
Using (GPU) Accelerators
in HEP Software

Attila Krasznahorkay

Outline

● An overview of computing and accelerators
○ And why HEP is interested in them

● Programming heterogeneous/GPU hardware
○ Including some amount of technicalities

2

(High Performance) Computing in 2021

● Computing has been getting more and
more complicated in the last decades

○ A modern CPU has a very complicated design,
mainly to make sure that (our!) imperfect
programs would execute fast on it

● Complexity shows up both “inside of single
computers”, but also in the structure of
computing clusters

○ A modern computing cluster has different
nodes connected to each other in a non-trivial
network

● All the added complexity is there to
achieve the highest possible theoretical
throughput “for certain calculations” on
these machines

3Intel® Skylake™ Oak Ridge Summit

“Classical” computer architecture

https://www.olcf.ornl.gov/summit/
https://ark.intel.com/content/www/us/en/ark/products/codename/37572/skylake.html

(High Performance) Computing in 2021

● Supercomputers all use accelerators
● Which come in many shapes and sizes

○ NVidia GPUs are the most readily available in
general, used/will be in Summit, Perlmutter,
LEONARDO and MeluXina

○ AMD GPUs are not used too widely in
comparison, but will be in Frontier, El Capitan
and LUMI

○ Intel GPUs are used even less at the moment,
but will get center stage in Aurora

○ FPGAs are getting more and more attention,
and if anything, they are even more tricky to
write (good) code for

● Beside HPCs, commercial cloud providers
also offer an increasingly heterogeneous
infrastructure 4

https://www.olcf.ornl.gov/summit/
https://www.nersc.gov/systems/perlmutter/
https://eurohpc-ju.europa.eu/news/leonardo-new-eurohpc-world-class-pre-exascale-supercomputer-italy
https://eurohpc-ju.europa.eu/news/meluxina-new-eurohpc-world-class-supercomputer-luxembourg
https://www.olcf.ornl.gov/frontier/
https://www.hpe.com/us/en/compute/hpc/cray/doe-el-capitan-press-release.html
https://eurohpc-ju.europa.eu/news/lumi-new-eurohpc-world-class-supercomputer-finland
https://www.cray.com/customers/argonne-national-laboratory
https://www.cray.com/customers/argonne-national-laboratory
https://www.olcf.ornl.gov/frontier/
https://www.intel.com/
https://www.amd.com/
https://www.nvidia.com/

Why Should HEP Care?

● As described in
CERN-LHCC-2020-015, being able to
process the data collected in LHC
Run 4 (and beyond) in ATLAS
requires major software developments

○ In order to fit into our “CPU budget”, we
need to consider new approaches in our
data processing

● One of these areas is to look at
non-CPU resources

5

http://cdsweb.cern.ch/record/2729668
https://lhc-commissioning.web.cern.ch/schedule/LHC-long-term.htm
https://lhc-commissioning.web.cern.ch/schedule/LHC-long-term.htm
https://atlas.cern/
https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/UPGRADE/CERN-LHCC-2020-015/
https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/UPGRADE/CERN-LHCC-2020-015/

6

Multiprocessing, Multithreading

● “Simple” applications are almost always
single threaded

○ This is what you get by default out of most
programming languages. A single execution
thread performing tasks one by one.

● Luckily many tasks in HEP are
embarrassingly parallel

○ We can just start N instances of the
application, all doing different things.

● Usually (at least in HEP) when memory
usage becomes an issue, the
application needs to become
multi-threaded

○ Where a single process executes calculations
on multiple threads in parallel.

CPU

2

4

CPU

2

4

./run-sim --rand-seed=1

./run-sim --rand-seed=2

./run-sim --rand-seed=3

./run-sim --rand-seed=4

1

3

./run-sim --threads=4
1

3

(CPU vs. GPU) Multithreading

● Multithreading can be done in a lot of different ways. It all depends on what your code is
doing exactly.

