Projective Geometry and Amplitudes

IND

UNIVERSITY

MATTIAS SJÖ, DEPT. OF ASTRONOMY AND THEORETICAL PHYSICS, LUND UNIVERSITY

Background

Introduction

Projective geometry

- Points and Lines
- Transformations
- The City of the Ci

Canonical form

- Differential form
- Polytope:
- Canonical forms
- Numerator functions
- Projective approach

Amplitudes

Ordered amplitudes Amplitude = Canonical form Factorisation The Associahedron

Final remarks

The Galileo Galilei Institute

- Florence, Italy, near Galileo's home
- Hosts conferences, workshops and schools
- Torbjörn and I attended the Winter School 2020

Nima Arkani-Hamed

- Theoretical physicist at Princeton IAS
- Lectures "Positive Geometry of the Real World"
- I will present a subset of this topic

Mattias Sjö, Lund ATP

Projective space: artist's impression

Introduction

Projective geometry

- Points and Lines Transformations Levi-Civita tensor
- The Golden Rule

Canonical forms

Differential forms Polytopes Canonical forms Numerator functio Projective approac

Amplitudes

Ordered amplitudes Amplitude = Canonical form Factorisation The Associahedron

Final remarks

Image: Getty Images

Mattias Sjö, Lund ATP

Definition of projective space \mathbb{P}^n

Introduction

Projective geometry

Points and Lines

Transformations Levi-Civita tensor

Canonical form

Differential forms Polytopes Canonical forms Numerator functi

Amplitudes

Ordered amplitudes Amplitude = Canonical form Factorisation The Associahedron

Final remarks

 Points in Pⁿ ≡ Lines through origin in Rⁿ⁺¹
 Alternatively: Equivalence classes in Rⁿ⁺¹ under rescaling r → λr, λ ≠ 0

(Homogeneous) coordinates in \mathbb{P}^n

Introduction

Projective geometry

Points and Lines

- Transformation:
- Levi-Civita tenso
- The Golden Rule

Canonical forms

- Differential forn
- Polytopes
- Canonical forms
- Numerator functions
- Projective approach

Amplitudes

Ordered amplitudes Amplitude = Canonical form Factorisation The Associahedron

Final remarks

Fix coordinates as intersection with hyperplane:

$$X^{I} = \begin{pmatrix} 1 \\ \vec{z} \end{pmatrix}, \qquad \vec{z} = ext{position on hyperplane}$$

(up to rescaling)

Points at infinity

Introduction

Projective geometry

Points and Lines

- Transformations
- The Golden Rule

Canonical forms

- Differential forn
- Polytopes
- Canonical forms
- Numerator functions
- Projective approa

Amplitudes

Ordered amplitudes Amplitude = Canonical form Factorisation The Associahedron

Final remarks

Some lines (exactly one in \mathbb{R}^2) do not intersect the hyperplane — These are the points at infinity:

Lines in the projective plane \mathbb{P}^2

Introduction

Projective geometry

Points and Lines

- Transformations
- The Golden Rule

Canonical form

- Differential forms
- Polytopes
- Canonical forms
- Numerator functions
- Projective approad

Amplitudes

- Ordered amplitudes Amplitude = Canonical form Factorisation
- The Associahedron

Final remarks

General line in Euclidean plane:

$$0 = a + bx + cy$$

"Projectivise":

$$X = \begin{pmatrix} 1 \\ x \\ y \end{pmatrix}, \qquad L = \begin{pmatrix} a \\ b \\ c \end{pmatrix} = \begin{pmatrix} 1 \\ b/a \\ c/a \end{pmatrix}$$

 $0=L_0X^0+L_1X^1+L_2X^2\equiv \underline{L}_IX^I$ (Einstein summation)

Line at infinity:

$$L_I^{\infty} = \begin{pmatrix} 1\\ \vec{0} \end{pmatrix} \Rightarrow L_I^{\infty} X_{\infty}^I = \begin{pmatrix} 1\\ \vec{0} \end{pmatrix} \cdot \begin{pmatrix} 0\\ \vec{z} \end{pmatrix} = 0$$

