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Background

The Galileo Galilei Institute

Florence, Italy,
near Galileo’s home

Hosts conferences,
workshops and schools

Torbjörn and I attended
the Winter School 2020

Nima Arkani-Hamed

Theoretical physicist at
Princeton IAS

Lectures “Positive Geometry
of the Real World”

I will present a subset
of this topic

Mattias Sjö, Lund ATP Projective Geometry and Amplitudes 25th May 2021 2/31



Introduction

Projective geometry
Points and Lines

Transformations

Levi-Civita tensor

The Golden Rule

Canonical forms
Differential forms

Polytopes

Canonical forms

Numerator functions

Projective approach

Amplitudes
Ordered amplitudes

Amplitude = Canonical form

Factorisation

The Associahedron

Final remarks

Projective space: artist’s impression

Image: Getty Images
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Definition of projective space Pn

Points in Pn ≡ Lines through origin in Rn+1

Alternatively: Equivalence classes in Rn+1 under rescaling
~r → λ~r , λ 6= 0
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(Homogeneous) coordinates in Pn

Fix coordinates as intersection with hyperplane:

X I =

(
1

~z

)
, ~z = position on hyperplane

(up to rescaling)
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Points at infinity

Some lines (exactly one in R2) do not intersect the hyperplane —
These are the points at infinity:

X I
∞ =

(
0

~z

)
, ~z = orientation
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Lines in the projective plane P2

General line in Euclidean plane:

0 = a + bx + cy

“Projectivise”:

X =

1
x
y

 , L =

a
b
c

 =

 1
b/a
c/a


0 = L0X 0 + L1X 1 + L2X 2 ≡ LIX I (Einstein summation)

Line at infinity:

L∞I =

(
1
~0

)
⇒ L∞I X I

∞ =

(
1
~0

)
·
(
0

~z

)
= 0
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Coordinate transformations

Most general coordinate change on Pn:

GL(n + 1)

Tensor notation (Λ ∈ GL(n + 1)):

X I ′ = ΛI ′
IX I , LI ′ = (Λ−1)I ′

ILI

With X =
(
1
~z

)
: Acts on ~z like

~z →
~c + D~z

a + ~b ·~z
, Λ =

(
a ~bT

~c D

)
Most general nonlinear transformation that preserves straight
lines (naïve expectation would be GL(n) plus translations)

Mattias Sjö, Lund ATP Projective Geometry and Amplitudes 25th May 2021 8/31



Introduction

Projective geometry
Points and Lines

Transformations

Levi-Civita tensor

The Golden Rule

Canonical forms
Differential forms

Polytopes

Canonical forms

Numerator functions

Projective approach

Amplitudes
Ordered amplitudes

Amplitude = Canonical form

Factorisation

The Associahedron

Final remarks

The Levi-Civita tensor: points

There can only be one invariant 3-index object:

εIJK (totally antisymmetric)

For brevity and convenience:

εIJKX IY JZK ≡ 〈XYZ〉

Line L determined by two points X , Y

⇒ LI = εI JKX JYK

So X , Y ,Z are collinear if

0 = 〈XYZ〉

X

Y
Z

L
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The Levi-Civita tensor: lines

Upper-index version is equivalent:

εIJK = εIJK

Similarly,
εIJKLIMJNK ≡ 〈LMN 〉.

Point X intersection of lines L,M

⇒ X I = εI JKLJMK

(Might be X∞ if lines are parallel)

Three lines L,M ,N intersect in a single
point if

0 = 〈LMN 〉

L
M

N

X
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Final remarks

The “Golden Rule” of Pn

The only valid thing is also correct !

“I hope you never do geometry the same way again”
— Nima Arkani-Hamed
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Conics in P2

General conic in Euclidean plane:

0 = a + bx + cy + dx2 + exy + fy2

“Projectivise”:

0 = C00X 0X 0 + 2C01X 0X 1 + C11X 1X 1 + . . . ≡ CIJX IX J

with CIJ symmetric 2-tensor.
What is CIJX J? — It’s a line!
(The only unique line that makes sense)

CIJ

CIJY J

Y

X

CIJX J
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Pappus’ Theorem

“The first nontrivial result ever in mathematics”
— David Hilbert

A

B
C

a b c

Quite difficult to prove in R2

Straightforward in P2: just use above identities with

εIJKε
KLM = δLI δ

M
J − δMI δ

L
J
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Canonical differential forms

Image: Wikipedia
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Differential forms and their poles

What is a differential form?
Expression that can be integrated, like

f (x) dx, g(x, y) dx dy, . . .

(multiple differentials combined with wedge product)

Simple pole at z = 0 if proportional to

dz
z

(other variants can be removed by coordinate redefinitions)
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Polytopes

What is a polytope?

Generalised polygon, polyhedron,…

Object with boundaries of all codimensions
Codim = (dim of space) − (dim of object)

2D polytope

Codim-1 boundary
and Codim-2 boundary

Not a 2D polytope

Only Codim-1 boundary
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Canonical forms

What is a canonical form?
D-dimensional differential form Ω

Poles on polytope boundary but not elsewhere

Unique (up to scale) for each D-dim. polytope

1D: canonical form on interval [a, b]

a b
x

→ Ω =
dx

(x − a)(x − b)

2D: canonical form on triangle bounded by L1,2,3(x, y) = 0:

x

y

L1(x
, y) = 0

L
2 (x, y)

=
0

L 3
(x
, y
)
=
0

→ Ω =
dx dy

L1(x, y)L2(x, y)L3(x, y)
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A closer look at the poles

Simple example:

x

y

1

1
x
+
y−

1
=
0x

=
0

y = 0

→ Ω =
dx dy

xy(1− x − y)

Residue at y = 0 (sans scale):

x

y

1

1

→ Ω|y=0 =
dx

x(1− x)

Canonical form of the codim-1 boundary [0, 1]!
In general: N -order pole ⇔ codim-N boundary
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Numerator functions

Problem with non-simplical polytopes:

Extra pole!