● But in general we can categorise them as:
○ Parallelising similar / the same calculations on multiple data

■ Similar to SIMD (SIMT). Relatively easily portable to GPUs.
■ Can be expressed using either in-language constructs (for instance in C++) or “pragmas” (for instance

in Fortran)

○ Running independent calculations in parallel
■ This is mostly called “task based multi-threading”. Much more difficult to port to GPUs.

○ In HEP we overwhelmingly use task based multithreading… 7

float a[size] = …;
tbb::parallel_for(
 tbb::blocked_range<std::size_t>(0, size),
 [&a](...){...});

 float a[size] = …;
#pragma omp for
 for(std::size_t i = 0; i < size; ++i)
 do_something(a[i]);

 tbb::task_group tg;
 tg.run(...{...});
 tg.run(...{...});
 tg.wait();

SIMD, SIMT

8

for(int i = 0; i < N; ++i)
 c[i] = a[i] * b

9

3

27

CPU

R1

R2

R3

RAM

a[]

b

c[]

5 9 7 2

3

15 27

CPU

R1

R2

R3

RAM

a[]

b

c[]

5 9 7 2

3

15 27 21 6

5 9 7 2

3

15 27 21 6

3 3 3

Accelerators / GPGPUs

● General Purpose GPUs (GPGPUs) can
achieve very high theoretical FLOPs
because they have a lot of units for
performing floating point calculations

● But unlike CPUs, these cores are not
independent of each other

○ Control units exist for large groups of
computing cores, forcing the cores to all do
the same thing at any given time

○ Memory caching is implemented in a much
simpler way for these computing cores than
for CPUs

● Coming even close to the theoretical limits
of accelerators is only possible with
purpose designed algorithms

9

HEP Software

● Most (but not absolutely all) HEP software is written in C++ these days
○ We even agreed on a single platform (Threading Building Blocks) for our multithreading

● LHC experiments, mostly driven by their (our…) memory hungry applications, are
all migrating to multithreaded workflows by now

○ ATLAS will use a multithreaded framework for triggering and reconstructing its data during LHC
Run-3

○ However smaller HEP/NP experiments are still happily using multiprocessing to parallelise their data
processing

● It is in this context that we are looking towards upgrading our software to use
non-x86 computing as well

10

https://github.com/oneapi-src/oneTBB

Heterogeneous Hardware

11

Modern GPUs

● Just like modern CPUs, modern GPUs
have been getting more and more
complicated

● Similar to advanced CPU instructions,
they have purpose-built units for
performing specific tasks

○ High-throughput 16/32/64-bit integer/floating
point calculations

○ Multi-dimensional matrix (tensor) operations
○ Ray-tracing operations

● Unfortunately just as how we struggle to
use SSE/AVX instructions in our CPU
code, we will likely struggle using
Tensor/RT cores ☹

12

https://developer.nvidia.com/blog/nvidia-ampere-architecture-in-depth/

Memory Management

● Modern CPUs have a very complicated
memory management system

○ Which we can in most cases avoid knowing
about

● GPUs have a complicated system of
their own

○ However this we can not avoid knowing more
about to use GPUs efficiently ☹

○ Most importantly, no implicit/automatic caching
is happening on GPUs

● In some cases however you can get
away with not knowing everything

○ For a performance penalty...

13

The Future of CPUs/GPUs (?)

● Is quite uncertain…
○ These days even the future of x86 seems

to be in some jeopardy 🤔
● Heterogeneous seems to be the key

○ Some CPUs already have different cores,
meant for different tasks

○ CPU+GPU combinations will likely become
more and more popular in HPCs

■ Making it possible to manage the
memory of applications more easily

○ GPUs are not even the only game in town
■ “FPGA inserts” may become a part of

future high-performance
CPUs/GPUs…

14

Programming Languages

15

● Just as with “CPU languages”, there is no single language for writing accelerator code with
○ But while HEP settled on C++ for CPUs, at this point the whole community just can’t settle on a single

language for accelerators yet
● However most of these languages are at least C/C++ based

○ But unfortunately each of them have different capabilities

● Multiple projects are underway for hiding this complexity from the programmers (Kokkos,
Alpaka, Thrust, Parallel STL, etc.)

