—-rand-seed=3

YR YR YR

./run-sim

--rand-seed=4

(,./run—sim

-—-threads=4

CPU

CPU

(CPU vs. GPU) Multithreading

e Multithreading can be done in a lot of different ways. It all depends on what your code is
doing exactly.

e But in general we can categorise them as:

o Parallelising similar / the same calculations on multiple data
m Similar to SIMD (SIMT). Relatively easily portable to GPUs.
m Can be expressed using either in-language constructs (for instance in C++) or “pragmas” (for instance

in Fortran)
float a[size] = ..; float a[size] = ..;
tbb::parallel for (#pragma omp for
tbb::blocked range<std::size t>(0, size), for(std::size t i = 0; 1 < size; ++i)
[&al (...){...}) do_something(a[i]);

o Running independent calculations in parallel
m This is mostly called “task based multi-threading”. Much more difficult to port to GPUs.

tbb::task group tg;
tg.run([...1(...){...})7
tg.run([...1(...){...})7
tg.wait () ;

o In HEP we overwhelmingly use task based multithreading... 7

SIMD, SIMT

for(int i

= 0; i < N; ++1i)

c[i] = a[i] * b

4 CPU) 4 CPU
R, 9 R, 5 9| 7
R, 3 R, 3|3 |3
R, 27 R, | 15|27 | 2

\), \

4 RAM) 4 RAM
all 5 9 7 2 all 5 9 7
b 3 b 3

15 27 . 15 27 21

\C[] y \c[]

Accelerators /| GPGPUs

General Purpose GPUs (GPGPUs) can
achieve very high theoretical FLOPs
because they have a lot of units for
performing floating point calculations
But unlike CPUs, these cores are not

independent of each other
o Control units exist for large groups of
computing cores, forcing the cores to all do
the same thing at any given time
o Memory caching is implemented in a much
simpler way for these computing cores than
for CPUs

Coming even close to the theoretical limits
of accelerators is only possible with
purpose designed algorithms

Core
L1 Cache
Core
L1 Cache L1 Cache

L2 Cache L2 Cache

L3 Cache

Theread thk‘

Blod (0, 0) || ﬂ‘i‘fﬁ} Block(2.0) |
e
O |

Block (2.1) | |
|

Global memory

Block (0, 0) Block (1, 0)

Block (0, 1) Block (1, 1)

Block (0, 2) Block (1 2)

HEP Software

Most (but not absolutely all) HEP software is written in C++ these days
o We even agreed on a single platform (Threading Building Blocks) for our multithreading

LHC experiments, mostly driven by their (our...) memory hungry applications, are

all migrating to multithreaded workflows by now
o ATLAS will use a multithreaded framework for triggering and reconstructing its data during LHC
Run-3
o However smaller HEP/NP experiments are still happily using multiprocessing to parallelise their data
processing

It is in this context that we are looking towards upgrading our software to use
non-x86 computing as well

10

https://github.com/oneapi-src/oneTBB

Heterogeneous Hardware

Modern GPUs

Warp Scheduler (32 thread/clk)
Dispatch Unit (32 thread/clk)

Register File (16,384 x 32-bit)
INT32INT32 FP32 FP32 FPe4
INT32INT32 FP32 FP32 FP64
INT32INT32 FP32 FP32 FPe4

INT32INT32 FP32 FP32 FP64

TENSOR CORE

INT32INT32 FP32 FP32 FP64

INT32INT32 FP32 FP32 FP64

INT32INT32 FP32 FP32 FP64

INT32INT32 FP32 FP32 FP64

LD/ LD/ LD/ LD/ LD/ LD/ LD/ LD/
ST ST ST ST ST ST ST ST

Warp Scheduler (32 thread/clk)
Dispatch Unit (32 thread/clk)

Register File (16,384 x 32-bit)