Coordinate transformations

Introduction

Projective geometry

- Points and Lines
- Transformations
- The Golden Rule

Canonical form

- Differential form
- Polytopes
- Canonical forms
- Numerator functions
- Projective approa

Amplitudes

Ordered amplitudes Amplitude = Canonical form Factorisation The Associahedron

Final remarks

Most general coordinate change on \mathbb{P}^n :

$$\operatorname{GL}(n+1)$$

• Tensor notation ($\Lambda \in \operatorname{GL}(n+1)$):

$$X^{I'} = \Lambda^{I'}{}_{I}X^{I}, \qquad L_{I'} = (\Lambda^{-1})_{I'}{}^{I}L_{I}$$

• With $X = \begin{pmatrix} 1 \\ \vec{z} \end{pmatrix}$: Acts on \vec{z} like

$$ec{z}
ightarrow rac{ec{c}+Dec{z}}{a+ec{b}\cdotec{z}}, \qquad \Lambda=egin{pmatrix} a & ec{b}^{\mathrm{T}}\ ec{c} & D \end{pmatrix}$$

Most general nonlinear transformation that preserves straight lines (naïve expectation would be GL(n) plus translations)

The Levi-Civita tensor: points

Introduction

Projective geometry

- Points and Lines
- Transformations

Levi-Civita tensor

The Golden Rule

Canonical forms

- Differential forn
- Polytopes
- Canonical forms
- Numerator functions
- Projective approac

Amplitudes

Ordered amplitudes Amplitude = Canonical form Factorisation The Associahedron

Final remarks

There can only be one invariant 3-index object: ϵ_{IJK} (totally antisymmetric) For brevity and convenience:

$$\epsilon_{IJK} X^I Y^J Z^K \equiv \langle XYZ \rangle$$

■ Line *L* determined by two points *X*, *Y*

$$\Rightarrow \quad L_I = \epsilon_{I\mathcal{J}K} X^{\mathcal{J}} Y^K$$

So X, Y, Z are collinear if

$$0 = \langle \mathbf{X} \mathbf{Y} Z$$

Mattias Sjö, Lund ATP

The Levi-Civita tensor: lines

Introduction

Projective geometry

- Points and Lines
- Transformations
- Levi-Civita tensor

Canonical forms

- Differential form Polytopes
- Canonical forms
- Numerator functions
- Projective approach

Amplitudes

Ordered amplitudes Amplitude = Canonical form Factorisation The Associahedron

Final remarks

Upper-index version is equivalent:

$$\epsilon_{IJK} = \epsilon^{IJK}$$

Similarly,

$$\epsilon^{IJK} L_I M_J N_K \equiv \langle LMN \rangle.$$

Point X intersection of lines L, M

 $\Rightarrow \quad X^I = \epsilon^{I\mathcal{J}K} L_{\mathcal{J}} M_K$

(Might be X_{∞} if lines are parallel)

■ Three lines *L*, *M*, *N* intersect in a single point if

$$0 = \langle \underline{LMN} \rangle$$

The "Golden Rule" of \mathbb{P}^n

Introduction

Projective geometry

- Points and Lines
- Levi-Civita tenso
- The Golden Rule

Canonical forms

- Differential form
- Polytopes
- Canonical forms
- Numerator functions
- Projective approach

Amplitudes

Ordered amplitudes Amplitude = Canonical form Factorisation The Associahedron

Final remarks

The only *valid* thing is also *correct*!

"I hope you never do geometry the same way again" — Nima Arkani-Hamed

Mattias Sjö, Lund ATP

Projective Geometry and Amplitudes

25th May 2021 11/31

Conics in \mathbb{P}^2

Introduction

Projective geometry

- Points and Line
- Transformations
- Levi-Civita tensor
- The Golden Rule

Canonical forms

- Differential form
- Polytope
- Canonical forms
- Numerator function
- Projective approa