Extra pole!

Solution:{
N (x, y) = 0

}
= unique line through extra poles

⇒ Ω =
N (x, y) dx dy∏

Li(x, y)

Must be line — higher-order function gives pole at infinity!
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Numerator functions

{
N (x, y) = 0

}
= unique conic through extra poles
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The projective approach

Basic differential form in Pn

dz1 dz2 . . . dzn =

〈
X dX dX · · · dX︸ ︷︷ ︸

n times

〉

Want to make rescaling-invariant object (P1 at first):

Ω =
〈XdX 〉〈AB〉
〈XA〉〈XB〉

Let

X =

(
1

z

)
, A =

(
1

a

)
, B =

(
1

b

)
⇒ Ω =

(b − a) dz
(z − a)(z − b)

Canonical form on [a, b] — even normalised!
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The projective approach

Remember the “golden rule”:

The only valid thing is also correct !

Just write down unique rescaling-invariant form:

1
2

3

→ Ω =
〈X dX dX 〉〈123〉2

〈X12〉〈X23〉〈X31〉

Numerator functions “just fall out”:

1
2

3
4

→ Ω =
〈X dX dX 〉LIX I

〈X12〉〈X23〉〈X34〉〈X41〉
,

LI = straightforward unique combination of 1, 2, 3, 4
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Scattering amplitudes

Mattias Sjö, Lund ATP Projective Geometry and Amplitudes 25th May 2021 23/31



Introduction

Projective geometry
Points and Lines

Transformations

Levi-Civita tensor

The Golden Rule

Canonical forms
Differential forms

Polytopes

Canonical forms

Numerator functions

Projective approach

Amplitudes
Ordered amplitudes

Amplitude = Canonical form

Factorisation

The Associahedron

Final remarks

Theories with ordered amplitudes

Common phenomenon:

M(p1, . . . , pn︸ ︷︷ ︸
momenta

; a1, . . . , an︸ ︷︷ ︸
colour/flavour

indices

) =
∑
σ︸︷︷︸

permutations

Mσ(p1, . . . , pn)Aσ(a1, . . . , an)

where
Mσ(p1, . . . , pn) = Mid(pσ1

, . . . , pσn
)

Examples:

Colour-ordering

{
Quantum Chromodynamics
Super Yang-Mills

Flavour-ordering

{
Chiral Perturbation Theory
Various EFTs

Toy ordering bi-adjoint φ3: L = fABC f abcφA
a φ

B
bφ

C
c

Mattias Sjö, Lund ATP Projective Geometry and Amplitudes 25th May 2021 24/31



Introduction

Projective geometry
Points and Lines

Transformations

Levi-Civita tensor

The Golden Rule

Canonical forms
Differential forms

Polytopes

Canonical forms

Numerator functions

Projective approach

Amplitudes
Ordered amplitudes

Amplitude = Canonical form

Factorisation

The Associahedron

Final remarks

Ordered Feynman diagrams

Why ordered diagrams are useful:
Only need to consider planar diagrams with external legs in order

4-point in bi-adjoint φ3:

41

2 3
(s-channel) +

41

2 3
(t-channel)

No u-channel! (non-planar or non-ordered)
5-point:

1
2

3 4

5 + (4 cyclic permutations)

6-point:

+ + + + (cycl. perm.)
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Amplitudes as differential forms

Why we do all this

σ(process) =
∫

|M|2 d(kinematics)︸ ︷︷ ︸
differential form!

Ordered amplitude is canonical form
of some polytope in kinematic space

Therefore: Makes sense to study its poles!
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Factorisation of amplitudes

Amplitude: n-point function with external legs on-shell

M =

(simple) pole whenever internal propagator goes on-shell

M −→ S
=

MLMR

S −m2

Each half is also an amplitude!
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Factorisation of amplitudes

These diagrams share the pole S = (p1 + p2)2:

1
2

3 4

5 ,

1
2

3 4

5

That is, both are factorisations of

1
2

3 4

5

But they are also factorisations of, respectively,

1
2

3 4

5 ,

1
2

3 4

5
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The 5-point associahedron

Map out the factorisation relationship:

Edge = simple pole Vertex = double pole
Just like the canonical form!

Mattias Sjö, Lund ATP Projective Geometry and Amplitudes 25th May 2021 29/31



Introduction

Projective geometry
Points and Lines

Transformations

Levi-Civita tensor

The Golden Rule

Canonical forms
Differential forms

Polytopes

Canonical forms

Numerator functions

Projective approach

Amplitudes
Ordered amplitudes

Amplitude = Canonical form

Factorisation

The Associahedron

Final remarks

The 6-point associahedron
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Final remarks

Diagrams → Associahedron → Projective Space
→ Canonical Form → Amplitude

Requires explicit shape of associahedron.
Obtained through beautiful kinematic manipulations
— but not enough time!

Similar treatment of Super Yang-Mills yields
the famous Amplituhedron

Projective space, canonical forms and associahedra
have many applications unrelated to this

“We declare as interesting only those problems that have sufficiently
simple solutions, and declare as engineering those that don’t.”

— Nima Arkani-Hamed
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