INT32INT32 FP32 FP32 FP64.
INT32INT32 FP32 FP32 FP64
INT32INT32 FP32 FP32 FP64

INT32INT32 FP32 FP32 FPe4

SFU

TENSOR CORE

INT32INT32 FP32 FP32 FP64

INT32INT32 FP32 FP32 FP64

INT32INT32 FP32 FP32 FP64

INT32INT32 FP32 FP32 FPe4

LD/ LD/ LD/ LD/ LD/ LD/ LD/ LD/
ST ST ST ST ST ST ST ST

SFU

‘Warp Scheduler (32 thread/clk)
Dispatch Unit (32 thread/clk)

Register File (16,384 x 32-bit)
INT32INT32 FP32 FP32 FPe4
INT32INT32 FP32 FP32 FPe64
INT32INT32 FP32 FP32 FP64

INT32INT32 FP32 FP32 FP64

TENSOR CORE

INT32INTS2 FP32 FP32 FP64
INT32INT32 FP32 FP32 FP64
INT32INT32 FP32 FP32 FP64

INT32INT32 FP32 FP32 FP64

LD/ LD/ LD/ LD/ LD/ LD/ LD/ LD/
ST ST ST ST ST ST ST ST

iche
Warp Scheduler (32 thread/clk)
Dispatch Unit (32 thread/clk)

Register File (16,384 x 32-bit)
INT32INT32 FP32 FP32 FP64
INT32INT32 FP32 FP32 FP64
INT32INT32 FP32 FP32 FP64

INT32INT32 FP32 FP32 FP64

TENSOR CORE

INT32INT32 FP32 FP32 FP64

INT32INT32 FP32 FP32 FP64

INT32INT32 FP32 FP32 FP64

INT32INT32 FP32 FP32 FP64.

LD/ LD/ LD/ LD/ LD/ LD/ LD/ LD/
ST ST ST ST ST ST ST sT

SFU

SFU

Just like modern CPUs, modern GPUs
have been getting more and more
complicated

Similar to advanced CPU instructions,
they have purpose-built units for

performing specific tasks
o High-throughput 16/32/64-bit integer/floating
point calculations
o Multi-dimensional matrix (tensor) operations
o Ray-tracing operations

Unfortunately just as how we struggle to
use SSE/AVX instructions in our CPU
code, we will likely struggle using
Tensor/RT cores)

12

https://developer.nvidia.com/blog/nvidia-ampere-architecture-in-depth/

Memory Management

Modern CPUs have a very complicated

memory management system
o Which we can in most cases avoid knowing
about

GPUs have a complicated system of

their own
o However this we can not avoid knowing more
about to use GPUs efficiently (=2
o Most importantly, no implicit/automatic caching
is happening on GPUs

In some cases however you can get

away with not knowing everything
o For a performance penalty...

Vi
Reviee GPU

J Multiprocessor
Multiprocessor

To Host\

Multiprocessor

Registers
Shared Memory

! {

i !

Unified Memory

13

The Future of CPUs/GPUs (?)

Cores

FPGA

Socket TP

Socket

Scalability

PCH

Goaan
oan
-
S =

* Power for FPGA is drawn from socket & requires modified
Purley platform specs

= Platform Modifications include Stackup, Clock, Power
Delivery, Debug, Power up/down sequence, Misc IO pins
(see BOM cost section)

Memory

Intel” UPL

PCle”

High Speed
Ser;

e Is quite uncertain...

@)

These days even the future of x86 seems
to be in some jeopardy ()

e Heterogeneous seems to be the key

(@)

Some CPUs already have different cores,
meant for different tasks
CPU+GPU combinations will likely become
more and more popular in HPCs
m Making it possible to manage the
memory of applications more easily
GPUs are not even the only game in town
m “FPGA inserts” may become a part of
future high-performance
CPUs/GPUs...