○ In the US HEP-CCE is looking at this, but mostly as a bystander…
○ Eventually the goal is to make heterogeneous programming part of the ISO C++ standard, but that won’t

realistically happen before the 2030s

C++...?

16

oneAPI/SYCLROCm/HIP CUDA

https://github.com/kokkos/kokkos
https://github.com/alpaka-group/alpaka
https://docs.nvidia.com/cuda/thrust/index.html
https://software.intel.com/content/www/us/en/develop/articles/get-started-with-parallel-stl.html
https://hepcce.org/
https://llvm.org/
https://software.intel.com/content/www/us/en/develop/tools/oneapi/base-toolkit.html
https://www.khronos.org/sycl/
https://www.intel.com
https://www.intel.com
https://www.intel.com
https://rocmdocs.amd.com
https://www.amd.com
https://www.amd.com
https://www.amd.com
https://developer.nvidia.com/CUDA-zone
https://www.nvidia.com
https://www.nvidia.com
https://www.nvidia.com

CUDA

● NVidia/CUDA is the most
established player in this game

○ As such they have the most support in
existing applications, the best
documentation, etc.

● Originally designed as a C
language/library

○ Over the years getting more and more C++
support

○ By now supporting even some C++17
features in “device code”, including some
“light amount” of virtualisation

● Practically only supported on NVidia
hardware

17

https://gitlab.cern.ch/atlas/athena/-/blob/master/Control/AthenaExamples/AthExCUDA/src/cudaMultiply.cu
https://docs.nvidia.com/cuda/

ROCm / HIP

● Is basically a copy-paste of CUDA
○ The concepts are all the same
○ CUDA functions exist in 99% in HIP, with a

slightly different name

● Support/documentation is far inferior
to that of CUDA

● Code written in HIP is relatively easy
to compile for both AMD and NVidia
backends

○ When compiling for an NVidia backend, the
HIP headers basically include the CUDA
backends, and declare a lot of typedefs…

18

https://gitlab.cern.ch/atlas/athena/-/blob/master/Control/AthenaExamples/AthExHIP/src/HIPFunctions.hip
https://gitlab.cern.ch/atlas/athena/-/blob/master/Control/AthenaExamples/AthExHIP/src/HIPFunctions.hip
https://rocmdocs.amd.com/en/latest/

oneAPI / SYCL

● Intel’s answer to the programming
language question

● Unlike CUDA, does not require an
extension of the C++ language

○ Which means that it’s possible to provide
support for SYCL code using “a library” with
any compiler

■ As long as GPU support is not required

● Very strong design-wise, built on top of
the latest C++ capabilities

● Technically it’s possible to compile
SYCL code for Intel (CPU, GPU,
FPGA), NVidia and AMD backends

○ However the AMD backend’s support is at
least questionable… 19

https://gitlab.cern.ch/atlas/athena/-/blob/master/Control/AthenaExamples/AthExSYCL/src/LinearTransformExampleAlg.cxx
https://www.oneapi.com/

Software Installation

● The pecking order is much the same here as in all other areas
● Beside macOS (which is a longer story itself…) CUDA can be used practically

anywhere
● oneAPI, being a much newer project, has been focusing on a smaller number of

Linux distributions and on Windows
○ macOS support is almost for sure to come eventually

● ROCm/HIP is only supported on Linux
○ And is in general the most finicky to install correctly

● Since setting them up correctly can be a chore, I spent the time a while ago to
create a Docker image that holds all of them side by side

○ https://gitlab.cern.ch/akraszna/atlas-gpu-devel-env

20

https://gitlab.cern.ch/akraszna/atlas-gpu-devel-env
https://gitlab.cern.ch/akraszna/atlas-gpu-devel-env

C++20 and Beyond

● Both Intel and NVidia are hard at work to
extend the ISO C++ standard according
to their own taste

○ In practice so far the CUDA and SYCL
languages/concepts are moving closer to each
other 🥳

■ SYCL adopted the same (simple)
memory management style used by
CUDA

■ CUDA is looking towards declaring
device code in-situ, much like SYCL
does

● With C++17/20 one can already make
use of some advanced memory handling
features

21

https://en.cppreference.com/w/cpp/memory

Writing Code

22

Disclaimer

● From here on out I will be using CUDA in my examples
○ Anybody starting to write code for GPUs should just look at CUDA at first. As it gives the widest

range of programming options at the moment.