Amplitudes

Ordered amplitudes Amplitude = Canonical form Factorisation The Associahedron

Final remarks

General conic in Euclidean plane:

$$0 = a + bx + cy + dx^2 + exy + fy^2$$

"Projectivise":

$$0 = C_{00}X^{0}X^{0} + 2C_{01}X^{0}X^{1} + C_{11}X^{1}X^{1} + \ldots \equiv C_{IJ}X^{I}X^{J}$$

with C_{IJ} symmetric 2-tensor.
What is C_{IJ}X^J? - It's a line!
(The only unique line that make

(The only unique line that makes sense)

Mattias Sjö, Lund ATP

Pappus' Theorem

Introduction

- Projective geometry
- Points and Lines
- Transformations
- Levi-Civita tenso
- The Golden Rule

Canonical forms

- Differential form
- Polytopes
- Canonical forms
- Numerator functions
- Projective approach

Amplitudes

Ordered amplitudes Amplitude = Canonical form Factorisation The Associahedron

Final remarks

"The first nontrivial result ever in mathematics" — David Hilbert

- Quite difficult to prove in \mathbb{R}^2
- Straightforward in \mathbb{P}^2 : just use above identities with

$$\epsilon_{IJK}\epsilon^{KLM} = \delta^L_I \delta^M_J - \delta^M_I \delta^L_J$$

Mattias Sjö, Lund ATP

Canonical differential forms

Introduction

Projective geometry

- Points and Lines
- Iransformations
- Levi-Civita tenso
- The Golden Rule

Canonical forms

- Differential forms
- Polytopes
- Canonical forms
- Numerator functions
- Projective approach

Amplitudes

- Ordered amplitudes Amplitude = Canonical form Factorisation The Associahedron
- Final remarks

Image: Wikipedia

Mattias Sjö, Lund ATP

Differential forms and their poles

Introduction

Projective geometry

- Points and Lines Transformations
- Levi-Civita tensor
- The Golden Rule

Canonical forms

Differential forms

- Polytopes
- Canonical forms
- Numerator functions
- Projective approac

Amplitudes

Ordered amplitudes Amplitude = Canonical form Factorisation The Associahedron

Final remarks

What is a differential form?

Expression that can be integrated, like

 $f(x) dx, \qquad g(x, y) dx dy,$

. . .

(multiple differentials combined with wedge product)

Simple pole at z = 0 if proportional to

 $\frac{\mathrm{d}z}{z}$

(other variants can be removed by coordinate redefinitions)

Polytopes

Introduction

Projective geometry

- Points and Lines
-
- The Colden Pule

Canonical form

Differential forms

Polytopes

- Canonical forms
- Numerator functions
- Projective approa

Amplitudes

Ordered amplitudes Amplitude = Canonical form Factorisation The Associahedron

Final remarks

What is a polytope?

- Generalised polygon, polyhedron,...
- Object with boundaries of all codimensions
 Codim = (dim of space) (dim of object)

Mattias Sjö, Lund ATP

Canonical forms

Canonical forms

Amplitude = Canonical form

What is a canonical form?

- D-dimensional differential form Ω
- Poles on polytope boundary but not elsewhere
- Unique (up to scale) for each *D*-dim. polytope
- 1D: canonical form on interval [a, b]

$$\underbrace{a \qquad b}_{\mathbf{x}} \quad \rightarrow \quad \Omega = \frac{\mathrm{d}x}{(x-a)(x-b)}$$

2D: canonical form on triangle bounded by $L_{1,2,3}(x, y) = 0$:

Mattias Sjö, Lund ATP

A closer look at the poles

Introduction

Projective geometry

- Points and Line
-
- The Golden Rule

Canonical forms

- Differential form
- Polytopes

Canonical forms

Numerator functions Projective approach

Amplitudes

Ordered amplitudes Amplitude = Canonical form Factorisation The Associahedron

Final remarks

Simple example:

Residue at y = 0 (sans scale):

Canonical form of the codim-1 boundary [0, 1]!In general: N-order pole \Leftrightarrow codim-N boundary

Mattias Sjö, Lund ATP

Numerator functions

Introduction

Projective geometry

- Points and Line
-
- The Golden Rule

Canonical forms

- Differential form
- Polytopes
- Canonical forms

Numerator functions

Projective approach

Amplitudes

- Ordered amplitudes Amplitude = Canonical form Factorisation
- The Associahedron

Final remarks

Problem with non-simplical polytopes:

Solution:

 $\{N(x, y) = 0\}$ = unique line through extra poles

$$\Rightarrow \quad \Omega = \frac{N(x, y) \, \mathrm{d}x \, \mathrm{d}y}{\prod L_i(x, y)}$$

■ Must be line — higher-order function gives pole at infinity!