14

Programming Languages

Just as with “CPU languages”, there is no single language for writing accelerator code with
o But while HEP settled on C++ for CPUs, at this point the whole community just can’t settle on a single
language for accelerators yet
However most of these languages are at least C/C++ based
o But unfortunately each of them have different capabilities

ROCm/HIP CUDA oneAPI/SYCL
[AMDH} [@nvmm] [(intel') } yg%a

Multiple projects are underway for hiding this complexity from the programmers (Kokkos,
Alpaka, Thrust, Parallel STL, etc.)
o Inthe US HEP-CCE is looking at this, but mostly as a bystander...

o Eventually the goal is to make heterogeneous programming part of the ISO C++ standard, but that won’t
realistically happen before the 2030s

16

https://github.com/kokkos/kokkos
https://github.com/alpaka-group/alpaka
https://docs.nvidia.com/cuda/thrust/index.html
https://software.intel.com/content/www/us/en/develop/articles/get-started-with-parallel-stl.html
https://hepcce.org/
https://llvm.org/
https://software.intel.com/content/www/us/en/develop/tools/oneapi/base-toolkit.html
https://www.khronos.org/sycl/
https://www.intel.com
https://www.intel.com
https://www.intel.com
https://rocmdocs.amd.com
https://www.amd.com
https://www.amd.com
https://www.amd.com
https://developer.nvidia.com/CUDA-zone
https://www.nvidia.com
https://www.nvidia.com
https://www.nvidia.com

e NVidia/CUDA is the most
established player in this game NVIDIA.

o As such they have the most support in .
existing applications, the best CU DA
documentation, etc.

e COiriginally designed asa C

language/library
o Over the years getting more and more C++
support
o By now supporting even some C++17
features in “device code”, including some
“light amount” of virtualisation

e Practically only supported on NVidia

hardware -

https://gitlab.cern.ch/atlas/athena/-/blob/master/Control/AthenaExamples/AthExCUDA/src/cudaMultiply.cu
https://docs.nvidia.com/cuda/

ROCm / HIP

Is basically a copy-paste of CUDA
o The concepts are all the same
o CUDA functions exist in 99% in HIP, with a
slightly different name

Support/documentation is far inferior
to that of CUDA

Code written in HIP is relatively easy
to compile for both AMD and NVidia

backends
o When compiling for an NVidia backend, the
HIP headers basically include the CUDA
backends, and declare a lot of typedefs...

18

https://gitlab.cern.ch/atlas/athena/-/blob/master/Control/AthenaExamples/AthExHIP/src/HIPFunctions.hip
https://gitlab.cern.ch/atlas/athena/-/blob/master/Control/AthenaExamples/AthExHIP/src/HIPFunctions.hip
https://rocmdocs.amd.com/en/latest/

oneAPIl/ SYCL

o
Intel’s answer to the programming ogo"z
language question o4 Sl e
Unlike CUDA, does not require an

’ oneAPI

extension of the C++ language
o Which means that it's possible to provide
support for SYCL code using “a library” with
any compiler
m Aslong as GPU support is not required

Very strong design-wise, built on top of
the latest C++ capabilities

Technically it's possible to compile
SYCL code for Intel (CPU, GPU, or-get.a
FPGA), NVidia and AMD backends e 1> 10

o However the AMD backend’s support is at
least questionable...

https://gitlab.cern.ch/atlas/athena/-/blob/master/Control/AthenaExamples/AthExSYCL/src/LinearTransformExampleAlg.cxx
https://www.oneapi.com/

Software Installation

The pecking order is much the same here as in all other areas

Beside macOS (which is a longer story itself...) CUDA can be used practically
anywhere

oneAPI, being a much newer project, has been focusing on a smaller number of

Linux distributions and on Windows
o macOS support is almost for sure to come eventually

ROCM/HIP is only supported on Linux

o And is in general the most finicky to install correctly
Since setting them up correctly can be a chore, | spent the time a while ago to

create a Docker image that holds all of them side by side
o https://qitlab.cern.ch/akraszna/atlas-gpu-devel-env

@, ATLAS GPU Development Environment @
ATLAS Project ID: 87672

-0-39 Commits F 2Branches ¢’ 14Tags [4.4MBFiles [91.3 MBStorage 7 10 Releases
Docker configuration for building an image that can be used for developing GPU code for ATLAS. 20

https://gitlab.cern.ch/akraszna/atlas-gpu-devel-env
https://gitlab.cern.ch/akraszna/atlas-gpu-devel-env

C++20 and Beyond

Memory resources

Memory resources implement memory allocation strategies that can be used by std: :pmr: :polymorphic_allocator