● All described concepts are available in ROCm/HIP and oneAPI/SYCL as well, just
with slightly different incantations

23

Host Code ↔ Device Code

● On first order when you compile x86_64 code on one machine, that will run on
another x86_64 machine as well

○ However this is mostly because we tend not to use advanced (SSE, AVX) instructions in HEP code
○ If you do, managing your code can become a whole lot more complicated.

■ See for instance: https://gcc.gnu.org/onlinedocs/gcc/Function-Multiversioning.html

● Since GPU hardware evolved much more rapidly recently than CPU hardware,
most of the time you don’t ship binary “device code” with your application

○ Instead the application would hold some sort of “intermediate representation” of your code, which
could be assembled into machine code for the GPU(s) at runtime

○ But even with this, you still need to specify which “compute capability” you want to support as a
minimum by your code

■ This is a bit specific to NVidia hardware at the moment. AMD and Intel don’t have a long
enough hardware history yet for this to be an issue…

24nvcc … -arch sm_50 … set(CMAKE_CUDA_ARCHITECTURES “sm_50”)

https://gcc.gnu.org/onlinedocs/gcc/Function-Multiversioning.html

A Trivial Example

25

__global__
void myKernel(std::size_t size, const float* input, float* result, float a, int b) {
 const std::size_t index = blockIdx.x * blockDim.x + threadIdx.x;
 if(index >= size) {
 return;
 }
 result[index] = input[index] * a + b;
}

int main() {
 static const std::size_t ARRAY_SIZE = 1e6;
 float *input = nullptr, *output = nullptr;
 CUDA_ERROR_CHECK(cudaMallocManaged(&input, ARRAY_SIZE * sizeof(float));
 CUDA_ERROR_CHECK(cudaMallocManaged(&output, ARRAY_SIZE * sizeof(float));
 fillWithData(input);

 static const int threadsPerBlock = 1024;
 const int nBlocks = ((ARRAY_SIZE + threadsPerBlock - 1) / threadsPerBlock);
 myKernel<<< nBlocks, threadsPerBlock >>>(ARRAY_SIZE, input, output, 1.23f, 34);
 CUDA_ERROR_CHECK(cudaGetLastError());
 CUDA_ERROR_CHECK(cudaDeviceSynchronize());
 ...

 return 0;
}

(Explicit) Memory Management

● In your code you always need to
explicitly differentiate between
“device” and “host” memory

○ While integrated GPUs may use “host”
memory directly, your code should never
assume this. The runtime can skip explicit
memory copies if they are not necessary.

● All of this is nothing magic, all of the
memory management happens in the
same way as in ISO C

○ The only tricky thing is that you always get
pointers for “device memory” that can
never be valid in host code, and vice versa.

26

// Allocate memory on the host.
static const std::size_t ARRAY_SIZE = 100;
int* hostArray = new int[ARRAY_SIZE];

// Allocate memory on the device.
int* deviceArray = nullptr;
cudaMalloc(&deviceArray,
 ARRAY_SIZE * sizeof(int));

// Copy the array from the host to the
// device.
cudaMemcpy(deviceArray, hostArray,
 ARRAY_SIZE * sizeof(int),
 cudaMemcpyHostToDevice);

// Clean up.
delete[] hostArray;
cudaFree(deviceArray);

(Automatic) Memory Management

● All languages also support managing your
memory for you

● In this setup the same amount of memory
is allocated in “host” and “device” memory

○ At runtime memory copies are initiated through
“page faults” when the CUDA runtime detects that
the code is about to access memory that is not in
sync “with the other side”

● Setting up your code like this during
development is an excellent choice

○ Can cut down a lot on coding, when you’re mainly
interested in developing your algorithm.

● But it provides much worse performance
than explicit memory management in most
cases!