Mattias Sjö, Lund ATP

Numerator functions

Introduction

Projective geometry

- Points and Lines
- Transformations
- Levi-Civita tenso
- The Golden Rule

Canonical forms

- Differential form
- Polytopes
- Canonical forms

Numerator functions

Projective approach

Amplitudes

Ordered amplitudes Amplitude = Canonical form Factorisation The Associahedron

Final remarks

 $\{N(x, y) = 0\}$ = unique conic through extra poles

The projective approach

Introduction

Projective geometry

- Points and Lines
- Transformations
- Levi-Civita tenso
- The Golden Rule

Canonical forms

- Differential form
- Polytopes
- Canonical forms
- Numerator functions
- Projective approach

Amplitudes

- Ordered amplitudes Amplitude = Canonical form Factorisation
- The Associahedron

Final remarks

Basic differential form in \mathbb{P}^n

$$\mathrm{d}z_1 \, \mathrm{d}z_2 \dots \mathrm{d}z_n = \left\langle X \underbrace{\mathrm{d}X \, \mathrm{d}X \cdots \mathrm{d}X}_{n \text{ times}} \right\rangle$$

■ Want to make rescaling-invariant object (𝒫¹ at first):

$$\Omega = rac{\langle X \mathrm{d} X
angle \langle A B
angle}{\langle X A
angle \langle X B
angle}$$

Let

$$X = \begin{pmatrix} 1 \\ z \end{pmatrix}, \qquad A = \begin{pmatrix} 1 \\ a \end{pmatrix}, \qquad B = \begin{pmatrix} 1 \\ b \end{pmatrix}$$
$$\Rightarrow \qquad \Omega = \frac{(b-a) \, \mathrm{d}z}{(z-a)(z-b)}$$

Canonical form on [a, b] – even normalised!

Mattias Sjö, Lund ATP

The projective approach

Introduction

Projective geometry

- Points and Line
- Iransformations
- Levi-Civita tenso
- The Golden Rule

Canonical forms

- Differential form
- Polytopes
- Canonical forms
- Numerator functions
- Projective approach

Amplitudes

- Ordered amplitudes Amplitude = Canonical form Factorisation
- _____

Remember the "golden rule":

The only valid thing is also correct!

Just write down unique rescaling-invariant form:

Mattias Sjö, Lund ATP

Projective Geometry and Amplitudes

25th May 2021 22/31

Scattering amplitudes

Introduction

Projective geometry

- Points and Lines Transformations
- Levi-Civita tenso
- The Golden Rule

Canonical forms

- Differential form
- Polytopes
- Canonical forms
- Numerator functions
- Projective approach

Amplitudes

- Ordered amplitudes Amplitude = Canonical form Factorisation The Associahedron
- Final remarks

Mattias Sjö, Lund ATP

Theories with ordered amplitudes

Introduction

Projective geometry

- Points and Line
- Loui-Civita tonco
- The Golden Rule

Canonical forms

- Differential form
- Polytopes
- Canonical forms
- Numerator functions

Projective appr

Amplitudes

- Ordered amplitudes
- Amplitude = Canonical form Factorisation

The Associahedron

Final remarks

Common phenomenon:

where

$$\mathcal{M}_{\sigma}(p_1,\ldots,p_n)=\mathcal{M}_{\mathsf{id}}(p_{\sigma_1},\ldots,p_{\sigma_n})$$

Examples:

Colour-orderin	g { Quantum Chromodynamics { Super Yang-Mills
) Flavour-orderii	Ng Chiral Perturbation Theory Various EFTs
Toy ordering	bi-adjoint ϕ^3 : $\mathcal{L} = f_{ABC} f^{abc} \phi^A_a \phi^B_b \phi^C_c$