Defined in header <memory resource>
Defined in namespace std::pmr

memory_resource (C++17)
new_delete_resource (C++17)

null_memory_resource (C++17)
get_default_resource(C++17)
set_default_resource(C++17)

pool_options (C++17)

synchronized_pool_resource (C++17)
unsynchronized_pool_resource(C++17)

monotonic_buffer_resource (C++17)

an abstract interface for classes that encapsulate memory resources
(class)

returns a static program-wide std: :pmr: :memory_resource that uses the
global operator new and operator delete to allocate and deallocate
memory

(function)

returns a static std: :pmr: :memory_ resource that performs no allocation
(function)

gets the default std: :pmr::memory_resource

(function)

sets the default std: :pmr: :memory_resource

(function)

a set of constructor options for pool resources

(class)

a thread-safe std: :pmr: :memory_resource for managing allocations in
pools of different block sizes

(class)

a thread-unsafe std: :pmr: :memory resource for managing allocations in
pools of different block sizes

(class)

a special-purpose std: :pmr: :memory_resource that releases the
allocated memory only when the resource is destroyed

(class)

Both Intel and NVidia are hard at work to
extend the ISO C++ standard according

to their own taste
o In practice so far the CUDA and SYCL
languages/concepts are moving closer to each
other &
m SYCL adopted the same (simple)
memory management style used by
CUDA
m CUDA s looking towards declaring
device code in-situ, much like SYCL
does

With C++17/20 one can already make
use of some advanced memory handling

features
21

https://en.cppreference.com/w/cpp/memory

Writing Code

Disclaimer

e From here on out | will be using CUDA in my examples

o Anybody starting to write code for GPUs should just look at CUDA at first. As it gives the widest
range of programming options at the moment.

e All described concepts are available in ROCm/HIP and oneAPI/SYCL as well, just
with slightly different incantations

23

Host Code < Device Code

On first order when you compile x86 64 code on one machine, that will run on

another x86_64 machine as well
o However this is mostly because we tend not to use advanced (SSE, AVX) instructions in HEP code
o If you do, managing your code can become a whole lot more complicated.
m See for instance: https://gcc.gnu.org/onlinedocs/gcc/Function-Multiversioning.html

Since GPU hardware evolved much more rapidly recently than CPU hardware,

most of the time you don’t ship binary “device code” with your application
o Instead the application would hold some sort of “intermediate representation” of your code, which
could be assembled into machine code for the GPU(s) at runtime
o But even with this, you still need to specify which “compute capability” you want to support as a

minimum by your code
m This is a bit specific to NVidia hardware at the moment. AMD and Intel don’t have a long
enough hardware history yet for this to be an issue...

(nvcc .. —arch sm 50 .. J set(CMAKE CUDA ARCHITECTURES "“sm 507) o4

https://gcc.gnu.org/onlinedocs/gcc/Function-Multiversioning.html

A Trivial Example

global
void myKernel (std::size t size, const float* input, float* result, float a, int b
const std::size t index = blockIdx.x * blockDim.x + threadIdx.x;
if (index >= size) {
return;
}
result|[index] = input[index] * a + Db;
}
int main () {
static const std::size t ARRAY SIZE = leb6;
float *input = nullptr, *output = nullptr;
CUDA ERROR CHECK(cudaMallocManaged(&input, ARRAY SIZE * sizeof(float));
CUDA ERROR CHECK(cudaMallocManaged(&output, ARRAY SIZE * sizeof(float));
fillwithData (input);
static const int threadsPerBlock = 1024;
const int nBlocks = ((ARRAY SIZE + threadsPerBlock - 1) / threadsPerBlock);

myKernel<<< nBlocks, threadsPerBlock >>>(ARRAY SIZE, input, output, 1.23f, 34

CUDA ERROR CHECK (cudaGetLastError ());
CUDA ERROR CHECK(cudaDeviceSynchronize());

return 0;

)

) ;

25

(Explicit) Memory Management

e In your code you always need to
explicitly differentiate between

// Allocate memory on the host.