27

// Allocate managed memory.
static const std::size_t ARRAY_SIZE = 100;
int* array = nullptr;
cudaMallocManaged(
 &array, ARRAY_SIZE * sizeof(int));

// Use the memory from the host.
array[21] = 1.23f;

// Use the array in device code.
gpuCode<<< ARRAY_SIZE, 1 >>>(
 ARRAY_SIZE, array);

// Clean up.
cudaFree(array);

Aided Memory Management

● Once you write a slightly larger piece of code, you should think of using code
designed to help with memory management

○ Solutions exist in Kokkos, in Alpaka, and in many other places

● Things usually become complicated once you need jagged arrays in your code
○ Which happens to be a thing that I myself am currently involved in writing code for 😛

28

https://github.com/kokkos/kokkos/wiki/ContentContainers
https://github.com/alpaka-group/llama
https://en.wikipedia.org/wiki/Jagged_array
https://github.com/acts-project/vecmem

Device / Kernel Code

● Once you moved some data to your
GPU, you want to do something with
it

● You need to provide a function that
would be started in all GPU threads

○ The function can ask for the identifiers of
the thread that it is executing in, and
perform its task accordingly

● Threads may be started for “invalid”
identifiers as well!

○ Your code must check whether the ID that
it has should be done anything for

29

// “Kernel” function
__global__
void gpuCode(std::size_t size,
 float* array) {

 // Get the ID of the thread.
 const int index =
 blockIdx.x * blockDim.x + threadIdx.x;
 if(index >= size) {
 return;
 }

 // Perform a task.
 array[index] *= 2;
}

 …
 gpuCode<<< ARRAY_SIZE, 1 >>>(
 ARRAY_SIZE, array);
 …

Error Checking

● Any CUDA function call can fail!
○ When they do, they tend to fail silently

● You must rigorously check the return codes of CUDA function calls!
○ Most conveniently by setting up a helper macro for it. Which can be as simple as:

● One big exception is a kernel launch, which returns nothing
○ You must use cudaGetLastError() or cudaPeekLastError() to detect any errors from a kernel launch

30

https://docs.nvidia.com/cuda/cuda-runtime-api/group__CUDART__ERROR.html
https://docs.nvidia.com/cuda/cuda-runtime-api/group__CUDART__ERROR.html
https://gitlab.cern.ch/atlas/athena/-/blob/master/Control/AthenaExamples/AthExCUDA/src/cudaMultiply.cu

Asynchronous Execution

● Only mentioning it here to make you
interested…

○ This goes a bit beyond what fits into this talk
☹

● In most cases you want your CPU and
GPU to work in parallel

○ Executing “heavily branching” code on the
CPU, and SIMT code on the GPU

● This is possible by launching memory
copies and kernels asynchronously

● Generalising how a multi-threaded
software framework can do this
efficiently is one of the challenges in the
LHC experiments…

31

// Create a CUDA stream.
cudaStream_t stream = nullptr;
cudaStreamCreate(&stream);

// Allocate memory on the host.
static const std::size_t ARRAY_SIZE = 100;
int* hostArray = nullptr;
cudaMallocHost(&hostArray,
 ARRAY_SIZE * sizeof(int));

// Allocate memory on the device.
int* deviceArray = nullptr;
cudaMalloc(&deviceArray,
 ARRAY_SIZE * sizeof(int));

// Copy the memory asynchronously.
cudaMemcpyAsync(deviceArray, hostArray,
 cudaMemcpyHostToDevice,
 stream);

// Launch a kernel asynchronously.
gpuCode<<< blocks, threadsPerBlock, 0,
 stream >>>(ARRAY_SIZE, array);

Code Management/Building

● Compiling a small program is easy enough in any language
○ However once you want to compile a large project with GPU support, things become a lot more

complicated…

● In ATLAS -- and in HEP in general -- we use CMake to build our projects
○ It has excellent built-in support for CUDA. If you write your code in that, your life will be very easy.

■ You can provide CMake’s add_library(...) / add_executable(...) / etc. functions with .cu files,
and it will compile/link them ~correctly out of the box

○ If your project is “simple enough”, you can just tell CMake to build all of your source files with hipcc /
dpcpp for ROCm/HIP or oneAPI/SYCL projects

■ However in most cases this is not appropriate. In those cases, for now, you have to tell CMake
very explicitly how it should build your source files.