Mattias Sjö, Lund ATP

ć

Ordered Feynman diagrams

Introduction

Projective geometry

- Points and Lines
- Loui Civita tonco
- The Golden Rule

Canonical forms

- Differential form
- Polytopes
- Canonical forms
- Numerator functions
- Projective approad

Amplitudes

Ordered amplitudes

Amplitude = Canonical form Factorisation The Associahedron

Final remarks

Why ordered diagrams are useful:

Only need to consider planar diagrams with external legs in order

• 4-point in bi-adjoint ϕ^3 : (s-channel) +(t-channel) No u-channel! (non-planar or non-ordered) ■ 5-point: $2 \downarrow 1 5 + (4 \text{ cyclic permutations})$ 6-point: + + + + + + (cycl. perm.)

Amplitudes as differential forms

Introduction

Projective geometry

- Points and Lines
- Transformations
- Levi-Civita tenso
- The Golden Rule

Canonical forms

- Differential form
- Polytope
- Canonical forms
- Numerator functions
- Projective approach

Amplitudes

- Ordered amplitude
- Amplitude = Canonical form Factorisation The Associahedron

Final remarks

Why we do all this

$$\sigma(\text{process}) = \int \underbrace{|\mathcal{M}|^2 \, d(\text{kinematics})}_{\text{differential form!}}$$

• Ordered amplitude is canonical form of some polytope in kinematic space

Therefore: Makes sense to study its poles!

Factorisation of amplitudes

Introduction

Projective geometry

- Points and Lines Transformations
- Levi-Civita tenso
- The Golden Rule

Canonical forms

- Differential form
- Polytopes
- Canonical forms
- Numerator functions
- Projective approach

Amplitudes

Ordered amplitudes Amplitude = Canonical forr

Factorisation

The Associahedror

Final remarks

Amplitude: *n*-point function with external legs on-shell

simple) pole whenever internal propagator goes on-shell

Each half is also an amplitude!

Factorisation of amplitudes

Introduction

Projective geometry

- Points and Lines
- Transformations
- Levi-Civita tenso
- The Golden Rule

Canonical forms

- Differential forn
- Polytopes
- Canonical forms
- Numerator function:
- Projective approach

Amplitudes

Ordered amplitudes Amplitude = Canonical forn

Factorisation

The Associahedron

Final remarks

These diagrams share the pole $S = (p_1 + p_2)^2$:

That is, both are factorisations of

But they are also factorisations of, respectively,

The 5-point associahedron

Introduction

Projective geometry

- Points and Lines
- Loui Ciulta taman
- The Golden Rule

Canonical forms

- Differential form
- Polytopes
- Canonical forms
- Numerator functions
- Projective approach

Amplitudes

Ordered amplitudes Amplitude = Canonical form Factorisation

The Associahedron

Final remarks

Map out the factorisation relationship:

Just like the canonical form!

Mattias Sjö, Lund ATP

The 6-point associahedron

Introduction

Projective geometry

- Points and Lines Transformations
- Levi-Civita tenso
- The Golden Rule

Canonical forms

- Differential form
- Polytopes
- Canonical forms
- Numerator functions
- Projective approach

Amplitudes

- Ordered amplitudes Amplitude = Canonical form Factorisation
- The Associahedron

Final remarks

Final remarks

Introduction

Projective geometry

- Points and Lines
- Loui-Civita tonco
- The Golden Rule

Canonical forms

- Differential forms
- Polytopes
- Canonical forms
- Numerator function:
- Projective approac

Amplitudes

Ordered amplitudes Amplitude = Canonical form Factorisation The Associahedron

Final remarks

- Diagrams \rightarrow Associahedron \rightarrow Projective Space \rightarrow Canonical Form \rightarrow Amplitude
- Requires explicit shape of associahedron.
 Obtained through beautiful kinematic manipulations
 but not enough time!
- Similar treatment of Super Yang-Mills yields the famous Amplituhedron
- Projective space, canonical forms and associahedra have many applications unrelated to this

"We declare as *interesting* only those problems that have sufficiently simple solutions, and declare as *engineering* those that don't." — Nima Arkani-Hamed