“ . ” “ ” static const std::size t ARRAY SIZE = 100;
device” and "host memory int* hostArray = new int[ARRAY SIZE];
o While integrated GPUs may use “host” ,

) // Allocate memory on the device.
memory directly, your code should never int* deviceArray = nullptr;
th. .rh t. k. I..t cudaMalloc (&deviceArray,
assume this. The runtime can skip explici ARRAY STZE * sizeof(int));
memory copies if they are not necessary.
L . . // Copy the array from the host to the
e All of this is nothing magic, all of the // device.
. cudaMemcpy (deviceArray, hostArray,
memory management happens in the ARRAY_SIZE * sizeof (int),
cudaMemcpyHostToDevice) ;
same way as in ISO C
_ . . // Clean up.
o The only tricky thing is that you always get delete[] hostArray;

cudaFree (deviceArray);

pointers for “device memory” that can
never be valid in host code, and vice versa.

26

(Automatic) Memory Management

// Allocate managed memory.

static const std::size t ARRAY SIZE

int* array = nullptr;
cudaMallocManaged (

&array, ARRAY SIZE * sizeof(int)

// Use the memory from the host.

array[21] = 1.23f;

// Use the array in device code.

gpuCode<<< ARRAY SIZE, 1 >>>(
ARRAY SIZE, array);

// Clean up.
cudaFree (array);

100;

) ;

All languages also support managing your
memory for you
In this setup the same amount of memory

is allocated in “host” and “device” memory
o At runtime memory copies are initiated through
“page faults” when the CUDA runtime detects that
the code is about to access memory that is not in
sync “with the other side”

Setting up your code like this during

development is an excellent choice

o Can cut down a lot on coding, when you’re mainly
interested in developing your algorithm.

But it provides much worse performance
than explicit memory management in most

cases!
27

Aided Memory Management

e Once you write a slightly larger piece of code, you should think of using code

designed to help with memory management
o Solutions exist in Kokkos, in Alpaka, and in many other places

e Things usually become complicated once you need jagged arrays in your code
o Which happens to be a thing that | myself am currently involved in writing code for (&

 acts-project/ vecmem @Waen v 3
<> Code lssues 1) Pulrequests 4) Discussions Actions Securty Insights Settings
¥ main ~ ¥ 4branches ©0tags Goto file Add file ~ 4 Code ~ About &
Vectorised data model base and helper
% krasznaa Merge pull request #46 from acts-project/TestCleanup-main-20210312 == v be24865 6 hoursago D) 165 commits classes.
deveontainer Added a DevContainer configuration for building all possible parts of. last month [Readme
biworkflows Make Github Actions workflows compatible with act s ago & MPL-2.0 License
vscode Merge branch ‘main' into sycl-cmake-config-main-20210212 tmonth
cmake Updated/added tests for vecmen:static_vector. 4 days ago Reledsed]
core Taught vecmem:static_vector how to handle a zero sized storage oo cnlies
cuda Move the memory resource header up a level
hip Move the memory resource header up a level 4days ago Packages
syl Move the memory resource header up a level 4 days ago No packages publshed
Publish your frst package
tests Added a missing dependency on GoogleTest to the common fibrary 2 days ago
D gtattibutes Taught GitHub and VSCode about the syl fle-extension. last month
Contributors 2
D gitignore Added a DevContainer configuration for building all possible pats of. last month
B 5
« Attila Krasznahorkay
[CMakeLists.txt Stopped including the VecMem CMake modules with their absolute paths. t month i resznan Sika Rmsananorkey.
[LICENSE Adding the first commit, with a README and a LICENSE fie. last month 6 stephenswat Stechien Nicholas Sw.
D READMEmd Adding the first commit, with a README and a LICENSE file. last month 28

https://github.com/kokkos/kokkos/wiki/ContentContainers
https://github.com/alpaka-group/llama
https://en.wikipedia.org/wiki/Jagged_array
https://github.com/acts-project/vecmem

Device / Kernel Code

Once you moved some data to your
GPU, you want to do something with
it

You need to provide a function that
would be started in all GPU threads

o The function can ask for the identifiers of
the thread that it is executing in, and
perform its task accordingly

Threads may be started for “invalid”

identifiers as well!
o Your code must check whether the ID that
it has should be done anything for