32

https://cmake.org/
https://cmake.org/cmake/help/latest/command/add_library.html
https://cmake.org/cmake/help/latest/command/add_executable.html

ATLAS, LHC, HEP...

33

GPUs in ATLAS

● Previous organisational elements
were recently merged into HCAF

○ We try to oversee all GPU/FPGA/etc.
developments in the offline code in this
forum

● Development is happening in a few
different areas:

○ TDAQ is overseeing tracking and calo
clustering developments

○ On the offline side a lot of effort is going
into Acts

○ The Machine Learning forum is also
becoming more and more active!

34

https://twiki.cern.ch/twiki/pub/AtlasComputing/AtlasComputing/Mandate_for_the_Accelerators_and_Heterogeneous_Computing_Forum.pdf
https://twiki.cern.ch/twiki/pub/AtlasComputing/AtlasComputing/Mandate_for_the_Accelerators_and_Heterogeneous_Computing_Forum.pdf

GPUs at the LHC

● Every major LHC experiment is actively working on making use of GPUs
○ ALICE is ahead of everyone else by having used GPUs in production during LHC Run-2
○ CMS and LHCb will use GPUs during LHC Run-3 to varying degrees
○ ATLAS will keep GPUs as R&D platforms during LHC Run-3, possibly using them in production in

HL-LHC

● CERN IT is actively working on making CERN hosted GPUs available for
interactive and batch access

○ With the eventual goal being to be able to log into interactive nodes as easily as logging into lxplus
for developing GPU code

35

GPUs in HEP

● As you may know yourself, detector simulation and event reconstruction will not be
the only problems for HL-LHC

○ A big fraction of ATLAS’s CPU budget is aimed at event generation. Developments in making use of
accelerators in those is very important to all of HEP!

● Upcoming neutrino experiments may use GPUs very efficiently in their event
reconstruction

○ That by itself is a very interesting area, but is happening mostly outside of CERN

● Discussions about all of these are taking place in various meetings of the HEP
Software Foundation and the Compute Accelerator Forum

36

https://hepsoftwarefoundation.org/
https://hepsoftwarefoundation.org/
https://indico.cern.ch/category/12741/

Additional Resources

● As said already, your best bet is to have a GPU “of your own” to develop code
○ But some resources do exist if you don’t have one
○ Intel DevCloud: Allows you to develop / run your code on Intel’s public cluster
○ I believed that the NVidia Developer Program membership offered something similar, but it doesn’t

do it (any longer) ☹
○ CERN can already provide GPUs to those who request it, and things should get even easier during

this year

● We will be holding an ATLAS GPU Tutorial during 25-28 May
○ https://indico.cern.ch/e/ATLAS_GPU_TRAINING
○ Unfortunately places are all filled up by now. But we will for sure have other tutorials in 2021 as well.

■ Sign up to atlas-sw-accelerators@cern.ch to learn about these amongst the first

37

https://software.intel.com/content/www/us/en/develop/tools/devcloud.html
https://developer.nvidia.com/developer-program
https://indico.cern.ch/e/ATLAS_GPU_TRAINING
mailto:atlas-sw-accelerators@cern.ch

Summary

● High Performance Computing will be built on “accelerators” for the foreseeable
future

○ Learning how to write HEP code for them is a necessity

● Both the hardware and the software is evolving very rapidly
○ For “smaller” projects this should not be too much of a problem. But in projects like ATLAS’s offline

software, we need to be very careful which programming model we start using.

● NVidia is king both with its hardware and software at the moment
○ AMD is developing its hardware very well, it may compete with NVidia on that front soon
○ Intel is very active in its software developments. They will likely strongly affect the future of the ISO

C++ standard.

● If you are in ATLAS, and are interested in becoming involved in these software
developments, contact us on atlas-sw-accelerators@cern.ch! 🙂

38

mailto:atlas-sw-accelerators@cern.ch

http://home.cern

39

http://home.cern