// “Kernel” function

__global

void gpuCode(std::size t size,
float* array) {

// Get the ID of the thread.
const int index =

blockIdx.x * blockDim.x + threadIdx.x;

if (index >= size) {
return;

}

// Perform a task.
array[index] *= 2;

gpuCode<<< ARRAY SIZE, 1 >>>(
ARRAY SIZE, array);

29

Error Checking

e Any CUDA function call can faill
o When they do, they tend to fail silently

e You must rigorously check the return codes of CUDA function calls!
o Most conveniently by setting up a helper macro for it. Which can be as simple as:

e One big exception is a kernel launch, which returns nothing
o You must use cudaGetlLastError() or cudaPeeklLastError() to detect any errors from a kernel launch

30

https://docs.nvidia.com/cuda/cuda-runtime-api/group__CUDART__ERROR.html
https://docs.nvidia.com/cuda/cuda-runtime-api/group__CUDART__ERROR.html
https://gitlab.cern.ch/atlas/athena/-/blob/master/Control/AthenaExamples/AthExCUDA/src/cudaMultiply.cu

Asynchronous Execution

// Create a CUDA stream.
cudaStream t stream = nullptr;
cudaStreamCreate (&stream);

// Allocate memory on the host.

static const std::size t ARRAY SIZE = 100;
int* hostArray = nullptr;

cudaMallocHost (&hostArray,

ARRAY SIZE * sizeof(int));

// Allocate memory on the device.
int* deviceArray = nullptr;
cudaMalloc (&deviceArray,
ARRAY SIZE * sizeof(int));

// Copy the memory asynchronously.

cudaMemcpyAsync (deviceArray, hostArray,
cudaMemcpyHostToDevice,
stream) ;

// Launch a kernel asynchronously.
gpuCode<<< blocks, threadsPerBlock, O,

stream >>>(ARRAY SIZE, array);

Only mentioning it here to make you

interested...
o This goes a bit beyond what fits into this talk

~

In most cases you want your CPU and
GPU to work in parallel

o Executing “heavily branching” code on the
CPU, and SIMT code on the GPU

This is possible by launching memory
copies and kernels asynchronously
Generalising how a multi-threaded
software framework can do this
efficiently is one of the challenges in the

LHC experiments... .

Code Management/Building

e Compiling a small program is easy enough in any language
o However once you want to compile a large project with GPU support, things become a lot more
complicated...

e InATLAS -- and in HEP in general -- we use CMake to build our projects
o It has excellent built-in support for CUDA. If you write your code in that, your life will be very easy.
m You can provide CMake’s add_library(...) / add_executable(...) / etc. functions with . cu files,
and it will compile/link them ~correctly out of the box
o If your project is “simple enough”, you can just tell CMake to build all of your source files with hipcc /
dpcpp for ROCm/HIP or oneAPI/SYCL projects
m However in most cases this is not appropriate. In those cases, for now, you have to tell CMake
very explicitly how it should build your source files.

32

https://cmake.org/
https://cmake.org/cmake/help/latest/command/add_library.html
https://cmake.org/cmake/help/latest/command/add_executable.html

ATLAS, LHC, HEP...

GPUs in ATLAS

Previous organisational elements

were recently merged into HCAF
o We try to oversee all GPU/FPGA/etc.
developments in the offline code in this
forum

Development is happening in a few

different areas:
o TDAQ is overseeing tracking and calo
clustering developments
o On the offline side a lot of effort is going
into Acts
o The Machine Learning forum is also
becoming more and more active!

(Updated on 14.1.2021)
Mandate:

The future of computing hardware is uncertain, but one global trend is towards
heterogeneous resources and more specifically towards “accelerators™ specialized
(non-CPU) hardware that enhances performance for certain computations. One of the most
obvious examples is the Graphics Processing Unit (GPU), which is adept at highly parallel,
low-accuracy computations. Other popular examples include FPGAs and TPUs.

Within ATLAS, discussion and overall planning of work on heterogeneous resources should
be within the Heterogeneous Computing and Accelerators Forum (HCAF) which includes
efforts from both offline software and TDAQ. The conveners of the forum should maintain a
list of high-level milestones towards the adoption of the technologies targeted by
development within ATLAS.

The forum should meet at least once a month.

Reporting and Liaisons:

The HCAF conveners report to the ATLAS Computing Coordinator and the TDAQ Project,
TDAQ Upgrade Project, and Upgrade Project Leaders. They may appoint liaisons or
contacts as needed. They should ensure ATLAS is represented in collaborative forums
focused on accelerators, like the HSF accelerators forum.

Term of Office:

The HCAF conveners are appointed by the ATLAS Computing Coordinator and TDAQ
Upgrade Project Leader with a renewable one year term normally starting October 1st. At
least two conveners are appointed. Between them, responsibilities are split; however,
knowledge should be shared such that they can represent each other in case one is
unavailable.

34

https://twiki.cern.ch/twiki/pub/AtlasComputing/AtlasComputing/Mandate_for_the_Accelerators_and_Heterogeneous_Computing_Forum.pdf
https://twiki.cern.ch/twiki/pub/AtlasComputing/AtlasComputing/Mandate_for_the_Accelerators_and_Heterogeneous_Computing_Forum.pdf

GPUs at the LHC

e Every major LHC experiment is actively working on making use of GPUs

o ALICE is ahead of everyone else by having used GPUs in production during LHC Run-2

o CMS and LHCb will use GPUs during LHC Run-3 to varying degrees

o ATLAS will keep GPUs as R&D platforms during LHC Run-3, possibly using them in production in
HL-LHC

e CERN IT is actively working on making CERN hosted GPUs available for

interactive and batch access

o With the eventual goal being to be able to log into interactive nodes as easily as logging into Ixplus
for developing GPU code

35

GPUs in HEP

As you may know yourself, detector simulation and event reconstruction will not be
the only problems for HL-LHC

o Abig fraction of ATLAS’s CPU budget is aimed at event generation. Developments in making use of
accelerators in those is very important to all of HEP!

Upcoming neutrino experiments may use GPUs very efficiently in their event
reconstruction

o That by itself is a very interesting area, but is happening mostly outside of CERN
Discussions about all of these are taking place in various meetings of the HEP
Software Foundation and the Compute Accelerator Forum

36

https://hepsoftwarefoundation.org/
https://hepsoftwarefoundation.org/
https://indico.cern.ch/category/12741/

Additional Resources

As said already, your best bet is to have a GPU “of your own” to develop code

o But some resources do exist if you don’t have one

o Intel DevCloud: Allows you to develop / run your code on Intel’s public cluster

o | believed that the NVidia Developer Program membership offered something similar, but it doesn’t
do it (any longer) (=

o CERN can already provide GPUs to those who request it, and things should get even easier during
this year

We will be holding an ATLAS GPU Tutorial during 25-28 May
o https://indico.cern.ch/e/ATLAS_GPU_TRAINING
o Unfortunately places are all filled up by now. But we will for sure have other tutorials in 2021 as well.
m Sign up to atlas-sw-accelerators@cern.ch to learn about these amongst the first

37

https://software.intel.com/content/www/us/en/develop/tools/devcloud.html
https://developer.nvidia.com/developer-program
https://indico.cern.ch/e/ATLAS_GPU_TRAINING
mailto:atlas-sw-accelerators@cern.ch

Summary

High Performance Computing will be built on “accelerators” for the foreseeable
future
o Learning how to write HEP code for them is a necessity

Both the hardware and the software is evolving very rapidly
o For “smaller” projects this should not be too much of a problem. But in projects like ATLAS’s offline
software, we need to be very careful which programming model we start using.
NVidia is king both with its hardware and software at the moment
o AMD is developing its hardware very well, it may compete with NVidia on that front soon
o Intel is very active in its software developments. They will likely strongly affect the future of the ISO
C++ standard.

If you are in ATLAS, and are interested in becoming involved in these software
developments, contact us on atlas-sw-accelerators@cern.ch! (<

38

mailto:atlas-sw-accelerators@cern.ch

Cﬁw
\
N/ A

http://home.cern

http://home.cern

